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A power-law distribution of the length of perfectly conserved
sequence from mouse�human whole-genome intersection and
alignment is exhibited. Spatial correlations of these elements
within the mouse genome are studied. It is argued that these
power-law distributions and correlations are comprised in part by
functional noncoding sequence and ought to be accounted for in
estimating the statistical significance of apparent sequence con-
servation. These inter-genomic correlations of conservation are
placed in the context of previously observed intra-genomic corre-
lations, and their possible origins and consequences are discussed.

comparative genomics � conservation � correlations � noncoding � scaling

Selection and neutral drift, the dynamic duo of evolution, lead to
degradation or loss of nonfunctional genomic sequence. Se-

quences greater than 50 nt in length (L) perfectly conserved among
sets of diverse genomes (ultraconserved elements, or UCEs) have
only recently been identified in mammals; they are enriched for and
cluster near known functional elements (1–3). For example, ultra-
conserved elements with L � 100 shared by human, mouse, and rat
genomes that overlap exons are enriched in genes for RNA binding,
DNA binding, and transcriptional regulation; those that do not
overlap exons tend to cluster near regulatory genes and sequences
(1). Microconserved elements (perfectly conserved sequences with
L � 50) are strongly enriched for mature micro-RNAs, other
noncoding RNAs, and transcription factor binding sites (4) (T.
Tran, P.H., and J.M., unpublished data).

In this article, we examine the length and spatial distributions of
sequences perfectly conserved between the mouse and human
genomes. Whereas for the most part we study ‘‘maximal L-mers’’
(sequences common to multiple genomes that are not contained in
any longer sequences common to those genomes), mouse and
human are sufficiently closely related that for L �30, this set is
nearly identical to perfectly conserved sequences obtained from
whole-genome alignment, differing in total number at L � 40, for
example, by �3%.

Results
Distribution of Maximal L-mer Lengths in a Mouse�Human Genome
Intersection. We identified nearly 1.6 � 106 distinct maximal L-mers
with L � 23 common to repeat-masked mouse and human ge-
nomes, a set of sequences that we refer to as a ‘‘genomic intersec-
tion.’’ Their lengths are displayed in Fig. 1a on a log–log scale and
in the Inset on a semilogarithmic scale. The linear regime on the
log–log scale starting at L � 30 encompasses just under 2.7 � 105

sequences covering 1.3 � 107 bases, or �0.9%, of the repeat-
masked mouse genome (for rat�mouse intersections, this figure is
closer to 10%). As a comparison, we randomly mutated repeat-
masked mouse X chromosome at a rate of 0.1 substitutions per base
and intersected it with the unmutated mouse X chromosome; Fig.
1b shows the anticipated exponential (or geometric) maximal L-mer
length distribution—a convex curve on the log–log plot and a
straight line on the semilogarithmic Inset. The 3-fold modulation of
the mouse�human L-mer distribution at small L (Fig. 1a Inset) can
be averaged over nearest neighbors (Fig. 2, curve d) to more clearly
exhibit the linearity of this distribution on a log–log plot, revealing

a power-law (or algebraic) distribution over more than four orders
of magnitude in the ordinate, with a power close to �4. This
observation seems to rule out a uniform rate of spatially uncorre-
lated base substitution, a standard ‘‘null-model’’ for estimating
significance of sequence conservation.

The power-law distribution is readily apparent in intersections of
orthologous fragments of sequence as short as 4 Mb (see Fig. 6,
which is published as supporting information on the PNAS web
site). Furthermore, the distribution of perfectly conserved se-
quence lengths derived from human�mouse whole-genome align-
ment [ultraconserved elements for L � 50 (1)] exhibits the same
power law (Fig. 2, curves b and c), extending from lengths as short
as 12 bases through nearly six orders of magnitude in number; when
A�T and G�C substitutions are permitted, the power is slightly
altered (Fig. 2, curve j).

