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A growing body of literature points to a large-scale research approach as essential for understanding

population and community ecology. Many of our advances regarding the spatial ecology of predators and

prey can be attributed to research with insect parasitoids and their hosts. In this review, we focus on the

progress that has been made in the study of the movement and population dynamics of hosts and their

parasitoids in heterogeneous landscapes, and how this research approach may be beneficial to pest

management programs. To date, few studies have quantified prey and predator rates and ranges of

dispersal and population dynamics at the patch level—the minimum of information needed to characterize

population structure. From host–parasitoid studies with sufficient data, it is clear that the spatial scale of

dispersal can differ significantly between a prey and its predators, local prey extinctions can be attributed to

predators and predator extinction risk at the patch level often exceeds that of the prey. It is also evident that

populations can be organized as a single, highly connected (patchy) population or as semi-independent

extinction-prone local populations that collectively form a persistent metapopulation. A prey and its

predators can also differ in population structure. At the landscape level, agricultural studies indicate that

predator effects on its prey often spill over between the crop and surrounding area (matrix) and can depend

strongly on landscape structure (e.g. the proportion of suitable habitat) at scales extending well beyond the

crop margins. In light of existing empirical data, predator–prey models are typically spatially unrealistic,

lacking important details on boundary responses and movement behaviour within and among patches. The

tools exist for conducting empirical and theoretical research at the landscape level and we hope that this

review calls attention to fertile areas for future exploration.
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1. INTRODUCTION

The classic paper by Pimentel et al. (1963) demonstrated

that the persistence times of the braconid parasitoid,

Nasonia vitripennis, and its housefly host, Musca domestica,

were substantially longer in complex interconnected

laboratory cages than in single cages. Similar results were

found by Huffaker (1958) for herbivorous and predatory

mites among semi-isolated oranges on a laboratory bench.

One implication of these studies was that the addition of

‘space–time structure’ to the environment promotes

predator–prey coexistence. Building on these classic

works, theoretical and empirical evidence over several

decades has strongly suggested that spatial considerations

such as the size, spatial arrangement, quality and

connectivity of habitats and landscape composition can

impact animal foraging behaviour, population dynamics,

interactions within and among trophic levels and commu-

nity structure (Kareiva 1987; Ricklefs & Schluter 1993;

Gering et al. 2003; Tscharntke & Brandl 2004). In fact,

larger-scale processes can potentially dominate local-scale

processes (e.g. Steffan-Dewenter et al. 2002; Thies et al.

2003; Cronin 2004; Cronin & Haynes 2004). From a

conservation perspective, the primary threat to global
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biodiversity—the loss and fragmentation of suitable habitat

(Debinski & Holt 2000; Fahrig 2003)—is a phenomenon

that is often best understood at landscape-level scales (e.g.

Bascompte & Rodriguez 2001; Tscharntke et al. 2002;

Aune et al. 2005). Clearly, a large-scale approach to

studying population and community ecology is essential

(Polis et al. 1997; Tscharntke 2000; Tscharntke &

Brandl 2004).

Many of our advances regarding predator–prey spatial

ecology can be attributed to research with hosts and their

parasitoids (Godfray 1994; Hawkins 1994; Hassell 2000).

Historically, modelling efforts have far surpassed the

contributions of empirical research to this field. However,

recent empirical work with hosts and parasitoids rep-

resents some of the best large-scale research on predator–

prey interactions. We focus this review on the movement

and dynamics of populations in heterogeneous land-

scapes, emphasizing research and progress with natural

systems. We leave discussion of the spatial distribution of

parasitism among host patches and its dynamical effects to

the thorough review by Hassell (2000). Community-level

issues (e.g. diversity, structure, succession) are also

beyond the scope of this review. Predator–prey models

that include a spatial aspect are also reviewed and new

modelling approaches, particularly those that have

been motivated by empiricism, are discussed. Finally, we
q 2005 The Royal Society
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discuss how the field of landscape ecology is helping to

shape pest management practices and identify fruitful new

research directions for the theoretical and field ecologist.
2. LITERATURE REVIEW
(a) The structure and dynamics of fragmented

populations

Spatially explicit field studies of host–parasitoid ecology

and dynamics have come to the forefront as metapopula-

tion theory has matured. A metapopulation is an

assemblage of spatially discrete local populations that are

linked together by migration (Levins 1970), a structure

thought common to many species (Hanski 1999). One of

the most influential and prevalent spatially explicit

metapopulation models is the incidence function model

(Hanski 1994). This model assumes a finite number of

discrete and suitable habitat patches that can vary in size

and degree of isolation (Hanski 1999). Furthermore, all

patches are assumed equal in quality and are embedded in

an inhospitable matrix (akin to an island archipelago). In

general, this model framework is likely to be most useful if

the following conditions are met (Hanski 1997): (i) all

local populations have a substantial risk of extinction;

