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DNA barcodes can provide rapid species identification and aid species inventories in taxonomically

unstudied groups. However, the approach may fail in recently diverged groups with complex gene

histories, such as those typically found on oceanic islands. We produced a DNA-based inventory of

taxonomically little known diving beetles (genus Copelatus) in the Fiji archipelago, where they are a

dominant component of the aquatic invertebrate fauna. Sampling from 25 localities on five islands and

analysis of sequences from one nuclear (328 bp histone 3) and three mitochondrial (492 bp rrnL, 786 bp

cox1, 333 bp cob) gene regions revealed high haplotype diversity, mainly originated since the Pleistocene,

and subdivided into three major phylogenetic lineages and 22 statistical parsimony networks. A traditional

taxonomic study delineated 25 morphologically defined species that were largely incongruent with the

DNA-based groups. Haplotype diversity and their spatial arrangement demonstrated a continuum of

relatedness in Fijian Copelatus, with evidence for introgression at various hierarchical levels. The study

illustrates the difficulties for formal classification in evolutionarily complex lineages, and the potentially

misleading conclusions obtained from either DNA barcodes or morphological traits alone. However, the

sequence profile of Fijian Copelatus provides an evolutionary framework for the group and a DNA-based

reference system for the integration of ecological and other biodiversity data, independent of the Linnaean

naming system.
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1. INTRODUCTION

The limited knowledge of species diversity in many areas

of the globe, coupled with anthropogenic disturbance of

ecosystems, has prompted calls for an improved system of

inventorying biodiversity and disseminating taxonomic

information (Wilson 2003; Blaxter 2004; Janzen 2004;

Seberg 2004). With increasing automation of sample

analysis, biological inventories can now be conducted

using ‘DNA barcodes’ from segments of mitochondrial or

nuclear loci (Hebert et al. 2003a; Proudlove & Wood

2003; Tautz et al. 2003; Monaghan et al. 2005). These

inventories can be used to estimate genetic variation and

species diversity even where no prior taxonomic analysis is

available. Barcodes as currently applied are species

identifiers, assuming that DNA variation within species

is much lower (10! or less) than between species (Hebert

et al. 2004). However, the utility of this approach remains

to be tested more broadly, in particular in biologically

complex situations where lineages are composed of closely

related species or are affected by a complicated evolution-

ary history of gene trees (Moritz & Cicero 2004; Will &

Rubinoff 2004).
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Islands are of particular conservation and scientific

interest in the global inventory of biodiversity. They often

harbour unique, recently diversified faunas and floras that

can present a particular challenge to taxonomic study

(Mayr 1963; Gillespie & Roderick 2002; Shaw 2002;

Ennos et al. 2005). The islands of the South Pacific are

known to harbour large radiations of invertebrates with

sometimes complex relationships to mainland taxa and

other islands (Zink 1991; Clarke et al. 1996; Keast &

Miller 1997; Paulian 1998; Joy & Conn 2001). Many of

these groups remain poorly investigated, while pressure on

their natural habitats steadily increases (Dirzo & Raven

2003).

Here, we generated a sequence-based profile of species

diversity for a virtually unknown, but taxonomically

complex group of organisms in the islands of Fiji, one of

the larger archipelagos in the South Pacific. A recent

survey of Fiji’s aquatic ecosystems (M. Balke & G.

Wewalka 2003, unpublished work) revealed an abundance

of predaceous diving beetles (Dytiscidae) in the genus

Copelatus. Based on their morphological differences, they

represent numerous closely related species. To date, only

five species of Copelatus have been described from Fiji, of

which only C. fidschiensis (Zimmermann 1928) can be

recognized with some confidence, due to ambiguous

original descriptions and unavailability of the type

material. We surveyed communities of Copelatus through-

out the archipelago in order to assess DNA variation of the

entire assemblage, followed by examination of the

morphological characters traditionally used to delineate
q 2005 The Royal Society
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species in Copelatus. The latter is time consuming and

requires specific knowledge of the type of character

differences associated with species level separation. Yet

the complexities of genotypic and morphological diversity

in Copelatus illustrated the difficulty of establishing a

Linnaean taxonomy for this group, even if standard

taxonomic practice was able to recognize discrete species

and to delineate their boundaries. It is possible that in

many rapidly radiating lineages neither classical morpho-

logical nor DNA barcoding approaches would provide a

meaningful system for classification. However, the DNA

sequence variation in Copelatus itself, and the evolutionary

framework derived from these sequences, represent a

synthesis of the available data (a ‘DNA taxonomy’) and

provide a basis for comparative analysis and biodiversity

studies.
2. MATERIAL AND METHODS
(a) Copelatus sampling and sequencing

Fiji comprises 332 islands with a total area of ca 18 000 km2

(see inset, figure 1). The archipelago is dominated by two

main islands, Viti Levu (10 400 km2) and Vanua Levu

(5587 km2). Geological ages range from 25.0 Myr ago for

Viti Levu to 3.0–0.7 Myr ago for Taveuni (Nunn 1998; P. D.

