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Avian eggs contain considerable amounts of maternal yolk androgens, which have been shown to

beneficially influence the physiology and behaviour of the chick. As androgens may suppress immune

functions, they may also entail costs for the chick. This is particularly relevant for colonial species, such as

the black-headed gull (Larus ridibundus), in which the aggregation of large numbers of birds during the

breeding season enhances the risk of infectious diseases for the hatching chick.

To test the effect of maternal yolk androgens on the chick’s immune function, we experimentally

manipulated, in a field study, yolk androgen levels within the physiological range by in ovo injection of

either androgens (testosterone and androstenedione) or sesame oil (control) into freshly laid eggs. We

determined cell-mediated immunity (CMI) and humoral immunity of the chicks at the beginning of the

nestling period to evaluate early modulatory effects of yolk androgens on immune function.

Embryonic exposure to elevated levels of androgens negatively affected both CMI and humoral

immunity in nestling gull chicks. Consequently, maternal yolk androgens not only entail benefits of

enhanced competitiveness and growth as previously shown, but also costs in terms of immunosuppression.

The outcome of embryonic yolk androgen exposure thus likely depends on the post-hatching

circumstances for the developing offspring such as parasite exposure and degree of sibling competition.
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1. INTRODUCTION
Bird eggs contain maternally derived steroid hormones

(Prati et al. 1992; Schwabl 1993). The systematic variation

in maternal yolk hormone concentrations, both within and

between clutches, suggests that differential hormone

transmission may represent an adaptive maternal strategy

(e.g. Gil et al. 1999; Reed & Vleck 2001; Groothuis &

Schwabl 2002; Verboven et al. 2003; Pilz & Smith 2004;

see also Groothuis et al. (2005a) for a recent review). The

effects of prenatal hormone exposure on the development

and phenotype of the chick have now been examined in a

number of experimental studies, in which fresh eggs were

injected with androgens. Manipulation of the androgen

environment of an embryo induced a wide range of effects

on physiology and behaviour of the offspring (e.g. Schwabl

1996; Lipar & Ketterson 2000). In short, maternal yolk

androgens may accelerate embryonic development,

enhance post-natal growth rate and affect competitiveness

in both the nestling and the juvenile stage (e.g. Schwabl

1993, 1996; Lipar & Ketterson 2000; Eising et al. 2001;

Pilz et al. 2004; see also Groothuis et al. 2005a). These

findings suggest that maternal yolk androgens are

beneficial to offspring. The large variation in yolk

hormones within clutches related to the position of the

egg in the laying sequence has consequently been
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interpreted as a possibility for the mother to individually

increase the survival probabilities of her offspring

(Schwabl 1993; Eising et al. 2001).

Prenatal exposure to androgens, however, can also be

detrimental for survival of the offspring (Sockman &

Schwabl 2000). This may relate to the fact that although

accelerated growth may be beneficial in sibling compe-

tition, it may carry costs as well. It may increase the

vulnerability to starvation (Blanckenhorn 2000) and has

been suggested to increase oxidative stress, which in the

long-term might reduce lifespan (Rollo 2002; reviewed by

Metcalfe & Monaghan 2003).

Furthermore, accelerated growth, such as that induced

by maternal yolk androgens (Schwabl 1996; Eising et al.

2001), may be at the cost of the immune system because of

the trade-off between body mass gain and immune

function, which are both energetically costly (reviewed

by Sheldon & Verhulst 1996; Lochmiller & Deerenberg

2000; Demas 2004). There is indeed recent evidence that

maternal yolk hormones mediate the allocation of

resources between growth and cell-mediated immunity

(CMI) (Andersson et al. 2004; Groothuis et al. 2005a).

