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Factors influencing patterns in the distribution and abundance of
plant and animal taxa modulate ecosystem function and ecosystem
response to environmental change, which is often taken to infer
low functional redundancy among such species, but such relation-
ships are poorly known for microbial communities. Using high-
resolution molecular fingerprinting, we demonstrate the existence
of extraordinarily repeatable temporal patterns in the community
composition of 171 operational taxonomic units of marine bacte-
rioplankton over 4.5 years at our Microbial Observatory site, 20 km
off the southern California coast. These patterns in distribution and
abundance of microbial taxa were highly predictable and signifi-
cantly influenced by a broad range of both abiotic and biotic
factors. These findings provide statistically robust demonstration
of temporal patterning in marine bacterial distribution and abun-
dance, which suggests that the distribution and abundance of
bacterial taxa may modulate ecosystem function and response and
that a significant subset of the bacteria exhibit low levels of
functional redundancy as documented for many plant and animal
communities.

marine | reoccurrence | automated ribosomal intergenic spacer analysis
(ARISA)

he distribution and abundance of species and the factors that
control them are central to understanding and predicting
ecosystem function and response to environmental change (1). A
central tenet of community ecology is that strong spatial and
temporal patterns in the distribution and abundance of taxa are
governed by environmental (e.g., abiotic, biotic, nutrient, or other)
processes (2, 3), and that these processes link ecosystem function to
biological diversity (4, 5), but the vast majority of studies have been
done on animals and plants (macrobial species), not microbial
species like bacteria. Recently, however, it has become increasingly
evident that bacteria are often dominant species both in terms of
relative abundance (densities or biomass) and in terms of contrib-
uting to ecosystem processes (6—8). Thus, the extent to which the
interactions between abiotic and biotic processes govern ecosystem
and biogeochemical processes remains difficult to assess in the
absence of information about microbial biodiversity patterns of
equivalent resolution to that of macrobial biodiversity. Although
one might argue that microbial communities will mirror macrobial
communities, recent analyses suggest that small organisms, such as
protistan species, due to their huge population sizes and high
dispersal capability, may have fundamentally different diversity
patterns compared to larger organisms (9). Microbes are also
thought to exhibit the potential for a high degree of functional
redundancy, as shown in models like that of Curtis and Sloan (10),
where several different bacterial species can fill a particular niche.
Given the dominance of bacteria in communities and ecosystem
processes, predicting ecosystem response to environmental change
requires determining whether bacterial populations exhibit diver-
sity patterns that are indeed fundamentally different from plants
and animals.
Advances in molecular methods for quantifying microbial bio-
diversity, based mostly on 16S rRNA sequences (11), have recently
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provided mounting evidence that microbes may indeed exhibit
spatial patterns in distribution and abundance akin to larger or-
ganisms, but temporal patterns remain relatively unexplored. Ev-
idence for species turnover in terrestrial fungi (12), species area
curves in sediment bacteria (13), and “island biogeography” in tree
holes (14) and lakes (15) suggest that microbial communities may
exhibit spatial or macroecological patterns well known for larger
organisms in terrestrial ecosystems. A recent review concluded that
some spatial patterns observed in microbes mirror those of larger
organisms, although there may be some patterns unique to mi-
crobes (16).

Marine ecosystems in particular are less well studied, but here,
too, these methods have provided evidence of broad-scale patterns
in the distribution and abundance of dominant taxa of prokaryotic
plankton. For example, bacterial groups like the SAR11 cluster are
now known to be abundant through most of the ocean (17) and
cyanobacteria and certain Roseobacters common only in certain
habitats (18, 19). There is also evidence for spatial gradient patterns
from rivers to the open sea (20, 21) and short-term (within a year)
temporal changes (22). A new study by Morris et al. (23) examined
temporal trends of various bacterial groups in the Sargasso Sea over
multiple years, noting certain groups tended to be more common
during certain seasons (some groups after seasonal deep mixing
events, and others during summer periods). Another study by
Crump and Hobbie (24) showed remarkably parallel development
of bacterial communities in two adjacent rivers and related the
composition to environmental parameters.