(ii) habitat patches are not so isolated that recolonization

is impossible; and (iii) local populations have asynchro-

nous dynamics. The latter condition minimizes the

likelihood that all local populations simultaneously go

extinct and that the metapopulation persists. These

spatially explicit models are appealing because they

predict persistence of the ensemble of patches despite

evanescent local dynamics (see also Hanski et al. 1996a).

The model offers useful predictions regarding the effective

metapopulation size (minimum number of patches or

amount of suitable habitat necessary for long-term

persistence), the contribution of each patch to regional

persistence and how changes to real landscapes might

affect metapopulation dynamics for a single species

(Hanski et al. 1996b; Hanski & Ovaskainen 2000;

Ovaskainen & Hanski 2003, 2004). Spatially realistic

models have since been modified to incorporate variation

in habitat quality, environmental and demographic

stochasticity, spatially and temporally varying environ-

ments and within-patch population dynamics (e.g.

Gyllenberg et al. 1997; Heino et al. 1997; Ovaskainen

2002; Ovaskainen & Hanski 2004).

Despite the wealth of single species, spatially explicit

population models—the development of models involving

predator–prey/host–parasitoid interactions in space—

remains rather limited. Classic host–parasitoid models

included variation in parasitoid densities across host

patches, but also assumed complete remixing of the host

and parasitoid population in each generation (e.g. Bailey

et al. 1962; Hassell & May 1974; May 1978; Hassell et al.

1991), making them best suited to describing dynamics on

a local scale. Later models linked collections of local

populations through a dispersal pool or to their nearest

neighbours in a two-dimensional lattice (e.g. Reeve 1988;

Comins et al. 1992; Wilson & Hassell 1997; Childs et al.

2004). Under a variety of conditions, persistence of these

systems can occur even when the underlying local

dynamics are unstable (see Briggs & Hoopes 2004).

A drawback of these models is the simplistic way in

which space and dispersal are described. It is difficult to
Proc. R. Soc. B (2005)
see how they could be applied to natural systems, where

habitat patches differ in size, spatial arrangement and

matrix type. Reaction–diffusion versions of predator–prey

models can provide a more realistic description of

dispersal behaviour in space, but generally treat space as

a continuum (Okubo et al. 2001). An exciting recent

development has been the incorporation of boundary

behaviour for habitat patches within the diffusion frame-

work (Cantrell & Cosner 2003; Ovaskainen & Cornell

2003; Ovaskainen 2004). Combined with recent improve-

ments in software for reaction–diffusion models, it is

possible to construct host–parasitoid models across a

collection of discrete habitat patches. We are currently

developing such models for a planthopper (Prokelisia

crocea) and its egg parasitoid (Anagrus columbi) residing

in a landscape consisting of host–plant patches embedded

in a heterogeneous matrix (Reeve et al. in preparation), in

which movement rates and boundary behaviour vary with

the composition of the matrix (Haynes 2004). We briefly

illustrate this approach on a hypothetical landscape

(figure 1) using the software package FEMLAB 3.1 (Comsol

AB, Burlington, MA, 2005). The solution process consists

of drawing the landscape and then specifying diffusion,

oviposition, mortality and parasitoid attack rates within

each domain, as well as boundary behaviour on the patch–

matrix edge. Numerical solutions are shown in figure 2 for

two matrix types, mudflat and brome (a grass), using

parameter values estimated from observations of P. crocea

movement (Reeve et al. in preparation). Observations have

yet to be made for A. columbi, so for simplicity we assume

its dispersal behaviour is similar to P. crocea. The solutions

illustrate the importance of matrix type, patch size and

edge behaviour on host and parasitoid abundance.

