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Theoretical investigations of competitive dynamics have noted that numbers of predator and prey

influence each other. However, few empirical studies have demonstrated how a life-history trait of the prey

(such as fecundity) can be affected simultaneously by its own density and the density of predators. For

instance, density dependence can reduce fecundity with increasing number of prey, while inverse density

dependence or Allee effects may occur especially when the prey is a social organism. Here we analysed an

intraguild predator–prey system of two seabird species at a large spatio-temporal scale. As expected, we

found that fecundity of prey was negatively affected by predator density. Nevertheless, fecundity of prey

also increased nonlinearly with its own density and strikingly with the prey–predator ratio. Small groups of

prey were probably not able to defend their nests especially against large number of predators. At the

highest prey densities (i.e. when anti-predator strategies should be most efficient), prey fecundity also

lowered, suggesting the appearance of density dependence mediated by food competition. Allee effects and

density dependence occurred across a broad range of population sizes of both the prey and the predator at

several local populations facing different ecological environments.

Keywords: Allee effect; density dependence; intraguild predator–prey interactions; predator–prey ratio;

food availability; nonlinear association
1. INTRODUCTION

Predator–prey models have received a great deal of interest

in different fields of science, from evolutionary and

behavioural ecology to conservation and population

biology and even economics (e.g. Quentin-Grafton &

Silva-Echenique 1997). The first theoretical framework

developed under the Malthus–Verhuslt logistic theory

treated single species population dynamics, and was

followed by the first models of trophic (predator–prey)

interactions by Lotka and Volterra. More recently, and

evolving from logistic theory, several attempts have been

made to model predator–prey dynamics incorporating

ratio-dependent functional responses (Berryman 1992;

Ginzburg & Akçakaya 1992). A keystone assumption of

ecological theory is that densities of both prey and

predator are forcedly influencing their population

dynamics. For instance, density dependence on predation

rates is expected when predator densities attain the

carrying capacity (e.g. Lande et al. 2003). At the opposite

end, smaller groups of prey may be more exposed to

predation than larger groups (inverse density dependence,

or Allee effect; Crawley 1992; Courchamp et al. 1999;

Stephens & Sutherland 1999). In general, several
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mechanisms can lead to a reduction in population growth

rate at small population sizes, including difficulties in

finding mates, poorer defence against predators and lower

foraging efficiency (e.g. Engen et al. 2003). Although Allee

effects have been shown theoretically, there are few

empirical data, mostly coming from species with coopera-

tive breeding and broadcast spawning (Gascoigne &

Lipcius 2004). Yet, theoretical models of predator–prey

interactions have been tested with observational data

mainly using organisms with short generation times and

rapid dynamics, especially invertebrates from aquatic

ecosystems, while terrestrial studies come mainly from

cyclic dynamics (e.g. Cappuccino & Price 1995). Data are

even scarcer when predator and prey share the same

ecological guild, even though it has been recently

recognized that potentially competing species engaged in

predator–prey interactions can contribute greatly to

community structure (Ives et al. 2005). Here we analysed

a simple predator–prey system composed of two top-level

marine predators in which one (yellow-legged gull, Larus

michahellis) is a facultative predator on the other

(Audouin’s gull, Larus audouinii). Prey fecundity depends

not only on food availability, but also on nest predation

rates (e.g. Oro et al. 1999). Previous studies of this

predator–prey relationship have already suggested that

changes in the densities of not only the predator, but also

that of the prey, could influence prey fecundity through

changes in nest predation rates (Oro 1996; Oro et al.

1996). For instance, some behavioural studies (Oro &
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showed that small groups of prey could be more exposed

to predation, owing to a combination of two factors: a

small number of conspecifics to collaborate in nest

defence, and a high ratio of perimeter/colony size, which

exposes a relatively larger number of nests to access by

predators. We explore the appearance of density depen-

dence and Allee effects by analysing whether fecundity of

prey was influenced by its own density, by predator

densities and by the ratio between them, using long-term

data from four different local populations (i.e. colonies)

with different ecological features.
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2. MATERIAL AND METHODS
(a) The focal species and the study area

The two species of syntopic gulls share most of their life-

history traits and the main difference is the facultative

predation exerted by yellow-legged gulls on eggs and chicks

of Audouin’s gulls. The yellow-legged gull is almost

exclusively the sole predator for Audouin’s gull nests (Oro

et al. 1999). Other forms of interaction can also affect prey

fecundity in an indirect way, such as competition for food at

foraging grounds and kleptoparasitism (Oro & Martı́nez-

Vilalta 1994; Arcos et al. 2001).