Such studies of trends and patterns in abundance, commonness,
and specialization are suggestive of similarities to larger organisms.
However, few, if any, studies demonstrate statistically robust,
predictable patterns in microbial communities. That is, few studies
demonstrate that it is possible to predict bacterial community
taxonomic composition from environmental parameters. For ex-
ample, are there annually repeating cyclical patterns for multiple
microbial taxa in marine ecosystems that are predictable from
environmental conditions? Such a study would more directly and
convincingly show the extent to which bacterial communities may
be deterministic. For example, one might predict changes in
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microbial communities and associated ecosystem processes in the
face of climate change if such patterns existed.

We tested whether the distribution and abundance of marine
bacterioplankton taxa exhibit strong temporal patterns in distribu-
tion and abundance over multiple years and at high resolution (e.g.,
>150 taxa at a monthly scale), and whether these patterns are
associated with abiotic and biotic factors. We sampled monthly over
4.5 years for a suite of oceanographic environmental variables
including temperature, salinity, dissolved oxygen, chlorophyll a,
bacterial and viral abundance, bacterial heterotrophic production,
and nutrients. For bacterial community composition, we used a
PCR-based community fingerprinting method [automated ribo-
somal intergenic spacer analysis (ARISA); ref. 25]. ARISA clas-
sified bacteria into 171 different operational taxonomic units
(OTUs) in our system, of 181 possible OTUs. ARISA analyzes the
lengths of the intergenic spacers between 16S and 23S rRNA genes
present in almost all bacteria. Our standardized version includes
prefiltration to remove eukaryotes, and measured amounts of DNA
at each step (21). Phylogenetic resolution is <98% 16S rRNA
sequence identity, near the range widely considered to be bacterial
“species” or “ecotypes” (26, 27). The assay does not miss any known
major group of near-surface marine bacteria (27, 28); however, if it
did, this would not alter our interpretation because they would be
missed consistently throughout. Also, ARISA has been shown to be
a reasonably quantitative measure of relative abundance of the only
taxon we could independently measure (Prochlorococcus, by flow
cytometry; ref. 27). Our interpretations here do not rely on
accurately measuring the relative abundance of different taxa, but
instead rely on ARISA being repeatable within taxa and with a
response positively related to organism abundance; these criteria
have been met when examined (27).

To demonstrate predictable patterns in the relative distribution
and abundance of bacterial species (or ecotypes) composition over
time, three steps are necessary. First, demonstrate that the assem-
blage composition is patterned. Second, demonstrate that patterns
in composition are repeatable. Third, demonstrate that abiotic,
biotic, ecosystem function, nutrient, and biodiversity (i.e., environ-
mental) factors can predict these particular temporal patterns. We
accomplished the first step by using discriminant function analysis
(DFA) to cluster samples (communities in each month) by month
based only on ARISA data. We accomplished the second by using
time series analyses (TSA) to identify significant autocorrelations
among months as evidence of a repeating pattern, again based
solely upon ARISA data. We accomplished the third by using
multiple regression analyses (MR A) to test whether the temporally
repeatable patterns in distribution and abundance are predictable
by one or more environmental factors. We also posit that, when
species repeat in predictable manner, it is evidence for a low degree
of functional redundancy because substitutions would reduce re-
peatability and predictability.