Densities were consistently higher for a cordgrass–mudflat

(figure 2a) versus cordgrass–brome landscape (figure 2b),

because boundary behaviour on the cordgrass–mudflat

landscape retains dispersing insects within cordgrass

patches. Large cordgrass patches also had higher densities

than small ones, as would be expected, and patches closer

to the large central patch also had higher densities.

For parasitoids and their hosts, their small body sizes,

high rates of population increase and specific resource

requirements are thought to predispose them to metapo-

pulation dynamics (Murphy et al. 1990; Bonsall et al.

2002; Bonsall & Hastings 2004). To date, there are few

field studies that have characterized in detail the move-

ment and spatial (meta)population structure of a host and

its parasitoid among spatially discrete habitat patches

(table 1). Perhaps, the best-studied example involves the

Glanville fritillary (Melitaea cinxia) and its specialist

braconid parasitoid Cotesia melitaearum. Both M. cinxia

and C. melitaearum exhibit classic extinction–colonization

metapopulation dynamics among dry meadow patches of

the Åland islands in southwestern Finland (Lei & Hanski

1997; van Nouhuys & Hanski 2002). As an interesting

contrast, van Nouhuys & Hanski (2002) found that the

population structure of Hyposoter horticola (Ichneumo-

nidae), another parasitoid of M. cinxia, is best described as

a patchy population. Hyposoter horticola is much more

dispersive than its host and as a consequence most host

patches are occupied. Even at the scale of 3500 km2, there

was no evidence of genetic population structure for

H. horticola (Kankare et al. 2005).
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Figure 1. Hypothetical landscape consisting of five circular
host–plant patches surrounded by a matrix of grass (smooth
brome) or mudflat. The landscape is divided into six domains
(matrixZ1, patchesZ2–6). The diffusion models for host
and parasitoid movement incorporated boundary behaviour
in the form of a biased random walk, where individuals on the
patch–matrix boundary move toward the patch with prob-
ability k1, while 1Kk1 is the probability for the matrix
(Ovaskainen 2004). The outer boundary for the landscape
was assumed to be absorbing.
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Figure 2. Abundance of host eggs and juvenile parasitoids
(parasitized eggs) for 50 generations across the landscape
depicted in figure 1. Numbered lines in black refer to host
eggs in host–plant patches 2–6, while grey lines in the same
style are juvenile parasitoids. The model was initialized by
adding a small number of adult hosts and parasitoids to the
patches. Host and parasitoid are then assumed to move and
interact for a period of time, generating a distribution of host
eggs and juvenile parasitoids in space. This distribution is
then used to initialize the adult host and parasitoid
distribution in the next generation, after adjusting for
mortality in these stages. (a) Patch–mudflat landscape with
diffusion rate DpatchZ0.12 m2 dK1, DmudflatZ5.8 m2 dK1

and k1Z0.95; (b) patch-brome landscape with DpatchZ
DbromeZ0.12 m2 dK1 and k1Z0.5. Note that k1 is much
higher for the patch–mudflat landscape, implying that
dispersing individuals are more likely to be retained in
patches surrounded by mudflat versus brome.
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Cronin (2003a,b, 2004) provides another example of

extinction–colonization dynamics with P. crocea and

A. columbi in the tall-grass prairies of North America.

Host–plant patches (prairie cordgrass) have a heavily

skewed size distribution such that a few large patches

(greater than 4 ha) are intermixed with many small

patches (less than 10 m2). Local planthopper and

parasitoid extinctions decrease in likelihood with increas-

ing patch size and no instance of extinction has ever been

recorded in the largest patches (Cronin 2004). The

population structures of P. crocea and A. columbi were

similar, exhibiting mainland (large patches)-island

dynamics (see also Hanski 1986; Harrison 1991;

Berendonk & Bonsall 2002).

Most of the studies in table 1 infer parasitoid local

dynamics from the distribution of parasitized hosts (Eber

& Brandl 1994; Dempster et al. 1995a,b; Eber & Brandl

1996, 1997; van der Meijden & van der Veen-van Wijk

1997). Typically, little information is available on the

extinction dynamics of the parasitoid independent of host

extinctions. The major bottleneck in our understanding of

host–parasitoid interactions among spatially discrete

patches remains limited information on host, and

especially parasitoid dispersal. Secondarily, we lack even

rudimentary information on the local dynamics of patches

within a metapopulation context. These limitations are

common to predator–prey and parasite–host systems as

well (but see Walde 1994; Antonovics 2004; Keeling et al.