The local populations under study were those of the

Columbretes Islands (39854 0 N, 00841 0 E), Alboran Island

(35856 0 N, 3802 0 W), Chafarinas Islands (35811 0 N, 3846 0 E)

and the Ebro Delta (40833 0 N, 0839 0 E), all in the western

Mediterranean. The main differences among populations are

their ecological features: Columbretes and Alboran are small

(19 and 7 ha, respectively) and have limited foraging grounds

owing to their oceanographic characteristics (ca 55 km from

the mainland) with a relatively small available foraging area

of continental shelf. The Ebro Delta is at the opposite

extreme, with a much larger patch (2500 ha) and with very

large foraging grounds, while Chafarinas is an intermediate

case in surface area (50 ha) and feeding opportunities. This

also explains why total numbers of breeders (of predator and

prey together) were much lower at Alboran and Columbretes

than at Chafarinas and especially than at the Ebro Delta

(figure 1). Densities of predator and prey (as number of

breeding pairs) and prey fecundity were estimated through

standard methods already tested in our study sites over the

years (e.g. Oro & Ruxton 2001; Martı́nez-Abraı́n et al.

2003b,c).
Figure 1. Density of predators (breeding females of
L. michahellis, open circles) and prey (breeding females of
L. audouinii, solid circles) and prey fecundity (dashed line
refers to second y-axis) of four different local populations: (a)
Columbretes, (b) Alboran, (c) Chafarinas and (d ) Ebro
Delta. All time-series end in 2004 but they begin when all the
three parameters were available, the first year being different
in each local population. Prey fecundity has the same scale for
the four populations, but not population density, which is
different in each case.
(b) Statistical treatment and biological hypotheses

We used a generalized linear mixed model to analyse the

relationship between prey fecundity (noted Pf ) and density of

both prey and predator, and the ratio between the two

densities. This allowed us to introduce explicative variables

that could be correlated, such as the densities of both

predator and prey (expressed in the models as Pd and Py,

respectively, see below) in space and time. Since the

dependent variable Pf did not follow a normal distribution

(Shapiro–Wilk testZ0.847, d.f.Z62, p!0.0001), we carried

out a square root transformation, which is appropriate in our

case of variance increasing as the mean increases. This is

especially true because our sample was considered as taken

from a Poisson distribution. Transformation was performed

using the equation

Pf 0 Z
ffiffiffiffiffiffi
Pf

p
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pf C1

p
;

Proc. R. Soc. B (2006)
which has good variance-stabilizing qualities for variables

such as fecundity, with values ranging from 0 to 2 (see figure 1;

Shapiro–Wilk test on Pf 0Z0.969, d.f.Z62, pZ0.118).

Because of the temporal stochastic nature of fecundity, we

corrected for the year term by introducing it as a random

effect. This precluded a goodness-of-fit test of the models, but

comparisons of their deviances with the null model yielded

small discrepancies (see electronic supplementary material).
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Figure 2. Illustration of several biological hypotheses
modelled in our analysis: the solid lines show density
dependence of prey fecundity with population size (the
predator and prey densities together) with a logarithmic and
logistic shapes; the dashed line shows an inverse density
dependence at low prey numbers (Allee effect) before the
appearance of density dependence at higher population sizes.
Several mathematical models were fitted to each hypothesis
(see §2).
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Figure 3. Smoothing regression surface of the relationship
between prey fecundity (measured as number of fledglings
per breeding female) and density of both prey and predator
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Potential autocorrelation in densities and fecundities was not

taken into account, because the temporal autocorrelations in

the study populations are weak, due to the extremely high and

stochastic emigration–immigration rates among populations

(Oro & Ruxton 2001; Oro et al. 2004). We reduced the test of

interactions between factors to avoid overparameterized

models and in turn the non-convergence of deviance profiles

or the unreliability in parameter estimators.