Results

DFA generated discriminant functions that weighed the relative
proportions of different OTUs based on ARISA. These DFA
functions (i.e., linear mathematical functions in which coefficients
are derived such that multivariate distances among samples are
maximally dispersed) permit prediction of month from ARISA
data. There are >10°" possible combinations of 171 OTUs we could
explore by using DFA. For our data, preliminary exploration
revealed that typically <20 OTUs could accurately classify months,
and DFA tends to ignore the remaining OTUs once the months are
already accurately classified. Therefore, if we simply performed
DFA once with all of the 171 OTUs, most of the bacterial diversity
would be ignored. Thus, to explore the majority of OTUs in our
analysis, we ran DFA with 12 different, ecologically informative
subsets of the OTUs. These included five sets based on fragment
size, or more specifically the first, second, third, or fourth quarter
of the 171 OTUs and all 171 OTUs, when ranked from smallest to
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largest (i.e., arbitrary sets of OTUs). They also included the OTUs
that occurred on >10%, 33%, 50%, or =75% of the dates (i.e.,
commonness of OTUs). Finally, the OTU sets included those
OTUs that each averaged 0.2, 1.1, or 1.6% or more of the total
integrated DNA content in the amplified products in the samples
over the duration of the study (i.e., abundance of OTUs). For
example, only 16 OTUs were so abundant that they each accounted
for 1.6% or more of the integrated DNA content of the amplified
products in the 48 samples, whereas 62 OTUs were abundant
enough to each account for at least 0.2% of the DNA in the 48
samples (Table 1). The percent of months correctly classified by
DFA and the percent of dispersion explained by the first discrimi-
nant function are presented in Table 1.

Sampling months could be statistically predicted from the num-
ber and relative proportions of OTUs alone, indicating that bac-
terial composition is patterned. Of the 12 different subsamples of
the bacterial OTUs tested by DFA, seven resulted in functions that
could accurately classify 80% or more of the samples to their correct
months based solely on the distribution and abundance of OTUs
(Table 1). On average, the first DFA axis accounted for 50% of the
dispersion of the samples in the multivariate space described by the
OTUs used in the analyses. The DFA scores based on this first DFA
axis therefore serve as a single multivariate index (DFA1) describ-
ing ~50% of the variability in the distribution and abundance of
bacterioplankton OTUs for a given sample. This single index of
bacterioplankton diversity can be plotted against time (three ex-
amples are provided in Fig. 1) and analyzed for temporal patterns
by TSA.

Patterns in bacterial composition are highly repeatable over time,
although slightly different depending on which OTUs are chosen.
TSAs based on the DFA1 index of bacterioplankton diversity (for
communities in each month) showed a significant autocorrelation
at a lag of one, meaning that months were similar to temporally
adjacent months (Table 1 and Fig. 1). Additional autocorrelations
at higher lags (Table 1 and Fig. 1) indicate a strong sinusoidal
pattern whereby composition (DFAL1) is least similar in the “op-
posite” season half a year away, but reverts back to being very
similar in the subsequent same season. This finding indicates strong,
continuous seasonal fluctuations for several groups of OTUs (three
examples are illustrated in Fig. 1).

Bacterioplankton diversity can be predicted by environmental
factors. MRA showed that the bacterioplankton diversity, as in-
dexed by DFAL, was consistently predictable from oceanographic
environmental variables (Table 1). The particular environmental
variables identified as significant contributors to the overall regres-
sion for the 12 sets of OTUs spanned the full range, from abiotic
to biotic (Table 1).

Discussion

Our results demonstrate that, from the environmental conditions,
one can predict the distribution and abundance of sets of bacterial
OTUs (as indexed by DFAL1), and the distribution and abundance
of the OTUs can accurately predict the sampling month. Con-
versely, from the diversity of OTUs identified in DFA1, one cannot
only tell the month, but also the likely environmental conditions.
For example, the multiple regression with the best explanation of
variance in bacterioplankton diversity (R? = 0.72, or 72% of the
variance diversity explained) was based on the set of OTUs
occurring in >50% of the samples (Table 1). MRA for this case
showed the DFA1 index of bacterioplankton diversity was predict-
able primarily from the environmental variables of temperature,
oxygen, salinity, virus abundance, dissolved nitrite, and dissolved
silicate (Table 1). Using the DFA coefficients to determine which
OTUs dominated the calculation of the discriminant function, we
can then use linked 16Sr RNA plus intergenic spacer clone data
match sequences and identities to those OTUs (27). In this case, the
most predictable OTUs were presumed to be from among the
members of the Alteromonas, Bacteroidetes, a-Proteobacteria (in-
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Table 1. Statistical analysis of ARISA profiles illustrating a repeating and predictable bacterioplankton community composition