Repeat-Masking. In the computations described so far, both mouse
and human genomes were first ‘‘repeat-masked.’’ RepeatMasker
(6) is a heuristic algorithm that identifies and tags (or ‘‘masks’’)
certain classes of sequence occurring throughout a genome as
multiple repeats or near-repeats, based on a list of manually curated
elements such as SINEs, LINEs, Alu, and satellite DNA; excessively
‘‘simple’’ sequences are tagged as well. Eukaryotic whole-genome
alignments are ordinarily repeat-masked before alignment by, e.g.,
BLASTZ (7) or LAGAN (8); the masked sequence is later rein-
serted. In the neighborhood of half of a vertebrate genome may be
masked. The original motivation for masking repeats here, as
elsewhere, was the desire to avoid the capture of ‘‘simple’’ and�or
complex repetitive interspersed sequences. Repetitive�simple se-
quence can be subject to distinctive evolutionary forces such as
intrachromosomal recombination at frequencies beyond that of
single-copy sequence (9). These forces may be reflected in the
differences between curves f and i in Fig. 2, which are accounted for
primarily by low-complexity sequences with Alu and interspersed
repeats contributing significantly only for lengths �40.

To eliminate the possibility that the source of our observations
is an artifact of the RepeatMasker algorithm, we examined inter-
sections of mouse and human genome sequences that were not
preprocessed by RepeatMasker but instead were subject to two
different ad hoc but much simpler filters. Sets of single-copy
sequence were generated from the genomic intersection in two
distinct ways: (i) by discarding any maximal L-mer that contained
as a subsequence a 23-mer that occurred more than once in either
genome (Fig. 2, curve e); and (ii) by discarding any maximal L-mer
that occurred more than once in either genome, and subsequently
eliminating sequences whose entropy of base composition was less
than a specified value (Fig. 2, curves f–i). Evidently, these two
classes of complex, single-copy maximal L-mers exhibit the same
power-law length distribution as the repeat-masked sequence (Fig.
2, curve d).
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Spatial Correlations of Mouse�Human Maximal L-mers in the Mouse
Genome. The power spectrum of mouse�human maximal L-mer
positions within the mouse genome (red points in Fig. 3) exhibits
several conspicuous features: (i) a peak at a wavelength corre-
sponding to 3 bases—this mode has been observed in the power
spectrum of single genomes and is also reflected in the maximal
L-mer distribution; (ii) harmonics with a peak near 30 bases that
arise because termini of two maximal L-mers of minimum length
L can be no less than L � 1 bases apart (otherwise, their concat-
enation would have been recorded as a single maximal L-mer); and
(iii) a linear regime, starting at a wavelength of 5,000 and extending
to the window size (218), reflecting power-law decay of maximal
L-mer positional correlations within the mouse genome. The slope

of this linear regime corresponds to an exponent of �3�4 for decay
of correlations in real space.

In this analysis, maximal L-mers are disjoint from repeat-masked
sequence and the genome is effectively fragmented by repeat-
masked intervals. The lengths of the remaining unmasked intervals
themselves display a distribution that may contain a power-law
regime (Fig. 7a, which is published as supporting information on the
PNAS web site). To confirm that correlations seen in the mouse�
human intersection power spectrum are not artifacts of this frag-
mentation, we constructed two random sequences that contained
the same mean density of 1s as did the sequence derived above
directly from the mouse�human maximal L-mer locations but
subject to constraints of (i) exclusion from masked regions of the
genome and (ii) minimum separation. The power spectra of the
random signals show little modulation across all wavelengths (Fig.
3). These observations indicate that the power-law decay of max-
imal L-mer correlations is not an artifact of RepeatMasker, al-
though we are not suggesting that repetitive sequence does not play
a role in the evolutionary processes from which these correlations
arise.