2004).

Despite the limited number of case studies, the

examples in table 1 serve to highlight several important

issues with regard to predator–prey spatial ecology. First,

the population structures of these systems are quite
Proc. R. Soc. B (2005)
variable, ranging from classic metapopulations, to main-

land-island metapopulations, to patchy populations with

stable or unstable local dynamics. These results support

the view that a classic metapopulation is but one point

along a continuum of possible spatial population struc-

tures (Harrison & Taylor 1997; Thomas & Kunin 1999).

Second, a prey and its predators often differ signifi-

cantly in the scales at which they disperse or respond to

spatial subdivision (e.g. Roland & Taylor 1997; Althoff &

Thompson 1999; Cronin et al. 2000; Ryall & Fahrig

2005). This is particularly evident in the case of the

Glanville fritillary and H. horticola whereby the dispersal

discrepancy leads to very different population structures—

a classic metapopulation for the host and a patchy

population for the highly mobile parasitoid. Differences

in dispersal between interacting species can be important

to their regional population dynamics. In a number of

prey–predator models, stability is achieved in instances

where the prey is more dispersive than the predator, i.e.

the host stays one step ahead of its natural enemy (e.g.

Comins et al. 1992; McCauley et al. 1996; Holt 1997;



Table 1. Field studies on hosts and parasitoid spatial population structure.
(For inclusion in the table, host–plant patches must be discrete, and information about the relative dispersal of the host and
parasitoid(s) and local extinction–colonization dynamics must be provided.)

host and parasitoid(s)
dispersal
rangea

local extinction
risk

parasitoid
can cause
local host
extinction?

type of population
dynamics sources

fruitfly (Uurophora cardui )
and Eurytoma robusta

HOP unknown yes classic metapopulation Eber & Brandl (1994, 1996,
1997), Eber (2001),
Johannesen & Seitz
(2003)

fruitfly (Tephritis bardanae)
and Habrocytus albipennis
and Bracon minutator

HOP unknown no patchy population Dempster et al. (1995a,b)

California red scale
(Aonidiella aurantii ) and
Aphytis melinus and
Ecarsia perniciosi

H!P none no locally and regionally
stable

Murdoch et al. (1996)

Glanville fritillary (Melitaea
cinxia) and Cotesia
melitaearum

HOP H!P yes classic metapopulation Lei & Hanski (1997), van
Nouhuys & Hanski (1999,
2002), van Nouhuys &
Tay (2001)

cinnabar moth (Tyria
jacobaea) and Cotesia
popularis

HOP unknown no host: classic metapopu-
lation; parasitoid:
unknown

van der Meijden & van der
Veen-van Wijk (1997)

Glanville fritillary and
Hyposoter horticola

H!P host driven no host: classic metapopu-
lation; parasitoid:
patchy population

van Nouhuys & Hanski
(2002), van Nouhuys &
Ehrnsten (2004), Kankare
et al. (2005)

aphid (Metopeurum
fuscoviride) and Lysiphlebus
hirticornis

HzP host driven yes classic metapopulation Weisser (2000)

planthopper (Prokelisia
crocea) and Anagrus
columbi

HOP H!P no mainland-island meta-
population

Cronin (2003a,b, 2004),
Cronin & Haynes (2004)

a Is host (H) dispersal range less than, greater than or approximately equal to the dispersal range of the parasitoid (P)? Information is based on
mark–recapture or gene flow studies.
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Hassell 2000). However, unequal dispersal rates are

neither necessary nor sufficient for interaction persistence

(Nee et al. 1997; Briggs & Hoopes 2004). Once again, it is

clear that we need information on the ranges and rates of

dispersal of interacting species if we wish to understand

the mechanisms underlying their persistence.

Third, host extinctions are caused by their parasitoids

in a number of instances (Lei & Hanski 1997; Weisser

2000; van Nouhuys & Tay 2001). For example, Weisser

(2000) found that the aphidiid parasitoid Lysiphlebus

hirticornis caused 100% parasitism of 12% of the local

aphid populations residing in clonal patches of common

tansy. These results are significant because they suggest

that the host–parasitoid interaction within a patch is

inherently unstable—an important feature of predator–

prey metapopulation theory (Harrison & Taylor 1997;

Weisser 2000). Predator- or parasite-induced extinctions

of local prey populations are more difficult to document,

but they do exist (e.g. Walde 1994; Antonovics 2004;

Cronin et al. 2004).