Prenatal androgen exposure may also have a direct

suppressive effect on the development and organization of

immune function. There is some evidence from studies on

adult birds that experimentally elevated testosterone levels

suppressed the humoral immunity measured as the

response to a novel antigen (Duffy et al. 2000; Peters

2000; Casto et al. 2001; but see Hasselquist et al. 1999)
q 2005 The Royal Society
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and CMI (Duffy et al. 2000). In the chick, yolk androgens

may affect the size of immune organs such as the bursa of

Fabricius, which has high-affinity androgen receptors

(Sullivan & Wira 1979). Indeed, experimental prenatal

treatment with relatively high (pharmacological) doses of

testosterone in birds leads shown to cause regression of the

bursa that leads to impaired antibody production in the

domestic chicken (Gallus gallus domesticus) (Hirota et al.

1976; Glick 1983). However, the effect of prenatal

exposure to physiologically relevant concentrations of

androgens on humoral immune function in birds is not

known. Embryonic androgen exposure may also directly

affect other branches of the avian immune system, such as

CMI. Clearly, prenatal androgen exposure may impose a

severe immunological cost for the developing chick.

We examined the effect of yolk androgens on the chick’s

immune function in black-headed gulls (Larus ridibundus).

This species is highly appropriate for the study of

hormone-mediated maternal effects. The eggs of this

species contain high levels of maternal androgens that vary

systematically between and within clutches (Groothuis &

Schwabl 2002; Müller et al. 2004a). Furthermore, the

functional consequences of embryonic androgen exposure

in terms of enhanced growth and begging behaviour have

been convincingly demonstrated (e.g. Eising et al. 2001;

Eising & Groothuis 2003). In this study, yolk androgen

levels of freshly laid eggs were experimentally manipulated

by in ovo injection of either androgens (testosterone and

androstenedione) dissolved in sesame oil within the

physiological range or vehicle only (control).

Subsequently, we challenged two branches of the avian

immune system, CMI and humoral immunity, during the

early developmental period, 1 and 7 days after hatching,

respectively. Taking into account different branches of the

immune system is particularly important in this case, since

testosterone may induce a shift from one component to

the other (Braude et al. 1999; Norris & Evans 2000;

Buchanan et al. 2003). We expected that chicks hatching

from androgen treated eggs would have lowered cell-

mediated and humoral immunity compared to chicks from

control treated eggs.
2. MATERIAL AND METHODS
(a) Fieldwork and egg treatment

In 2003, three sub-colonies of 200–300 breeding pairs each

within a large black-headed gull colony (6000 breeding pairs)

in the ‘Workumer Waard’ adjacent to the IJsselmeer (The

Netherlands) were checked daily for freshly laid eggs. Eggs

were individually marked with a non-toxic marker referring to

the position within the laying order and date of laying. At the

day of clutch completion (modal clutch size three eggs), we

manipulated hormone levels of the first laid egg of a clutch,

which contains the lowest maternal androgen concentration

(Groothuis & Schwabl 2002). Eggs were injected with either

50 ml of sesame oil (control, sterile cold-pressed sesame oil,

subsequently called control-eggs) or 50 ml of sesame oil

containing a mixture of 0.12 mg testosterone and 10.0 mg

androstenedione (equals androgen-eggs). Hormone levels in

androgen-eggs were elevated to resemble those naturally

occurring in last laid eggs (see Eising & Groothuis 2003 for

details on the injection procedure and androgen levels). After

injection, all eggs were returned to their original nest.
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Within 3 days 224 eggs were injected (107 control-eggs,

117 androgen-eggs). Of these eggs 14 (9 control-eggs, 5

androgen-eggs) were predated, while 58 eggs (26 control-

eggs, 32 androgen-eggs) failed to hatch. Thus 72% of all

injected eggs successfully hatched (68 chicks hatched from

control-eggs (equals control-chicks), 82 chicks from andro-

gen-eggs (equals androgen-chicks)) which was not different

among treatments (Yates’ corrected c2Z0.80, pZ0.37) and

is similar to previous studies (e.g. Eising et al. 2001).

(b) Experimental nests

About 5 days prior to hatching, all experimental eggs were

cross-fostered to a few restricted areas (first cross-fostering).