Spatial Clustering. Ultraconserved elements have been observed
to cluster in the neighborhood of functional genomic sequences

Fig. 1. Distributions of perfectly conserved sequence lengths in genomic intersections. (a) Log–log plot of the number of distinct maximal L-mers from
mouse�human whole-genome intersection. The Inset at the lower left shows the same data on a semilogarithmic scale. The Inset at the upper right expands the
small-L regime to show the 3-fold modulation clearly. (b) Log–log plot of the intersection of mouse X chromosome with a version of itself that has been randomly
mutated at a rate of 0.1 substitutions per base.
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Fig. 2. Length distributions (three-point running averages) of perfectly
conserved L-mers from mouse�human genome alignment and intersection.
Curve a, maximum possible number of distinct mers of length L (cyan); curve
b, whole-genome alignment from UCSC, for L � 4 (hg17�mm6): distinct
sequences (black); curve c, same whole-genome alignment: all sequences
(brown); curve d, intersection of repeat-masked genomes (red). No Repeat-
Masker: curve e, distinct maximal L-mers in intersection containing no 23-mer
subsequence that occurs more than once in either genome (green); curves f–i,
single-copy maximal L-mers in intersection with entropy of base composition
exceeding selected values in bits (blue, magenta, violet, and dark green); curve
j, (repeat-masked) whole-genome alignment as in curve b, allowing A�T and
G�C substitutions within an L-mer (orange). Except for curve a, distributions
are offset in the horizontal direction from the whole-genome alignment
(curve b) for clarity of presentation; otherwise the linear regimes of curves b–f
would fall right on top of one another.

Fig. 3. Log–log plot of window-averaged power spectra for mouse�human
maximal L-mer locations over the mouse genome and for random ‘‘control’’
sequences (see Repeat-Masking). Black, mouse�human maximal L-mers; red,
random locations: excluded from masked regions of genome; green, mini-
mally separated and excluded from masked regions. See Supporting Methods
and Fig. 7b.
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(1). To quantify clustering, we computed the fraction, f, of mouse
genome with a given local density of maximal L-mers, �. The
local density �n is defined as the number of maximal L-mers per
base within a sequence window of length n. We divided the
repeat-masked mouse genome into nonoverlapping windows of
length n and computed the distribution of local densities for
log2n � 2, 3, . . . , 22. For n below the inverse mean density of
L-mers (�211 bases), trivial scaling is expected and observed,
whereas for excessively large n, sampling issues dominate. In the
intermediate regime, 14 � log2n � 20, we find that we can
collapse the curves onto one another as shown in Fig. 4, yielding
a scaling function h(�) � f(�n)�gn, where � is independent of n,
gn is the multiplicative factor needed to collapse f(�n), and h is
evidently a stretched exponential, exp(���1/2); � is a constant.
Thus, the L-mers form denser clusters and sparser lacunae than
randomly chosen positions, which exhibit a Gaussian scaling
function. This observation can be summarized loosely as an
‘‘attraction’’ between maximal L-mers. A stretched-exponential
for GC clustering was reported previously (10).

Power-Law Distribution of ‘‘Highly Conserved’’ Sequence. State-of-
the-art methods used to estimate the significance of conserved

sequence are described in two recent papers (11, 12). In ref. 11,
highly conserved sequence within the aligned CFTR locus from 29
mammals was identified through phylogeny-based position-by-
position computation of the ratio of observed to expected substi-
tution rates (see Methods). The significance of conservation was
assessed by comparing the total length of ‘‘highly conserved’’
sequence against the total length of sequence yielded by a ‘‘null
model’’ in which the substitution rates were randomly permuted in
space. The null model plays an essential role in their analysis by
allegedly making it possible to identify regimes where conservation
exceeds what would be expected under neutral drift alone.

We analyzed the length distributions for the data and the null
model, based on the sequences of expected�observed substitutions
that were provided as supplementary data to ref. 11. As exhibited
in Fig. 5, the lengths of ‘‘highly conserved’’ sequences display a
power-law distribution, whereas for the null model the length
distribution decays exponentially. The interpretation of ‘‘rejected
substitutions’’ (RS) computed in ref. 11 relies on the independence
of additive contributions, so that events arising from intragenomic
correlations may be attributed to selection, leading to overestimates
of the significance of longer sequences and underestimates of the
significance of shorter sequences.

The critical distinction is drawn in ref. 11 between substitutions
arising from neutral drift versus those arising from selection and is
accounted for by the RS. The same distinction applies to correla-
tions; that is, one would expect to find intragenomic positional
correlations of observed substitution rates that differ from those of
expected substitutions; however, to recover an uncorrelated RS
would require some kind of cancellation between the long-range
components of these two contributions, which seems to us
implausible.