Fourth, for those systems in which extinction prob-

abilities have been quantified, the parasitoid is more

extinction prone than its host (van Nouhuys & Tay 2001;

van Nouhuys & Hanski 2002; Cronin 2004). These

studies support the theoretical expectation that higher

trophic levels are at greater risk of extinction than lower
Proc. R. Soc. B (2005)
trophic levels (Pimm & Lawton 1977; Pimm 1991; Holt

1996). For P. crocea and A. columbi, the most likely

explanation for this result was that the parasitoid’s

extinction risk was dependent on three trophic levels

(densities of plants, hosts and conspecifics), whereas the

host’s extinction risk was dependent only on aspects of the

landscape (patch size and matrix composition) (Cronin

2004). Also, A. columbi experienced a more fragmented

landscape than its host because on average only 77% of the

host–plant patches were occupied at a given time (Cronin

2004). Several studies have shown that predators,

parasitoids and parasites are more sensitive to habitat

fragmentation than their hosts (e.g. Kruess & Tscharntke

1994, 2000; Komonen et al. 2000; Thies et al. 2003;

Antonovics 2004).

The chasm between theoretical and empirical research

on fragmented populations of interacting species is at its

widest with regard to the establishment of a causal link

between habitat connectivity, fragmentation and popu-

lation dynamics (e.g. Donahue et al. 2003; Bowne &

Bowers 2004; Cronin & Haynes 2004). Laboratory

microcosm experiments with consumer–resource systems

have generally supported theoretical predictions (e.g.

Huffaker 1958; Pimentel et al. 1963; Holyoak & Lawler

1996a,b, Ellner et al. 2001; Bonsall et al. 2002; Donahue

et al. 2003; Bonsall & Hastings 2004). In contrast, most
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field studies report on surveys of the distribution of

organisms over space and time, and hence cannot ascribe

cause and effect relationships with much confidence.

Experimental manipulations of patch structure, fragmen-

tation, habitat loss, connectivity and its resulting effect on

local or regional dynamics of a prey and its predators are

also quite scarce (but see Kruess & Tscharntke 1994,

2000; Braschler et al. 2003; Cronin & Haynes 2004). No

study has examined the impact of fragmentation per se (the

breaking up of suitable habitat, independent of habitat

loss; Fahrig 2003) on parasitoid abundance or parasitism

rates. In the study by Cronin & Haynes (2004), in which

replicate patch networks were created that differed in

degree of functional connectivity, increased connectivity

resulted in increased local and regional extinctions of the

planthopper and its parasitoid. In this particular case, high

connectivity caused patches to function like sieves (see

Thomas & Kunin 1999), losing individuals faster than

they could be gained and essentially countering the rescue

effect (Brown & Kodric-Brown 1977; Hanski 1999).

These unanticipated results were only revealed through

experimentation.
(b) Landscape-level studies

Unlike the dichotomous view of landscapes inherent in

classic metapopulation theory (i.e. discrete habitat patches

of identical quality embedded in a uniformly inhospitable

matrix), real landscapes are composed of patches that may

have indistinct boundaries, their geometry and occurrence

may be transient and the matrix may be quite hetero-

geneous (Wiens 1997; With 2004). Moreover, patch

quality can vary with respect to edaphic and topographic

conditions (Dias 1996; Haynes & Cronin 2004; With

2004). The consideration of these aspects of the landscape

and their effect on ecological processes encapsulates the

burgeoning field of landscape ecology (Turner 1989).

Theoretical and empirical landscape studies focus on how

the spatial arrangement and composition of landscape

elements (i.e. landscape context) influence within-patch

dynamics, boundary or edge responses, spillover among

adjacent elements, functional connectivity and distri-

bution of organisms (Tscharntke 2000; Tscharntke &

Brandl 2004; With 2004). As we outline below, landscape

ecology and biological pest management have become

intertwined fields of study (Roland 2000; Tscharntke

2000; Thies et al. 2005).