This allowed efficient recording of the hatching process and

reduced the disturbance to the colony to the minimum. Three

eggs of the same treatment and the same laying date were

placed in one nest. These nests had been surrounded by mini-

enclosures 1 day before cross-fostering the eggs to facilitate

the adoption procedure. All mini-enclosures were situated

within larger enclosures (wire mesh, 40–50 cm high) varying

in size from 30 to 60 m2. Enclosures contained from 10 to 15

nests and enabled us to follow chick development when the

mini-enclosures were removed after the parent chick bond

was established (5–7 days after cross-fostering). At hatching,

we registered which chick came from which particular egg

and chicks received a numbered colour band for individual

identification. A blood sample (60 ml) was taken from the

ulnar vein and stored in 100% ethanol for sex determination.

Within 24 h all sexes were determined using molecular sex

determination according to Griffiths et al. (1998), which has

been validated for our study species (Müller et al. 2003).

On the day of hatching, all experimental chicks were again

cross-fostered (second cross-fostering), allocating one chick of

each treatment to an experimental nest, matched for body

mass. The next day, when the sex of the chicks was known, we

created additional same sex nests in those cases where body

mass could be matched. None of the chicks remained in the

nest where it hatched. We created 48 weight-matched broods

each containing one control- and one androgen-chick

(control-chicks: 27.38G0.40 g (s.e.); androgen-chicks:

27.36G0.36 g (s.e.); paired sample t-test, tZ0.03, pZ0.97),

of which 33 nests were also sex-matched.

(c) Immunity-tests

(i) Cell-mediated immunity: PHA-challenge

One day after hatching CMI was measured via in vivo

injection of phytohemagglutinin-P (PHA, Sigma). This

method is considered to reliably measure CMI (reviewed by

Norris & Evans 2000) as it produces a local swelling due to a

prominent perivascular accumulation of T-lymphocytes

followed by macrophage infiltration (Smits et al. 1999). At

the age of 1 day we injected intradermally 0.04 ml of

1 mg mlK1 PHA dissolved in phosphate-buffered saline

(PBS) into the ball of the foot (for a detailed description see

Müller et al. 2003). Three repeated measurements of the

height of the ball of the foot (the distance between the base of

the hind toe and the top of the ball when holding the foot at an

angle of 908 to the tarsus) were taken with a sliding caliper (to

the nearest 0.05 mm) just prior to injection (initial), and a

further three, 24 h (G1 h) after injection (final). Because the

repeatability of the successive measurements was high (field:

initial F85,172Z30.04, rZ0.91, final F85,172Z29.31, rZ0.90;

Lessells & Boag 1987) we used the mean value of the

three measurements for analysis. The difference between
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pre-injection and post-injection measurements was used as

the response estimate for CMI (Smits et al. 1999).

In 43 out of the 48 nests we were able to measure the

response of both chicks 24 h after the PHA-challenge (age

2 days). We measured growth in terms of increase in body

mass over 24 h (age 2 days) and 48 h (age 3 days) after the

challenge. Growth was assessed as a potential trade-off

between a response to an immune challenge and growth

(Brommer 2003; Soler et al. 2003) may differ between

androgen- and control-chicks. We also evaluated body mass

gain within 48 h post-injection as it has been shown that 48 h

post-injection of PHA resting metabolic rate (RMR) was

enhanced, indicating that this trade-off may last longer than

24 h (Martin et al. 2002).
(ii) Humoral immunity: LPS challenge

To evaluate the effects on the humoral immunity at a very

early developmental stage of the immune system, chicks were

challenged at day 7G2 days after hatching with lipopoly-

saccharides (LPS) from the cell wall of Escherichia coli (LPS,

serotype O55:B5, Sigma). LPS induce an immune response

that mimics the immune response to a bacterial infection, but

as it is an inert antigen the negative effects of the pathogen are

temporary. LPS increase the release of cytokines and induce

an inflammatory response, which is followed by the

production of antibodies (Poxton 1995; Leshchinsky &

Klasing 2001). As a bacterial antigen, LPS give rise to an

antibody response of the IgM type ( Janeway &Travers 1999).