As reviewed in Discussion, slowly decaying positional correlations
are a well known phenomenon in noncoding sequence and can arise
in the absence of selection. We would expect the method of ref. 11
to be applicable in the study of protein-coding exonic sequence
where exponentially decaying correlations appear to be typical; but
in general, their null model seems to be difficult to justify and sheds
some doubt on the proper interpretation of their calculations.

The methodology of ref. 12 is explicitly biased in favor of coding
exons, which are known to display exponentially decaying spatial
correlations, and their null model neglects correlations in the same
spirit as ref. 11; they report a geometric (exponential) distribution
of highly conserved sequence lengths. Our human�dog�frog whole-
genome intersections (T. Tran, P.H., and J.M., unpublished data)
exhibit a power law and show �103-fold enrichment for certain

Fig. 4. Scaling function h for the fraction f of repeat-masked mouse genome
(y axis) with a given local density of maximal L-mers � (x axis). Note that a
square-root has been taken on the x axis. A stretched exponential is observed,
whereas a spatially random choice of positions in the repeat-masked mouse
genome yields the expected Gaussian, with a quartic decay on this plot (data
not shown). Window lengths are 2n for n � 14 (dark green), 15 (brown), 16
(violet), 17 (blue), 18 (green), 19 (red), and 20 (black).

Fig. 5. Length distribution of the highly conserved L-mers derived by Cooper et al. (11). (a) Semilogarithmic plot. (b) Log–log plot. Number of sequences as
a function of length is plotted for the threshold RS value of 8.5 selected in ref. 11 but is very insensitive to the choice of this quantity. Dashed line, null model;
solid line, alignments of CFTR loci. The horizontal scale of the semilogarithmic plot is expanded to exhibit the linearity of the null model curve on these axes.
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classes of functional noncoding elements but are close to neutral
with respect to coding exons.

Discussion
It has been recognized for almost 15 years that two-point nucleotide
correlations within a single genome can exhibit power-law behavior
(13–15). The original studies revealed a tendency for correlations in
protein-coding exons to exhibit exponential decay, whereas ‘‘non-
coding’’ sequence, for example from selected introns, showed
power-law decay. These early observations from the physical sci-
ences community were reported when the prevailing opinion
among biologists was that with the exception of classical protein-
coding exons and some nearby regulatory elements, the bulk of the
genome was composed mainly of nonfunctional ‘‘junk.’’ The power-
law correlations were rationalized at the time as a consequence of
the repetitive structure that is often a feature of (generally assumed
to be nonfunctional) sequence in noncoding regions (16), and it
remains an open question whether the intra-genomic power-law
correlations can, by themselves, distinguish functional from non-
functional noncoding sequence (for a review, see ref. 17).

The 2002 comparison (7) of the newly completed human and
mouse genomes altered the perspective of many biologists when it
was found that (i) there was not enough conserved protein-coding
sequence to account for the complexity of higher eukaryotes, and
(ii) whereas strong conservation of 2% of the sequence between
these genomes could be accounted for by protein-coding sequence,
an additional 4% could not. Although there had been previous
indications that much of the sequence of these genomes had
nonclassical functions, perhaps representing undiscovered regula-
tory elements or genes for so-called ‘‘noncoding’’ RNAs, recent
years have seen a vast expansion of the quantity, variety, and scope
of functional sequence that does not code for proteins. In particular,
the RIKEN FANTOM3 consortium demonstrated recently (18)
that on the order of half of each strand of the mouse genome is
transcribed—although within these transcripts, roughly half of
previously discovered noncoding RNAs remain undetected.

One obstacle to recognizing the significance of the early power-
law data is that sequence correlations, some exceptions such as those
arising from the classical triplet codon aside, have generally admit-
ted no natural biological interpretation. For example, a functional
role for intragenomic fluctuations of GC content, which certainly
display nontrivial scaling properties (10), remains speculative. The
current paradigm of molecular biology is largely based on ‘‘motifs’’
and other local structures such as genes. The observations described
here fit this paradigm: We identify by general considerations a class
of sequence, relatively short on the genomic scale, that we expect to
fulfill novel and important biological roles.

