Skip to main content
. 2005 Dec 6;273(1586):603–610. doi: 10.1098/rspb.2005.3348

Table 1.

Logistic regression analyses of aphid survival.

treatment regression equationa β1b β2b β3b
controlSs Y=−2.60−0.58SsWI−0.25SsNY+0.12SsAZ p=0.0184; 95% CI: −1.06 to −0.10 p=0.3199; 95% CI: −0.74 to 0.24 p=0.6793; 95% CI: −0.44 to 0.67
day 2 heat shockSs Y=−0.03+0.30SsWI+0.29SsNY+0.19SsAZ p<0.0001; 95% CI: 0.15 to 0.45 p<0.0001; 95% CI: 0.15 to 0.43 p=0.0099; 95% CI: 0.04 to 0.33
day 6 heat shockSs Y=0.90−0.28SsWI− 0.46SsNY−0.44SsAZ p=0.0005; 95% CI: −0.44 to −0.12 p<0.0001; 95% CI: −0.61 to −0.30 p<0.0001; 95% CI: −0.60 to −0.27
controlHd/Ri Y=−2.92−0.01Hd+0.58Ri p=0.9652; 95% CI: −0.58 to 0.56 p=0.1544; 95% CI: −0.22 to 1.39 n.a.
day 2 heat shockHd/Ri Y=0.77+0.29Hd−0.27Ri p=0.0111; 95% CI: 0.07 to 0.52 p=0.0439; 95% CI: −0.53 to −0.01 n.a.
a

Regression equation is Y=β0+β1SsWI+β2SsNY+β3SsAZ (for S. symbiotica experiments) or (for H. defensa and R. insecticola experiments) Y=β0+β1Hd+β2Ri.

b

Statistics indicate whether β parameter estimates (representing the relative difference in the log odds of survival between infected and uninfected aphids) differed significantly from zero.