Furthermore, because T-cell independent antibody responses

shortly after birth are higher than T-cell dependent responses,

LPS are an appropriate antigen to use at this early

developmental stage (Apanius 1998). Since the acute phase

response such as caused by a challenge with LPS differs

significantly between species (see e.g. domestic chicken,

Leshchinsky & Klasing 2001; Japanese quail (Coturnix

coturnix japonica), Koutsos & Klasing 2001), we first

investigated this for our study species. To this end we injected

black-headed gull chicks of similar age and size as in the final

experiment with different concentrations of LPS dissolved in

PBS (range: 0.1–2.0 mg mlK1). Sickness behaviour, which

resulted in a reduced alertness within 6–12 h after the

challenge and (slight) weight loss within 24 h, was induced

by injection of 0.1 ml PBS with concentrations more than or

equal to 2 mg LPS per 1 ml PBS. In the final experiment, we

consequently used a lower concentration of LPS, which did

not induce sickness behaviour, to reduce the effect of an acute

phase response on the humoral immune response.

In twenty-three nests we were able to measure the humoral

immune response of both chicks. Within each nest both

chicks were intraperitoneally injected either with 0.1 ml PBS

(control treatment, nZ11 nests) or with 0.1 ml PBS contain-

ing LPS antigen (concentration 1 mg mlK1, LPS treatment,

nZ12 nests).

Chicks from these nests were blood sampled shortly before

injection (initial) and 48 h after injection (final) by

venipuncture of the brachial vein in the left wing with a

25G needle. Blood (60 ml) was collected in a capillary. The

capillary was sealed and stored cool (about 8 8C) for the rest

of the day (maximum 6 h). In the laboratory, capillaries were

centrifuged for 10 min at 10 000 r.p.m. The separated plasma

was then stored in eppendorff tubes at K20 8C until analysis.

Antibody titres were determined using enzyme-linked

immunosorbent assay (ELISA; see below) and the change
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in concentration between initial and final sample was used as

an estimate for the antibody response.

The second blood sample was taken after a comparatively

short time period to reduce the probability of a confounding

variation in plasma immunoglobulins due to the maturation

of the antibody mediated immunity and the consequent

increase in plasma immunoglobulin concentrations during

the nestling period (Müller 2004). As we measured non-

specific immunoglobulin concentrations, the change in

plasma concentrations might also relate to the mitogenic

activity of LPS. LPS has been shown to directly activate

B-lymphocytes in vitro (Andersson et al. 1972). LPS-activated

B-lymphocytes produce antibodies of diverse specificities,

mainly of the IgM type within a short time period (Andersson

et al. 1978), which are measured in the ELISA.
(d) Enzyme-linked immunosorbent assay for

antibody determination

Antibody concentrations were determined using an indirect

ELISA with commercial anti-chicken antibodies (Sigma

C-6409). This method provides a sensitive measurement of

antibody concentrations that bind to a specific antigen

( Janeway & Travers 1999). Using indirect ELISA has been

validated for our study species (see also Martinez et al. 2003

for a variety of other bird species, Müller et al. 2004b).

However, the anti-chicken IgG antibody binds to the light

chain of the IgM and IgG (I. Jokinen, unpublished data). In

the analysis we are therefore unable to distinguish between an

IgM and an IgG response. As the primary immune response,

which is assessed here, consists primarily of IgM, we probably

measured to a great extent IgM.

To assess antibody concentrations, a standard of pooled

plasma of all individuals was used, which was given an

arbitrary concentration of 106. All values were subsequently

expressed in units relative to this standard (U mlK1). Plasma

samples were diluted 1 : 5000, 1 : 10 000 or 1 :15 000 in 1%

BSA–PBS for analysis to ensure that the samples were on the

linear part of the standard curve. 50 ml of this dilution as well

as the standard was added in replicate to the wells including a

negative control (for a detailed description see Müller et al.

2004b). All samples were analysed within the same assay; the

intra-assay coefficient of variation was 7.3%.
(e) Statistical procedures

All data were checked for normality and in case of plasma

antibody concentrations at the age of 7 days log transform-

ations were applied to obtain a normal distribution. During

the nestling period the data represented a nested structure and

we therefore used hierarchical linear models (MLwiN 1.10,

Rasbash et al. 2000). Statistical significance was tested using

the increase in deviance when a factor was removed from

a model (Wald statistic), which follows a c2-distribution.