Incorporation of the mosaic structure of real landscapes

into metapopulation models has been viewed as a main

promise of landscape ecology (Wiens 1997). One difficulty

from a modelling perspective is that patch-based connec-

tivity measures, such as nearest neighbour distance

(Moilanen & Hanski 2001), may be incorrect for real

landscapes. Connectivity is therefore often assessed in a

functional way (i.e. dependent upon the movement

behaviour of the species in question) with individual-

based simulation models. The models must include

individual behaviour at habitat boundaries and movement

patterns through the different landscape elements (e.g.

With & Crist 1995; Ovaskainen & Hanski 2004; Revilla

et al. 2004). As we have mentioned previously, however,

there is a dearth of spatially realistic predator–prey models

that also incorporate realistic dispersal behaviour of

animals within and between landscape elements.
Proc. R. Soc. B (2005)
The idea that the composition of the matrix affects

animal movement and connectivity among patches has

been well established (e.g. Crist et al. 1992; Ricketts 2001;

Revilla et al. 2004), but very few studies on this subject

have been conducted with parasitoids, predators or

parasites (but see Morrison 1996; Elliott et al. 2002;

Cronin 2003a, Cronin & Haynes 2004; Grez et al. 2005).

In the study by Cronin & Haynes (2004), both P. crocea

and A. columbi had higher emigration rates, moved longer

distances and had higher colonization rates when disper-

sing through a grass as compared to a bare-ground matrix.

By affecting functional connectivity, the matrix influenced

the mean and variance in densities and extinction risk of

local host and parasitoid populations. Also, aside from

patterns of the distribution of predation/parasitism or

natural enemies across ecotones or boundaries (e.g.

Tscharntke et al. 2002; Cronin 2003a, Ries & Fagan

2003), we have very little data on how patch boundaries

affect enemy and prey movement behaviour (but see

Cronin 2003a for a rare parasitoid example).

Many of our advances in the arena of predator–prey

landscape ecology have derived from studies of agricul-

tural pests and their parasitoids (Roland 2000; Tscharntke

2000; Thies et al. 2005). We will emphasize two areas of

study, spillover effects between adjacent landscape

elements (i.e. spatial subsidies; Polis et al. 1997) and

landscape context effects on host–parasitoid interactions.

Spillover effects between adjacent landscape elements

should be common when natural enemies and their prey

are not restricted to a single habitat type and use different

landscape elements for feeding, oviposition or hibernation

(Landis et al. 2000; Gurr et al. 2003). The strength of

pest–enemy interactions may depend on the juxtaposition

of these different elements (Tscharntke & Brandl 2004).

For example, spillover from non-crop habitat often results

in higher parasitism rates near the crop edge than interior

(e.g. Baggen & Gurr 1998; Thies & Tscharntke 1999;

Tylianakis et al. 2004). The reverse has also been shown—

spillover from crop to non-crop habitat can magnify the

impact of parasitoids on non-crop insects resident in

adjacent natural habitats (Barratt et al. 1997). Whether

the adjacent matrix functions as a source (net exporter) or

sink (net importer) for natural enemies probably depends

on the nature of the matrix (i.e. its composition, size and

age). Consequently, effective top-down control of plant

pests may be contingent upon the composition of adjacent

matrix habitats (Landis et al. 2000; Gurr et al. 2003;

Snyder et al. in press). Although various pest management

programs actively modify adjacent non-crop habitat to

facilitate natural enemy production and spillover onto

agricultural crops, we generally know too little about

spillover effects to make predictions or management

recommendations for many crop systems (Landis et al.

2000).

Studies of landscape-context effects on predator–prey

interactions also come primarily from parasitoids and

hosts in agroecosystems (but see Aviron et al. 2005;

Schmidt & Tscharntke 2005). The typical study involves a

collection of suitable host–plant patches (e.g. a crop field)

surrounded by a mixture of crop and non-crop habitat

(table 2). The landscape context ranges from the simple

(high percentage of crop habitat in the surrounding area)

to the complex (a high percentage of non-crop habitat).