To explore the underlying patterns between prey fecundity

and density of both prey and predator, we plotted the

variables and fit a robust locally weighted regression

smoothing surface using a lowess method by iteration of

weighted least squares (Simonoff 1996). Following this

exploratory analysis (see §3), we tested not only for linear

correlations between prey fecundity and the explanatory

variables, but also for nonlinear effects between prey

fecundity and population density of both prey and predator

(e.g. Courchamp et al. 1999), by including nonlinear

functions (such as quadratic and logarithmic; see figure 2).

These models were based on the type II and type III

behavioural patterns described first by Holling (1959) on

predator–prey interactions (see also Berryman 1992 for ratio-

dependent functional responses). For instance, the quadratic

function of prey density (denoted as Pf 2) would suggest an

Allee effect (or inverse density dependence) on prey fecundity

before the appearance of density dependence. This type of

function, with higher values of fecundity at intermediate

population densities, was what Allee (1931) found in his

original study on social inhibition of breeding, and it was

similar to the type III functional response. We also tested

whether the fecundity curve changed monotonically with

density to an asymptote (S-shaped—or sigmoid—and logar-

ithmic forms, similar to the type III and type II functional

responses, respectively; see figure 2).

The significance of the main effects and interactions was

assessed by comparing models with or without the effects

tested, in interaction or additive manner. Although many

theoretical models have employed the ratio of the predator

and prey, we only tested this factor in combination with at

least one of the two actual variables (Jasienski & Bazzaz

1999). When using the ratio, either of the two variables

(densities of both prey and predator) is no longer identifiable,

so the use of at least one of them is statistically and

biologically sensitive. Model selection was made on the

basis of Akaike’s Information Criterion adjusted for small

sample sizes (AICc).

(both as number of breeding females). All the data available
(actual variable values for all years and local populations)
were used. Note than even though the regression surface
covers all the range of predator and prey densities, predators
and prey were always present in the study (see figure 1).
3. RESULTS
The results shown in figure 3 suggest that prey fecundity

changed following a pattern depending on densities of

both prey and predator. Maximum values of fecundity

occurred with the lowest densities of predators, while

fecundity seemed to show a quadratic relationship with the

density of prey, i.e. the highest values were found at

intermediate prey density levels. In fact, the combinations

of the two factors (lowest predator densities together with

intermediate prey densities) yielded the highest fecundity

values (figure 3). Fecundity also decreased nonlinearly

with increasing predator density although a slight increase

occurred at relatively high prey density values. Modelling

confirmed some of these trends (table 1, see electronic

supplementary material). The finally selected model

(model 1) actually showed a logarithmic and statistically
Proc. R. Soc. B (2006)
significant relationship between prey fecundity and

densities of both prey (positive trend: tZ6.455, d.f.Z
46.9, p!0.0001) and predator (negative trend: tZK5.614,

d.f.Z49.5, p!0.0001). Furthermore, fecundity increased

significantly as the ratio between density of prey and

density of predators increased (tZ2.188, d.f.Z45.8, p!
0.01). Other associations between the dependent and

explicative variables (linear—such as models 5–7—and

nonlinear, including quadratic—such as models 8, 9, 13

and 19—and logarithmic—such as models 10 and 16—as

interactions or additive) did not result in more parsimo-

nious models (table 1 in the electronic supplementary

material). In general, the addition of the colony effect
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Figure 4. Association between prey fecundity and the ratio
prey/predator for the four-study local populations. Open
circles show the relationship for the smaller populations
(Columbretes and Alboran) and solid circles the relationship
for the larger populations (Ebro Delta and Chafarinas). The
solid line shows the logarithmic relationship between the two
variables for the pooled data, which was statistically
significant (FZ60.8, d.f.Z59, p!0.0001). The dashed line
shows the threshold below which predator population was
larger than prey population (see text).
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yielded similar values of AICc than the models without

the effect (e.g. model 1 versus model 2, model 8 versus

model 9). This was also true for the finally selected model:

adding a colony effect resulted in a statistically equivalent

model (model 2 in table, see electronic supplementary

material). Coefficients of this model suggested that the

nonlinear association between prey fecundity and

densities of prey and predators and their ratio was more

pronounced at the smallest local populations (Colum-

bretes and Alboran). In these populations, failures of prey

fecundity were regular (more than 30% of the years, see

figure 1a,b), and breeding seemed to succeed only above a

threshold of prey densities determined by a ratio of 1 : 1

with predators (figure 4). In the larger colonies (Ebro

Delta and Chafarinas), prey fecundity was less variable for

the whole ranges of densities of prey and predator, which

were well above that threshold of 1 : 1 (see figure 4 and

also figure 1c,d ). The logarithmic relationship found in

figure 4 confirmed the results of the modelling (see above).