For CMI we tested the effect of treatment, sex and the

interaction term of these two variables. In the case of the

humoral response, we tested the effect of treatment, sex, LPS-

challenge, age (given the slight variation in age of injection),

body mass and all possible interactions. All factors with a

significance level of p!0.05 were retained in the final model.

For post hoc analyses we used parametric statistics (Pearson

correlations, independent t-test, and paired sample t-test) in

SPSS. All tests were two tailed and significance was accepted

at p!0.05.
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3. RESULTS
(a) T-cell-mediated immunity

CMI (meanGs.e. throughout the paragraph) measured

shortly after hatching was significantly higher in chicks

hatching from control-eggs (0.59G0.07 mm) than in their

foster nest mates from androgen injected eggs (0.37G
0.08 mm) (treatment: estimate 0.22, error 0.09, Ddev
5.39, d.f. 1, pZ0.02; figure 1). There was no effect of

offspring sex on CMI (sex: estimate 0.09, error 0.05, Ddev
2.57, d.f. 1, pZ0.11) or sex in interaction with androgen

treatment (treatment!sex: estimate 0.007, error 0.096,

Ddev 0.006, d.f. 1, pZ0.94). There was no significant

difference in body mass gain between control-chicks

(8.45G0.46 g) and androgen-chicks (8.36G0.46 g)

within 24 h after the PHA injection (paired sample

t-test, nZ43, tZ0.17, pZ0.86). In 38 out of the 43

nests included in the PHA-challenge we also measured the

body mass 48 h after injection. Again, there was no

difference in body mass gain between control-chicks

(21.74G0.77 g) and androgen-chicks (21.80G1.23 g)

(paired sample t-test, nZ38, tZK0.05, pZ0.96). CMI

did not correlate with body mass at the day of injection or

body mass gain during the time of the challenge either in

control-chicks or in androgen-chicks (Pearson pO0.16 in

all cases).

(b) Humoral immune response

Plasma antibody concentrations (meanGs.e. throughout

the paragraph) at the age of 7G2 days did not differ

between control-chicks (35 415G3858 U mlK1) and

androgen-chicks (41 066G4867 U mlK1) (pO0.36).

The change in antibody concentrations from pre- to

post-injection differed significantly between LPS- and

PBS-challenged chicks in interaction with embryonic

androgen treatment (LPS-challenge!androgen treat-

ment: estimate 679 692 U mlK1, error 21 535, Ddev
8.54, d.f. 1, pZ0.003, figure 2). In subsequent post hoc

analyses, androgen treatment turned out not to affect the

change in plasma antibodies within the PBS-group (PBS-

treated control-chicks: 13 324G6000 U mlK1; PBS-trea-

ted androgen-chicks: 12 149G13 981 U mlK1; paired

sample t-test, tZ0.07, d.f. 10, pZ0.94; figure 2a). Two

control-chicks and five androgen-chicks did not increase

their plasma immunoglobulin concentrations, and the

proportion of non-responders did not differ between

treatments (Yates’ corrected c2Z0.35, pZ0.55). The

change in plasma antibody concentrations tended to

deviate significantly from zero in control- but not

androgen-chicks (PBS-treated control-chicks: tZ2.22,

pZ0.051; PBS-treated androgen-chicks: tZ0.87,

pZ0.40).