Abundance, OTU

Commonness, frequency

Arbitrary, OTUs

OTU analyzed, >1.6% >1.1% >0.2% >75%

>50% >33% >10%

399-528 531-657 660-844 849-1183 All

Statistic sample size (n) 16 19 62 34 63 83 133 44 43 43 141 171
DFA Dominant OTU 1 719 739 633 739 704 687 477 447 546 699 919 447
2 675 704 a77 687 739 666 408 444 531 769 914 444
3 681 687 624 699 519 534 516 a1 555 687 a1
4 402 600 704 734 1,040 534 465 621 690 465
5 687 417 687 799 513 492 570 739 492
Percent correct 85 57 98 57 64 89 98 94 100 70 19 93
Percent dispersion 47 51 61 46 44 46 58 52 40 50 59 46
TSA Lag, months 1 X X X X X X X X X X X
4 X X X X X
5 X X X X X X X X X
6 X X X X X X
10 X X X X
20 X
MRA Abiotic Temp. X X X X X X
Oxygen X X X X X X X X X
Salinity X X X X
Biotic Bacteria X
Virus X X
Ecosystem funct.  ChlA X X X X X X
Phaeo X X X X X
Leu X
TdR X X X
Nutrients NO, X X X X X X
NO; X X
SiO3 X X X
PO, X X
Biodiversity # OTUs X X X
R? 0.41 0.48 056 039 0.72 0.22 0.28 0.71 0.12 0.54 0.42 0.2
P value <0.01 <0.001 <0.01 <0.001 <0.001 <0.05 <0.001 <0.001 <0.05 <0.001 <0.01 <0.05

Results from OTUs that comprised 1.6, 1.1, or 0.2 % of the total integrated DNA content in the amplified products are shown under Abundance, results from OTUs
that occurred in 75, 50, 33, or 10 % of the samples are shown under Commonness, results from arbitrarily selected OTUs are shown under Arbitrary, and results from
all OTUs are shown in the column marked ALL. Sample size (n) indicates the number of OTUs that were used for a given set of DFA, TSA, and MRA. Dominant OTUs
were OTUs that had the largest coefficients in a given DFA, presented in rank order, 1 being the highest rank. The length (bp) of the Dominant OTUs are shown above,
and putative identities of the dominant OTUs (27) appear in Table 2. Percent Correct is the percentage of months correctly classified by DFA. Percent Dispersion is the
percent dispersion of months explained by the first discriminant function. TSA that yielded a significant (P < 0.05) autocorrelation are indicated with an X; significant
lags indicate the temporal span of repeated values of the first DFA score. Bacteria and Virus represent prokaryote and virus total abundance by direct counts, ChlA and
Phaeo are concentrations of particulate chlorophyll a and phaeopigments, Leu and TdR are bacterial heterotrophic production as estimated by incorporation of tritiated
leucine and thymidine, NO, NOs, SiOs3, and PO, are concentrations of nitrite, nitrate, silicate, and phosphate, respectively, and # OTUs is the richness (n) of individual
ARISA samples. Parameters that predict microbial diversity as identified by the MRA (see Materials and Methods) are indicated with an X, with a bold X indicating
environmental variables with significant (P < 0.05) regression coefficients. Significant Pvalues (P < 0.05) are indicated in bold. Illustrated examples in Fig. 1 were chosen

based on MRA with highest R? for abundance, commonness, and arbitrarily defined sets of OTUs. Ecosystem funct., ecosystem functionality.

cluding members of the SAR 11 and SAR 116 clusters), and
Verrucomicrobium groups, although some were not identified
(Table 2). Note that different combinations of parameters were
significant contributors when different subsets of the bacterial
community were examined (Table 1), as one would expect if the
bacterial community consisted of species with highly diverse eco-
logical niches.

Collectively, these results demonstrate that the biodiversity of
open ocean marine prokaryotic communities at this site exhibit
distinctly repeatable temporal patterns that are predictable from a
variety of abiotic, biotic, nutrient, and ecosystem function variables.
Although we have explored only a limited number of sets of OTUs,
as in the case of studies of larger organisms (e.g., based on
abundance, commonness, or arbitrary subsets), a number of strong
patterns are apparent. Significant associations with a variety of
environmental variables that cover a complex range, from biotic to
abiotic, suggest a large number of possible ecological mechanisms
responsible for these patterns. Although experiments would be
necessary to identify the particular ecological mechanisms, our
results nevertheless suggest that these communities are likely to be
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structured by the environment, as are many plant and animal
communities.