On the other hand, the location of functional elements within a
genome is known to be closely coordinated with their expression.
The relative location of HOX genes within a HOX cluster influ-
ences the order of their spatial and temporal expression. Micro-
RNA expression has been shown to be correlated with the expres-
sion of nearby genes (19). Observations of scaling over more than
two orders of magnitude in length have recently been reported for
organization of genes within microbial chromosomes (20), and a
scaling regime of 10–200 bases in eukaryotes has been reported that
may be related to positioning of nucleosomes (21). Both of these
latter phenomena are intragenomic and more limited in dynamic
range.

The characterization and modeling of power-law correlations
within genomes has undergone steady refinement since 1992, when
Li (22) proposed that they could be accounted for by a simple model
of neutral evolution, the ‘‘expansion-modification’’ model. Most
recently, the scaling of correlations in the expansion-substitution
model and some natural generalizations have been derived analyt-
ically and the decay of correlations directly related to �, the ratio of
the rate of expansion to the rate of substitution (23). Substitution,
possibly together with insertion and deletion at fixed total length but

without expansion, yields exponentially decaying base–base corre-
lations; turning on expansion in the form of single-base duplication
is then sufficient to yield the power law. Most interestingly, although
there is no phase transition in the two-point correlations as a
function of �, there is a critical value of � above which base
probabilities retain a memory of initial sequence composition. This
observation underscores the importance of distinguishing correla-
tions in and conservation between genomes that are consequences
of selection rather than of the ‘‘memory.’’

Other Organisms. As illustrated in Fig. 2 (curves b and c), whole-
genome alignment can reveal algebraic distributions in regimes
where intersection (curve d) is dominated by coincidences. For
example, fly�bee whole-genome alignment reveals a power law from
10 to 30 bases that is entirely obscured in intersection of those
genomes. Where alignments are readily available, algebraic distri-
butions of perfectly conserved sequence appear to be general
phenomena, provided the genomes are not too closely related. The
latter restriction is not entirely unexpected, because eventually a
crossover to distributions characteristic of whole-genome self-
alignment is inevitable. Intersections and alignments among Dro-
sophila subspecies and between human and chimp exhibit this more
complex behavior (illustrated for Drosophila in Fig. 8, which is
published as supporting information on the PNAS web site).

For sufficiently distantly related species, whole-genome align-
ment exhibits power-law regimes not only in metazoans, but in
plants, yeast, and bacteria as well. Remarkably, these powers tend
to fall within a fairly narrow range, suggestive of universal limits as
genomes diverge (J.M., unpublished data).

Perfectly Conserved Sequence. The strong enrichment for known
functional elements in sequences perfectly conserved among mul-
tiple vertebrates has been demonstrated in other contexts (1) (T.
Tran, P.H., and J.M., unpublished data). For 26 � L � 50, they are
particularly enriched for mature micro-RNAs, other noncoding
RNAs, micro-RNA targets, and transcription factor binding sites,
often by factors of 1,000 or more over whole genome. This
observation alone indicates that perfectly conserved sequences are
subject to strong negative selective pressure. Protein motifs such as
homeodomains are also represented, specifically as coding se-
quences that, subject to codon bias, can sustain little if any variation
without altering the amino acids they encode; however, their
enrichment is lower by orders of magnitude. As stressed in ref. 24,
a distinctive property of these functional elements is that they are
subject to multiple nonlocal constraints. A highly conserved micro-
RNA, for example, may regulate tens or hundreds of distinct
targets. For a mutation in the mature micro-RNA sequence to be
sustained, independent compensatory mutations in each of these
targets would be required, an extremely unlikely set of events under
neutral drift. Enhancers are comprised of multiple and overlapping
transcription-factor-binding sites. A mutation in the enhancer
would require compensatory changes within the transcription fac-
tors whose binding sites overlap the mutation.

These observations suggest that perfectly conserved sequences
arise from their combinatorial interaction with multiple and re-
motely located parts of a genome—either directly, in the case of the
complementary base pair mediated interactions of micro-RNAs
and other small RNAs, or indirectly, in the case of protein–DNA
binding (25). Thus, the ‘‘digital’’ (in contrast to ‘‘analog’’) encoding
mechanism postulated by Mattick may be a consequence of the
sequence constraints entailed by overlapping combinatorial se-
quence interactions, e.g., a single micro-RNA regulating multiple
distinct targets, and a single target being regulated by multiple
distinct micro-RNAs.