LPS-treated control-chicks showed a much stronger

immune response than LPS-treated androgen-chicks

(LPS-treated control-chicks: 95 232G14 185 U mlK1;

LPS-treated androgen-chicks: 26 369G9947 U mlK1;

paired sample t-test, tZ4.30, d.f. 11, pZ0.001; figure

2b). LPS-treated androgen-chicks did not differ from

PBS-treated androgen-chicks (independent sample t-test,

tZK0.84, d.f. 21, pZ0.41; figure 2a,b). In contrast, LPS-

treated control-chicks significantly differed in their change

from PBS-treated control-chicks (independent t-test,

tZK5.15, d.f. 21, p!0.001; figure 2a,b). One andro-

gen-chick did not show a positive response, while the

change in antibody concentrations was significantly
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different from zero for both control- and androgen-chicks

(LPS-treated control-chicks: tZ6.71, p!0.001; LPS-

treated androgen-chicks: tZ2.65, pZ0.02). There was

no effect of age (age: estimate 688 U mlK1, error

5078, Ddev 0.01, d.f. 1, pZ0.93), sex (sex: estimate

3372 U mlK1, error 5734, Ddev 0.14, d.f. 1, pZ0.71) or

body mass at the time of injection (body mass: estimate

839 U mlK1, error 505, Ddev 2.67, d.f. 1, pZ0.10) on the

humoral response in reaction to the LPS challenge. The

change in antibody concentrations did not correlate with

body mass at the day of injection or body mass gain during

the time of the challenge, either in control-chicks or in

androgen-chicks (Pearson pO0.40 in all cases).

The change in bodymasswithin 48 h after the challenge

tended to differ between LPS- and PBS-challenged chicks

in interaction with embryonic androgen treatment (LPS-

challenge!androgen treatment: estimate 10.70 g, error

5.91, Ddev 3.06, d.f. 1, pZ0.08). However, there were no

differences in body mass gain between control-chicks and

androgen-chicks (PBS-treated group: control-chicks

18.91G2.96 g, androgen-chicks: 24.27G4.41 g; LPS-

treated group: control-chicks 28.25G5.37 g, androgen-

chicks 22.92G3.30 g; paired sample t-test, pO0.19 in all

cases). LPS did not affect body mass gain either in

androgen-chicks or control-chicks compared to the PBS

challenged group (independent sample t-test, pO0.15, in

all cases).
4. DISCUSSION
This experimental field study demonstrates that embryo-

nic exposure to elevated yolk androgen concentrations

within the physiological range affects cell-mediated as well

as humoral immunity, measured at an early developmental

stage of the nestling period in a semi-precocial bird

species, the black-headed gull (figures 1 and 2).

WemeasuredCMI shortly after hatching and found that

androgen-chicks had a significantly lower CMI when

compared to their control-chick nest mates (figure 1).

The increase in yolk androgen concentrations within
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the laying sequence as reported for our study species

(Eising et al. 2001; Groothuis & Schwabl 2002) may hence

be causally involved in the reduction of the chick’s CMI

over the hatching order (Müller et al. 2003; Groothuis et al.

2005b). The reduction in CMI as a consequence of

experimental elevation of the yolk androgen concentrations

in first-laid eggs to the levels of naturally last-laid eggs was

somewhat smaller than these data in the natural situation

had suggested. This indicates that the decrease in CMI

within the hatching order is not exclusively due to changes

in yolk androgen concentrations, but may also depend on

other egg components such as yolk carotenoids, which have

been shown to decrease with position in the laying order in

gulls (Royle et al. 2001; Blount et al. 2002) and have

recently been shown to enhance CMI of barn swallow

chicks (Saino et al. 2003).

Our results support the proposal that elevated yolk

androgen levels are associated with suppressing CMI and

this occurs at a stage of development when large parts of

the immune system are still immature and when the newly

hatched chicks depend highly on the CMI (Apanius

1998). We have previously shown that CMI positively

correlates with early survival probability in this species

(Müller et al. 2003), and suppression of the CMI through

embryonic androgen exposure is therefore likely to be

biologically relevant (see also Christe et al. 1998).

When the chicks were about one week old, we

challenged the humoral immune system with LPS. As a

bacterial antigen LPS induces a T-cell independent

immune response that was evaluated 48 h after injection.

The results are in line with our hypothesis. In contrast to

their control-chick nest mates, which raised a steep

humoral immune response, androgen-chicks only slightly

responded to the challenge (figure 2a,b). AnLPS-challenge

mimics the immune response to a bacterial infection

(Poxton 1995). The lack of a humoral response in

androgen-chicks may hence indicate their difficulties to

deal with natural bacterial infections. We measured the

change in immunoglobulin concentrations 48 h post-

injection and therefore did not evaluate peak antibody

levels in response to the LPS-challenge (Sunwoo et al.