Note that our analysis does not imply that the distribution and
abundance of all taxa in this system vary in lockstep in highly
repeatable annual patterns. Rather, our analyses indicate that there
are several highly predictable subsets of taxa as well as less
predictable subsets of taxa (and visual inspection of the data shows
some taxa occurred only a few times over the 4.5 years, others
sporadically). However, this wide range of responses among taxa is
a common feature of “macrobial” communities. Of interest is why
some taxa show strong patterns and others do not.

Past studies of planktonic bacteria have rarely examined this
particular question, but have found some similar and some dispar-
ate results in comparison to those we report here. For example,
Kent et al. (29), who used ARISA like we did, found little evidence
for temporally repeating patterns in humic lake bacterioplankton.
Earlier, Lindstrom (30) showed a slow steady change rather than
annual or seasonal patterns over years in a boreal lake, and
Yannarell et al. (31) found no clear temporal pattern within
neighboring lake systems. Recently, Yannarell and Triplett (32)

Fuhrman et al.
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Fig. 1. Multiple lines of evidence for temporal cyclicity in bacterial biodiversity at 5-m depths in open-ocean samples from coastal California waters. This figure
provides three examples selected from Table 1. (Left) DFA scores that evidence annually repeated multivariate patterns in bacterioplankton. (Center)
Autocorrelations from TSA (i.e., 95% confidence intervals illustrated by lines). Note evidence for strong, steady, seasonal patterns reflected by the sinusoidal
pattern in autocorrelations as lag size increases. (Right) DFA scores and their predicted values based on MRA (see Table 1). (Top) DFA scores based on relatively
high abundance (summed amplified DNA of OTUs over the 4.5 years, with OTUs representing >0.2% of the total amplified DNA). (Middle) DFA scores based on
commonness (OTUs in 50% or more of the samples over the 4.5 years). (Bottom) DFA scores based on arbitrarily selected taxa, in this case, the first quarter (44

OTUs), i.e., shortest fragment lengths in ARISA analyses (Table 1).

also found a decoupling between the community and environmen-
tal parameters in lake systems. The differences between our study
and these lake based studies could be due to differences in taxa,
sensitivity to environmental variables, the closed versus open nature
of the systems, the differences in age of the systems, and other
locally unique properties of these systems such as perturbation
frequency, or in analytical approaches; further study is needed to
evaluate which of these possibilities may best account for the
observed differences.

In contrast to these reports on lake systems that appear to lack
repeating annual cycles, two other studies have identified pos-
sible temporal patterns. Morris et al. (23) reported seasonal
reappearance of certain groups related to large scale mixing
events in the Sargasso Sea. Additionally, Crump and Hobbie (24)
reported parallel and apparently deterministic bacterial com-
munity patterns in two adjacent rivers that drain into the same
coastal area and reported evidence for seasonal repeatability
and predictability from environmental parameters as judged by
examination of multidimensional scaling plots. Their temporal
pattern was most strongly correlated to parameters related to the
strong seasonality of their site (e.g., large temperature shifts
from 0 to 29°C and flow rate). However, neither Morris ef al. nor
Crump and Hobbie tested for the statistical significance of
temporal trends (autocorrelation), nor did they test for the
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predictability of temporal patterns from nonbacterial parame-
ters, so we do not know whether these studies show temporal
patterning or predictability comparable to what we observed.