Mattick (26) has conjectured the role of a ‘‘hidden layer’’ of
regulatory RNA in multicellular organisms as a network of regu-
latory elements whose number scales as the square of the number
of proteins that they regulate; these regulatory elements, and not
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the number of protein-coding genes, are what he argues distinguish
mammals from worms. The strong enrichment for noncoding RNA
among perfectly conserved sequences suggests to us that this
network may be comprised in part by sequences strongly con-
strained by overlapping combinatorial interaction, and that the
scaling of perfectly conserved sequence lengths may reflect this
network of regulatory elements.

Finally, as illustrated in Fig. 2 (curve j) and Fig. 5, for highly
conserved sequence in the CFTR locus, the phenomena described
here extend well beyond perfect conservation.

Information. Our definition of maximal L-mer is reminiscent of the
(symmetric) ‘‘match-length,’’ defined for the purpose of computing
intragenomic entropy (27, 28) as the length of the shortest sequence
starting at position i that is not contained elsewhere in the genome
(or equivalently of the longest sequence starting at position i that is
contained elsewhere in the genome). It seems plausible to us that
the mutual information between two genomes may be related via
match-length to maximal L-mers and their length distribution.

Conclusions. Our principal observation is that the lengths of se-
quences perfectly conserved between mouse and human genomes
are distributed algebraically (Figs. 1 and 2). This scale-invariance
manifests itself in the algebraic distribution of spatially local objects
(inter-genomic highly conserved sequence) rather than merely in
nonlocal constructs such as intra-genomic two-point correlations. It
is not obvious that the power-law distribution of lengths is entailed
by long-range correlations alone; although we expect that a model
of neutral drift that yields this power-law distribution can be
conceived, the vast enrichment for functionality among these
sequences suggests to us an essential role for selection. The spatial
correlations and clustering of perfectly conserved sequences within
the mouse genome (Figs. 3 and 4) indicate self-similarity at much
greater scales as well. Conservation can be closely associated with
functionality, so that our observations highlight the urgency of
addressing the biology that drives scale-invariant organization of
genomic sequence.

Methods
Identifying Mouse�Human Maximal L-mers. The repeat-masked
mouse genome [Mus musculus NCBI Build 34 (mm6)] and the

repeat-masked human genome [Homo sapiens NCBI Build 35
(hg17)] were obtained from the UCSC genome browser (29).
Sequence perfectly conserved between these two genomes was
computed in several different ways: (i) as described in ref. 4 by
L-mer intersection, a process that neglects sequence location; (ii)
based on whole-genome alignments obtained from UCSC, again as
described in ref. 4; and (iii) in such a way as to retain location (for
details, see Supporting Methods, which is published as supporting
information on the PNAS web site). We have applied the same
procedures to multiple versions of the mouse and human genome
sequences (hg16, hg18, mm5, mm6, mm8) and observed no differ-
ences in the outcome of the computations reported here.

Highly Conserved Sequence from Alignments of CFTR Loci. In ref. 11,
�1.9 megabases of genomic sequence encompassing the CFTR
locus from 29 mammals were aligned, gapped positions were
discarded, and expected rates of substitution for each position were
determined based on phylogeny via maximum likelihood. At each
position, the ratio of the observed to the expected substitution rate
was computed. The difference between observed and expected
rates was summed over runs of positions with sufficiently low ratio
to yield the rejected substitutions, or RS. If the RS was below a
specified threshold, the run was classified as a ‘‘highly conserved’’
sequence. To serve as a standard, a null model was derived by
randomly permuting the substitution rates in space and once again
extracting runs of sequence as described above.

To produce the figures shown here, files containing the
expected and observed rates of substitution at each position of
the alignment were downloaded as http:��mendel.stanford.
edu�supplementarydata�cooper�GERP�2005�CooperEtAl�
RawData.zip.
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