1996), but rather immunoglobulin concentrations at an
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early stage of the humoral immune response. Thus,

theoretically androgen-chicks may be able to reach a

similar peak concentration. However, they still show a

delayed increase in immunoglobulin concentration at an

early phase of the immune response. In any case,

embryonic androgen exposure within the natural range

negatively affects the humoral immunity.

During the nestling period chicks may face a trade-off

between body mass gain, important for the maintenance

of a size advantage in sibling competition, and raising an

immune response (Brommer 2003; Soler et al. 2003).

Both are energetically costly (reviewed in Sheldon &

Verhulst 1996; Lochmiller & Deerenberg 2000). Thus,

differences in immune function due to in ovo androgen

treatment may relate to the fact that androgens alter the

allocation of resources. Indeed, two recent studies

provide evidence that a reduction in CMI such as that

induced by yolk androgens may result from a reallocation

of resources mediated by yolk androgens (Andersson et al.

2004; Groothuis et al. 2005b). However, in this study we

did not find evidence in the case of either CMI or

humoral immunity that would indicate a trade-off

between growth and immunity. The embryonic exposure

to maternal androgens may affect growth and immunity

independently and it may depend on the nutritional

circumstances and the time point of the challenge,

whether growth is affected.

Our data clearly show that the ability to respond to an

immune challenge is reduced in androgen-chicks. From

the mechanistic point of view, this may be due to

differences in the development of immune organs such

as the bursa of Fabricius in case of the humoral immunity

(Hirota et al. 1976; Glick 1983). LPS has a mitogenic

function and has been shown to directly induce immuno-

globulin secretion in vitro (Andersson et al. 1972, 1978).

This has been shown to particularly occur at low LPS

concentrations (Andersson et al. 1972), such as used in

this study. The lack of an increase in plasma immuno-

globulins in androgen-chicks may thus relate to a lower

maturity of their B-lymphocytes due to negative effects on

the bursa of Fabricius (Hirota et al. 1976; Glick 1983),



1976 W.Müller and others Yolk androgens modulate immune function
which may be less inducible by LPS as suggested by

Kühlmann-Rabens et al. (1987).

The mechanism is less clear in case of the CMI.

Although it is likely that the negative effect of androgens is

on thymic development and maturation of the

T-lymphocytes (Gause & Marsh 1986), it may also relate

to a reduced phagocytic activity of the macrophages

(Al-Afaleq & Homeida 1998). However, both studies

applied post-hatching androgen manipulations.

Alternatively or in addition, as black-headed gull chicks

endogenously produce testosterone from an early age

onwards (Ros et al. 2002) chicks hatching from eggs with

elevated androgen levels may produce higher androgen

levels after hatching, which may suppress their immunity,

which has not been investigated yet. Finally, enhanced

androgen sensitivity as a consequence of previous

androgen exposure (Ros et al. 2002) may also apply to

their immune cells.

In conclusion, in addition to the repeatedly reported

beneficial effects of maternal androgens for the chick,

these hormones also entail costs in terms of immunosup-

pression. The outcome of this trade-off is likely to depend

on environmental circumstances such as food availability,

degree of sibling competition and pathogen exposure. If

the nutritional circumstances are harsh, competitiveness

will be essential to guarantee survival as the risk of

starvation might be higher than the likelihood of dying

from an infectious disease. On the other hand, reducing

the immune function when parasites and pathogens are

abundant might strongly reduce survival probability. In

addition, consequences way into adulthood may contrib-

ute to the selective costs and benefits of maternal yolk

androgens. Yolk androgens positively affected dominance

status in juvenile canaries as well as in five month old

house sparrows (Schwabl 1993; Strasser & Schwabl

2004). Potentially also the negative effects on immune

function may go beyond the nestling period, which clearly

requires further investigation to evaluate the ultimate costs

and benefits of maternal androgen deposition for avian

offspring.
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