In an ocean environment, an obvious factor that can influence
communities is the hydrographic regime. Our sample location off
Southern California is within a system of currents that exhibit strong
seasonality, with generally southward flow in spring, weak north-
ward flow in early summer, and stronger northward flow in late
summer and fall (33). Because the region north of our site has
strong seasonal upwelling, especially in the spring, one might expect
currents to bring more eutrophic conditions and associated organ-
isms in spring, whereas summer—fall stratification and flow from the
south would be associated with more oligotrophic conditions and
associated organisms. This region also experiences storms during
winter that can lead to moderately deep mixing that brings inor-
ganic nutrients and deeper-dwelling organisms into the near-
surface waters. It is likely that these seasonal hydrographic condi-
tions and their influence on other organisms, such as eukaryotic
phytoplankton species or other protists that we did not investigate
here, contributed significantly to our observed patterns and pre-
dictability in bacterial community composition. Such variations in
hydrography are reflected in several parameters we investigated,
such as temperature, salinity, and nutrients.

Our results have important implications for understanding ma-
rine ecosystem function. If we had seen unpatterned distribution
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Table 2. Putative identification of dominant (most predictable)
OTUs from DFA

OTU Group(s) (accession nos.)
402 y-Proteobacteria - CHABI-7 subgroup (DQ009149)
417 Actinobacter (DQ157868)
465 SAR86 (AY552545)
531 y-Proteobacteria - SPOTS121 subgroup (DQ009145)
534 y-Proteobacteria - SPOTS121 subgroup (DQ009143)
555 Alteromonas (AF408841)
621 Bacteroidetes (DQ009091)
Fibrobacter (DQ009159)
624 SAR406 (DQ009157)
666 SAR11 (DQ009203)
675 a-Proteobacteria (DQ009262)
681 SAR11 (DQ009194)
687 SAR116 (DQ009272)

SAR11 (DQ009253)
Alteromonas (AF408829)

690 Pelagibacter ubique str. 1062 (SAR 11) (NC_007205)

699 SAR11 (AY033325)

704 a-Proteobacteria (DQ009256)
SAR11 (AF151254)

719 SAR11 (DQO009166)

734 Verrucomicrobia (AY033323)

739 Verrucomicrobia (DQ009368)
Bacteroidetes (DQ009104)

769 Bacteroidetes (DQ157869)

799 Bacteroidetes (DQ646394)

914 Prochlorococcus (NC_007335)

1040 Synechococcus (DQ009365)

y-Proteobacteria - OM182 subgroup (DQ009156)

ARISA OTU numbers (ARISA fragment length, in base pairs) and group iden-
tities (phylogenetic groups of known marine sequences with matching ARISA
lengths) for 22 of the 36 unique dominant OTUs from DFA listed in Table 1. OTUs
not appearing here, but in Table 1, do not match any known marine sequence.
GenBank accession numbers of identifying clones/cultures are also listed.

and abundance, then the implication would have been that bacterial
species are well dispersed and to a large degree ecologically
redundant, which would be consistent with the idea that much or
most microbial diversity consists of functionally interchangeable
taxa. Furthermore, if unpatterned, then ecosystem function (e.g.,
autotrophic or heterotrophic bacterioplankton production) would
simply be a consequence of abiotic factors and nutrient availability,
with the bacteria representing the equivalent of a black box
multiplier associated with biomass that permits biogeochemical
processes to occur; ecosystem models have not yet moved beyond
that general portrayal of marine bacteria. However, our evidence of
strong temporal patterns implies that the subsets of planktonic
bacteria that showed the repeating predictable patterns are less
functionally interchangeable (i.e., specialized), their distribution
and abundance regulated by abiotic factors (e.g., temperature,
salinity, dissolved oxygen), biotic factors (e.g., competition with
other species, predation by viruses), and nutrients (e.g., types,
supply rates, stoichiometric constraints). In other words, if the
dominant bacterial niches in our area were all occupied by various
combinations of functionally redundant bacteria, we would expect
to see different combinations of OTUs occurring under similar
conditions, but instead we see the repeating and predictable
patterns of certain bacterial community subsets. Thus, this evidence
of temporal patterns in bacterioplankton distribution and abun-
dance implies that current marine ecosystem models that take a
“black box” approach may oversimplify the true nature of microbial
ecological functions.