Below this threshold, prey fecundity was significantly

lower than above the 1 : 1 ratio (U Mann–Whitney

testZ101.0, p!0.0001).
4. DISCUSSION
An emergent feature of the present study was the

prediction of Allee effects across a broad range of

population sizes of both the prey and the predators and

at a large spatial scale, within several local populations

facing different ecological environments. Allee effects

resulted in lower prey fecundity with low prey densities,

whatever the density of predator recorded. Yet, breeding

failures occurred always below a threshold of prey/

predator 1 : 1 ratio, which occurred especially in the

smaller prey populations under study (see also Martı́nez-

Abraı́n et al. 2003b). Allee effects were actually stronger in

these populations, but even here they could be slight when

predator densities were low. Allee effects also appeared

with low densities of predator (see figure 3) and here low

fecundity could be more influenced by lower social

foraging enhancement (Arcos et al. 2001). A demographic
Proc. R. Soc. B (2006)
Allee threshold can influence colony extinction prob-

ability, which in Audouin’s gull can be mediated (at least

partially) by the Allee threshold on breeding failures found

here (see also Martı́nez-Abraı́n et al. 2003a). An

additional Allee effect below the threshold of breeding

failure may result in high emigration and low immigration

depensatory rates at metapopulation level through con-

specific attraction from much larger prey populations,

where predation is lower and, in turn, fecundity is higher

(Holyoak & Lawler 1996; Oro et al. 2004). The

relationship between prey fecundity and density of both

prey and predators presented here followed similar

stochastic patterns than the per capita population growth

rate in non-deterministic population dynamic models after

the incorporation of Allee effects (e.g. Cappuccino & Price

1995; Courchamp et al. 1999; Lande et al. 2003; Taylor &

Hastings 2005). These models show that population

growth rate is highest at intermediate population sizes,

and that Allee effects preclude small populations from

performing better. One of the mechanisms underlying an

Allee effect was social facilitation (Allee 1931). Con-

specific facilitation against predators had already been

recorded in Audouin’s gull and other colonial birds where

anti-predator strategies become inefficient in small groups

(e.g. Oro 1996; Brunton 1999; Brown & Brown 2001;

Cuthbert 2002).

Study populations were also affected by density

dependence on prey fecundity. Fecundity was actually

higher at intermediate prey densities, and then lowered. At

the highest prey densities, fecundity was likely to be more

constrained by competition for food although several

studies have shown that predation still occurred (Oro &

Martı́nez-Vilalta 1994; Martı́nez-Abraı́n et al. 2003b).

Density dependence on prey fecundity was probably

affected not only by intraspecific but also by interspecific

competition for food resources (Brown & Brown 2001).

Again, results suggested that density dependence was

stronger in the smaller populations, with a lower number

of foraging habitats available (Oro et al. 1996; Ruiz et al.

1998; Oro & Pradel 2000; Oro & Ruxton 2001; Genovart

et al. 2003). Higher prey fecundities were actually

recorded in the largest prey populations (figure 1c,d ),

where predator densities were actually lower and thus the

prey/predator ratio was the highest. The stabilization of

prey fecundity with the increase in population density

(prey and predators together) is probably enhanced by an

increase of predation rates that occurs when food-

mediated density dependence appears. For instance, new

fishing policies will reduce an important foraging resource

(i.e. fishing discards) in seabird communities, and would

affect intraguild predator–prey systems and their relation-

ships in time and space. Under this scenario, it is expected

that facultative predators, in the absence or lowering of the

main food, would increase predation rates and population

dynamics of smaller sympatric species, some of them with

a conservation concern (Votier et al. 2004).
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