Table 1.
Logistic regression analyses of aphid survival.
treatment | regression equationa | β1b | β2b | β3b |
---|---|---|---|---|
controlSs | Y=−2.60−0.58SsWI−0.25SsNY+0.12SsAZ | p=0.0184; 95% CI: −1.06 to −0.10 | p=0.3199; 95% CI: −0.74 to 0.24 | p=0.6793; 95% CI: −0.44 to 0.67 |
day 2 heat shockSs | Y=−0.03+0.30SsWI+0.29SsNY+0.19SsAZ | p<0.0001; 95% CI: 0.15 to 0.45 | p<0.0001; 95% CI: 0.15 to 0.43 | p=0.0099; 95% CI: 0.04 to 0.33 |
day 6 heat shockSs | Y=0.90−0.28SsWI− 0.46SsNY−0.44SsAZ | p=0.0005; 95% CI: −0.44 to −0.12 | p<0.0001; 95% CI: −0.61 to −0.30 | p<0.0001; 95% CI: −0.60 to −0.27 |
controlHd/Ri | Y=−2.92−0.01Hd+0.58Ri | p=0.9652; 95% CI: −0.58 to 0.56 | p=0.1544; 95% CI: −0.22 to 1.39 | n.a. |
day 2 heat shockHd/Ri | Y=0.77+0.29Hd−0.27Ri | p=0.0111; 95% CI: 0.07 to 0.52 | p=0.0439; 95% CI: −0.53 to −0.01 | n.a. |
Regression equation is (for S. symbiotica experiments) or (for H. defensa and R. insecticola experiments) .
Statistics indicate whether β parameter estimates (representing the relative difference in the log odds of survival between infected and uninfected aphids) differed significantly from zero.