What was once a laborious task to classify vegetation



Table 2. Effect of landscape context on host–parasitoid interactions.

study system landscape context statistics significant results source

armyworm (Pseudaletia
unpuncta) and parasitoids
in maize

simple (cropland) versus
complex (cropland sur-
rounded by hedgerows
and woodlots) land-
scapes

richness,
parasitism

parasitism higher in
complex landscapes

Marino & Landis
(1996)

armyworms and parasitoids
in maize

simple (cropland) versus
complex (cropland
intermixed with non-
crop) landscapes

richness,
parasitism

inconsistent among sites
and years

Menalled et al. (1999,
2003)

rape pollen beetle (Meligethes
aenus) and parasitoids in
oilseed rape

presence/absence of old-
field margin strips
adjacent to oilseed rape
fields

crop damage,
parasitism

crop damage lowest and
percentage parasitism
highest for crop fields
near margin strips

Thies & Tscharntke
(1999)

agromyzid (Melanagromyza
aeneoventris) and parasi-
toids in creeping thistle

percentage of non-crop
area

host abun-
dance,
parasitism

host abundance, but not
percentage parasitism,
increase with increasing
percentage non-crop
area

Kruess (2003)

trap-nesting bees and wasps
and their parasitoids in
orchards

matrix diversity; percen-
tage of semi-natural
habitat (orchards/mea-
dows)

richness,
parasitism

parasitoid richness
increase with matrix
diversity

Steffan-Dewenter
(2003)

rape pollen beetle and para-
sitoids in oilseed rape

structural complexity
(proportion of non-
crop habitat)

crop damage,
parasitism

plant damage decrease
and parasitism increase
with increasing com-
plexity

Thies et al. (2003)

noctuid moth (Pseudaletia
unipuncta) and parasitoids
in maize

simple (cropland) versus
complex (cropland
intermixed with non-
crop) landscapes

richness,
diversity,
parasitism

trend toward increasing
richness in simple
landscapes

Costamagna et al.
(2004)

tansy leaf beetle (Galeruca
tanaceti) and egg parasi-
toid (Oomyzus
galerucivorus) in
grasslands

percentage of area covered
by non-host shrubs and
percentage of area cov-
ered by suitable habitat

host incidence,
parasitism

incidence and parasitism
decrease with increas-
ing coverage by shrubs
and increase with cov-
erage of suitable habitat

Meiners & Obermaier
(2004), E. Ober-
maier, A. Heißwolf,
H. J. Poethke, B.
Randkofer and T.
Meiners (unpub-
lished data)

cereal aphids and parasitoids
in winter wheat fields

structural complexity of
landscape (percentage
of arable land)

host abun-
dance,
parasitism

host density and parasit-
ism increase with
structural complexity

Roschewitz et al.
(2005), Thies et al.
(2005)
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structure over wide geographical regions has become quite

simple thanks to the availability of medium-to-high

resolution thermal and multispectral satellite imagery

(Lillesand et al. 2003). Satellite images with a resolution

of less than 5 m are globally available and can be used to

identify the location of dominant vegetation types and

even individual plant species (e.g. Mehner et al. 2004;

Rocchini et al. 2004; Casady et al. 2005).

In most studies with parasitoids of agricultural pests,

parasitoid species richness and/or parasitism in the crop

habitat increased with increasing landscape complexity

(but see Menalled et al. 1999; Kruess 2003; Meiners &

Obermaier 2004; table 2). For example, Thies et al.

(2003) found that parasitism of the rape pollen beetle

(Meligethes aenus) generally increased with the proportion

of non-crop area within 6 km of the focal plants. In six out

of eight studies, landscape context contributed signifi-

cantly to variation in parasitoid richness or percentage

parasitism. There is also evidence from these studies that

herbivore and parasitoid responses to landscape context

change with scale and differ from one another (e.g. Kruess

2003; Thies et al. 2003, 2005). In the study by
Proc. R. Soc. B (2005)
E. Obermaier, A. Heißwolf, H. J. Poethke, B. Randkofer

and T. Meiners (unpublished data), tansy leaf beetle

(Galeruca tanaceti ) oviposition was positively correlated

with the percentage of suitable habitat within 200 m,

whereas parasitism by Oomyzus galerucivorus was only

positively correlated with the percentage of suitable

habitat within 500 m. These scale-dependent differences

between hosts and their parasitoids probably link back to

their differences in dispersal ability (Thies et al. 2005).