A considerable number of well established theories in macrobial
ecology [e.g., resource-based competition (34), trophic cascades
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(35), biodiversity and ecosystem functioning (5), and the metabolic
theory of ecology (36)] apply to the kinds of patterns in distribution
and abundance as we demonstrate here, but these theories are
largely untested in bacteria. In situ experimental analyses designed
to examine which theories are best supported by strong patterns in
distribution and abundance represent a critical next step, but such
approaches still face many challenges in microbial ecology. Over-
coming these challenges would lead the way to the development of
a more predictive open ocean microbial ecology, one in which the
same level of understanding of the role of biodiversity in macrobial
systems is achieved for prokaryotic microbial communities.

Materials and Methods

Sample Collection. Samples from 5-m depth were collected at the
San Pedro Ocean Time Series (SPOTS) Microbial Observatory site
(33°33' N, 118° 24’ W) on board the R/V Sea Watch, using Niskin
bottles approximately monthly from August 2000 to December
2004. Seawater (20 liters) was filtered through Gelman A/E glass
fiber filters (nominal pore size, 1.2 um) to remove eukaryotic cells
(containing plastids that complicate the interpretation of ARISA
fingerprints). The A/E-filtered seawater, containing the free-living
bacterioplankton that have been shown to be ~85% of the total
bacteria (37), was then filtered through a 0.2-um Durapore filter
(Millipore) to collect the bacteria. Filters were frozen at —80°C
before analysis at the University of Southern California (Los
Angeles, CA).

DNA Extraction and ARISA. DNA was extracted from frozen filters by
hot SDS lysis followed by phenol-chloroform purification of nucleic
acids (38), and DNA was stored frozen at —80°C in TE buffer or
dry. ARISA (25) was conducted on 5 ng of DNA as measured by
PICO Green fluorescence. A standard amount of template
genomic DNA was used in each PCR, with the intention of
analyzing the same amount of bacteria from each sample. PCRs (50
wl) contained 1X PCR buffer, 2.5 mM MgCl,, 250 uM of each
deoxynucleotide, 200 nM each of universal primer 16s [1392F
(5'-G[C/T]ACACACCGCCCGT-3")] and bacterial primer 23s
[125R labeled with a 5" TET (5'-GGGTT[C/G/T]CCCCAT-
TC(A/G)G-3")], 2.5 units Taq polymerase (Promega), and BSA
(Sigma, St. Louis, MO, catalog no. A-7030; 40 ng/ul final concen-
tration). These primers target specifically bacteria; therefore, ar-
chaea are not included in our analysis, and we know of no significant
group of common near-surface marine bacteria whose DNA these
primers fail to amplify (39). Thermocycling was preceded by a 3-min
heating step at 94°C, followed by 30 cycles of denature at 94°C for
30 s, anneal at 56°C for 30 s, extend at 72°C for 45s, with a final
extension step of 7 min at 72°C. Amplification products were
cleaned by using Clean & Concentrator-5 (Zymo Research,
Orange, CA) and DNA in purified products were measured by
PICO Green fluorescence. Purified products were then diluted to
5 ng/ul so that we could load a standardized amount in the
fragment analysis and prevent differences arising from different
amounts of loaded DNA (such variations can occur with different
loaded amounts because as more DNA is loaded, more small peaks
can exceed the threshold of detectability). Products were then run
for 5.5 h on an ABI 377XL automated sequencer operating as a
fragment analyzer (40) with a custom-made ROX-labeled 1,500-bp
standards (Bioventures, Murfreesboro, TN). The sequencer
electropherograms were then analyzed by using ABI Genescan
software.

Outputs from the ABI Genescan software were transferred to
Microsoft Excel (Seattle, WA) for subsequent analysis. Peaks less
than five times baseline fluorescence were discarded because they
were judged not clearly distinguishable from instrument noise (21).
With this criterion, the practical detection limit for one OTU is
~0.09% of the total amplified DNA (21). Due to the nature of
fragment analysis, there is some uncertainty in the estimates of
ARISA fragment length, which led us to “bin” the OTUs. This
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uncertainty increases with increasing fragment length (largely from
diffusive band spreading), and bins were 3 bp wide up to 700 bp,
then 5 bp wide from 700-1,000 bp, and 10 bp wide >1,000 bp;
reported OTU lengths in the tables are the mean value of the bins,
and bin width was accounted for in determination of putative OTU
identification (hence, some of the ambiguous identifications). Fur-
ther analysis was then conducted as outlined under Stafistical
Analysis.

The standardization we use is comparable to animal and plant
studies because ecologists have long recognized that counting more
individuals in a sample can make diversity appear larger, so
standardization of sample size is needed.

Ancillary Parameters. Bacterioplankton production was estimated
by incorporation of [*H]thymidine and [*H]leucine into DNA and
protein, respectively, as described (41, 42). Although both are
measures of growth, thymidine incorporation is thought to primar-
ily follow cell division, whereas leucine incorporation also indicates
changing growth rates. Briefly, 10-ml seawater samples in sterile,
sample-rinsed polypropylene centrifuge tubes were inoculated with
5 nM (final concentration) [*H]thymidine or [*H]leucine and
incubated 1 h at ambient temperature. After incubation, samples
were filtered onto 25-mm-diameter 0.45-um Millipore (type HA)
nitrocellulose filters to dryness (Millipore, Billerica, MA). Small
molecules were then extracted by incubation for 2 min with 2 ml of
ice-cold trichloroacetic acid (TCA). Afterward, TCA was vacuum
filtered through, and filters were placed in 5 ml of Ultima Gold
scintillation fluid. Radioactivity was measured in a Beckman
Coulter (Fullerton, CA) 6500 SC scintillation counter after 1 h to
allow clearing of filter membranes. We used a conversion factor of
1.5 X 10" cells per mol of leucine and 2 X 10'® cells per mol of
thymidine incorporated to estimate bacterial production (41, 42).

Bacterial and viral abundance was determined by SYBR Green
I'staining and epifluorescence microscopy (43). Briefly, samples (50
ml) were fixed with 2% 0.02-um-filtered formaldehyde and kept at
4°C in the dark until processing, which occurred within 24 h of
sampling. Samples were processed by firstly filtering aliquots (320
ml, depending on depth) onto 0.02-um Anodisc Al,O; filters,
drying the filter on tissue paper, then staining on a 100-ul 1:2,500-
diluted drop of SYBR Green I. After staining, the filters were
redried on tissue paper and mounted on a glass slide with a solution
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of 50:50:0.01 glycerol/PBS/p-phenylenediamine as mountant.
Slides were observed under blue light excitation at X1,000 magni-
fication on an Olympus BH-60 microscope. More than 200 particles
of each of viruses and bacteria were counted in 20 fields.
Hydrocast CTD instrument data included in vivo chlorophyll a
fluorescence, salinity, oxygen, and temperature. Additionally, sam-
ples for the determination of extracted chlorophyll a (44), conduc-
tivity, and oxygen (Winkler titration; ref. 44) were taken corre-
sponding to the target depths of our microbial analyses.

Phylogenetic Identification of ARISA OTUs. 16S-ITS-23S sequences
obtained from clone libraries constructed previously from the San
Pedro Ocean Time Series (SPOTS) station and 16S-ITS-23S
sequences available in GenBank were used to assign putative
identities to the 36 unique ARISA bins presented in Table 2.
Twenty-two of 36 unique bins were identified. Occasionally, more
than one possible identification could be assigned to an individual
OTU (five of 36), whereas, conversely, 14 ARISA bins did not have
a corresponding clone of the same length and hence could not be
identified.

Statistical Analysis. DFA is a multivariate statistical method that
identifies functions that maximize distances (dispersion) among
groups in multivariate space. The discriminant functions yield
scores that reflect differences among groups better than individual
variables. The method uses eigenvalue analysis to solve for the
coefficients in the discriminant functions. In our case, the groups
are months and the variables are OTU proportions derived from
the ARISA analyses. Because the discriminant scores of the first
function represents the best multivariate metric for distinguishing
months based on OTUs, we use DFA1 scores as our measure of
microbial diversity that best distinguishes one month from another.
DFA is described in Manly (45). Time series (46) and multiple
regression analyses (47) are described in the main text. We used
SYSTAT version 11 for these analyses.
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