The above studies suggest that the biological control of

plant pests is influenced by landscape-scale processes and

that pest management programs may benefit considerably

from thinking beyond the boundaries of a single

agricultural field.
3. DISCUSSION AND FUTURE DIRECTIONS
Insect parasitoids have distinct advantages for the study of

predator–prey interactions in space because their foraging

success and impact on prey are manifest in the parasitism

of hosts. Capitalizing on this advantage, ecologists have

amassed considerable information on the spatial
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distribution of predator-induced prey mortality, and

provided strong evidence that predators cause local prey

extinctions and that prey suppression is impacted by

factors that span local, regional and landscape scales.

Moreover, it is probably the norm, rather than the

exception, that each prey species and its associated

enemies disperse, aggregate and respond to landscape

structure at different spatial scales. On its own, this implies

that predator–prey interactions must be considered across

a broad range of spatial scales (see also Dunning et al.

1992; Polis et al. 1997; Tscharntke & Brandl 2004). These

data have greatly expanded our understanding of pre-

dator–prey spatial ecology and are beginning to affect how

agricultural pest management programs are developed

(Landis et al. 2000; Tscharntke 2000; Tscharntke &

Brandl 2004).

Although we have made significant strides in our

understanding of predator–prey spatial ecology, this

remains an open and fertile area for research. First,

movement studies with parasitoids, predators and para-

sites need to be conducted in the context of the landscape.

In addition to quantifying predator and prey migration

rates, there is a critical need for data on movement

behaviour at the boundary of suitable patches and other

landscape elements and trajectories within different matrix

types. This information is essential to understanding the

functional connectivity among suitable patches (Ims &

Yaccoz 1997; Cronin & Haynes 2004).

Second, we lack experimental studies at the metapopu-

lation or landscape level that address questions regarding

the temporal population dynamics of interacting species

like hosts and their parasitoids. For example, no studies

have examined the effects of habitat fragmentation per se on

host–parasitoid interaction persistence at local and

regional scales (see Fahrig 2003). Cronin & Haynes

(2004, unpublished data) is the only study to our

knowledge that created replicate landscapes in the field

with the intention of determining the contribution of

matrix composition to interaction persistence. In this case,

ensembles of host–plant patches embedded in a grass

matrix were much more extinction prone, both locally and

regionally, than identical arrangements of patches in a

bare-ground matrix. Experimental studies such as these

are essential if we are to fathom the underlying mechanisms

influencing predator–prey population dynamics. Although

studies such as this are logistically impractical for widely

dispersing species, quasi-experimental studies in agroeco-

systems remain viable options.

Third, modelling efforts with regard to predator–prey

interactions mostly deal in the abstract—little attention is

paid to the actual details of movement, the landscape is

typically structured as a lattice, and the matrix is neutral in

its effects on movement. Clearly, empirical research does

not support these modelling simplifications. If the goal is

to make qualitative or short-term predictions for threa-

tened or endangered species in which we have limited

data, then these simplified models may be our best and

only option (Hanski 2002). However, as our own data

suggest (Cronin & Haynes 2004), regional persistence

may be strongly landscape-context dependent. In lieu of

these abstractions, we advocate a more mechanistic, but

generalizable modelling approach that includes landscape

realism. A significant advantage of this modelling

approach is that theoretical landscapes can be made to
Proc. R. Soc. B (2005)
resemble natural landscapes and hypotheses can be tested

for real scenarios.

Finally, research in these previous three areas can pay

substantial dividends when applied to agricultural

systems, particularly with regard to conservation biologi-

cal control (Snyder et al. in press). More studies are

needed that address the mechanisms underlying whether,

and under what circumstances, adjacent matrix habitat

functions as a source or sink for natural enemies. Also, we

have barely scratched the surface in exploring how pest

and enemy abundance, diversity and interactions are

influenced by landscape context across multiple spatial

scales, yet the limited evidence to date suggests that

parasitism and predation within a field can be strongly

related to habitat complexity at scales extending well

beyond the crop margins (e.g. Kruess 2003; Thies et al.

2003, 2005). The predictive ability of pest–enemy models

and the success of management strategies can only be

improved by exploring pest–enemy interactions at the

landscape level.

The future of research on predator–prey spatial ecology

is very bright. Spurred on by recent empirical data,

worldwide availability of high-resolution satellite imagery,

computational power of desktop computers and emerging

spatially realistic landscape models, we foresee a continued

growth of research in this area. We also anticipate that

research with host–parasitoid systems will lead the way.
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