Nunn 2004, personal communication). Specimens were

collected from 25 localities on five islands of the Fijian

archipelago (figure 1) in November and December 2003. One

or more specimens were chosen from each locality in order to

include as many morphologically distinguishable individuals

per site as possible. Specimens selected were mostly males, as

their genital structures are an important source of infor-

mation in traditional taxonomic studies. Non-destructive

DNA extraction, PCR and sequencing of mitochondrial rrnL

(16S rRNA), cox1 (cytochrome oxidase 1), cob (cytochrome

oxidase b) regions and the nuclear histone 3 gene were

conducted using published methods (Balke et al. 2004).

Sequences were aligned by eye to account for minimal length

variation in the rrnL. New sequences have been submitted to

EMBL under accession numbers AJ 848802–AJ 849303,

while most sequences for 18 out-group species of Copelatus

from Australia, New Guinea, SE Asia and the Comoro

Islands were taken from Balke et al. (2004).

Following DNA extraction, beetles were dissected, dry-

mounted and examined for morphological differences under

a stereomicroscope. Morphological characters used to

distinguish morphospecies were those traditionally used in

taxonomic studies of the group, such as body size and form,

colouration, surface sculpture and male genital structure. In

particular, the use of male genital morphology for distinguish-

ing otherwise similar (cryptic) species was pioneered by Sharp

(1882) and penis structure continues to be a primary means

of distinguishing between similar Dytiscidae species (Biström

1997; Miller 2002; Fery 2003). Individuals were sorted into

morphological types independently by author M. Balke and

by G. Wewalka (Vienna). Both analyses resulted in the same

conclusions about morphospecies designation. Morphospe-

cies 1 (see §3) likely refers to C. fidschiensis.

(b) Phylogenetic analysis

Parsimony analysis was conducted in PAUP� 4.0b10

(Swofford 2002) under equal weight of all characters and

using the combined matrix of four gene regions. There was

minimal length variation in rrnL (481–485 bp) and we
Proc. R. Soc. B (2006)
examined the effect of gaps on parsimony searches by

comparing trees generated using gaps as a fifth character

state, as missing data and recoded as binary characters using

GAPCODER (Young & Healy 2003). For each search, we

conducted 1000 random addition replicates, with TBR

branch swapping and keeping %100 trees per replicate.

There was no significant difference in tree likelihood for the

three gap settings using a Shimodaira–Hasegawa (SH) test

with 1000 Rell bootstrap approximations (Shimodaira &

Hasegawa 1999) in PAUP� (all pO0.45) and further analysis

was made using gaps as a fifth character. All shortest trees

were compared, in order to identify the topology of highest

likelihood under a GTRCICG model (selected in MOD-

ELTEST 3.06; Posada & Crandall 1998) using the SH test. This

optimal tree was further subjected to a 24 h maximum

likelihood search in PAUP�, resulting in a small improvement

of likelihood scores. Removal of H3 data in order to calculate

mitochondrial DNA (mtDNA) branch lengths and estimate

divergence times (below) had no effect on topology.

Two methods for grouping of sequences were employed.

Multi-dimensional scaling was implemented in STATISTICA

6.0, using uncorrected p-distances calculated with MEGA v.

2.1 (Kumar et al. 2001). Gaps and missing data were

excluded from each pairwise calculation. Haplotype networks

based on statistical parsimony (Templeton et al. 1992) were

generated using TCS 1.13 (Clement et al. 2000) using only the

mtDNA partitions. Statistical networks subdivide the vari-

ation based on the level of homoplasy within the data

themselves, i.e. distinguish between long (homoplastic) and

short (non-homoplastic) branches. This provides a relative

measure of divergence within a given dataset, rather than a

pre-determined phenetic cut-off value. Uncorrected

p-distances were calculated within and among networks

using MEGA as above.

(c) Estimation of divergence times

The evolutionary time frame of the Fijian radiation was

estimated with likelihood branch lengths, based on the

mtDNA data under the selected GTRCICG model.

Absolute ages of nodes were estimated by fitting branch

lengths using penalized likelihood (PL) with optimal

smoothing estimated by cross-validation with the r8s program

(Sanderson 2003). We tested four smoothing values (1, 10,

100 and 1000). Sampling error due to stochastic rate changes

may affect branch length estimates and hence age estimates.

This type of error was assessed by estimating confidence

intervals for node ages based on 100 bootstrap replicates of

the primary sequence data and calculating branch length on

each of the bootstrap data sets in PAUP�. Error assessment

was conducted using the original tree topology and par-

ameters estimated in the likelihood search (Baldwin &

Sanderson 1998). Finally, branch lengths were made

ultrametric using PL and the optimal smoothing value, and

age confidences were estimated using the profile command in

r8s.
3. RESULTS
(a) DNA diversity, phylogeny and geographic

distribution

Sequencing of three mtDNA gene regions resulted in 112

different haplotypes in Fijian individuals (nZ118), with

81 haplotypes for cob, 80 for cox1, 29 for rrnL. The

parsimony search on the full dataset of Fijian and non-
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Figure 1. Maximum likelihood tree (see §2) with branch lengths fitted to a molecular clock by penalized likelihood, resulting in
the collapse of several nodes. Terminal labels are indicative of islands (Vi, Viti Levu; Va, Vanua Levu; K, Kadavu; Ta, Taveuni; La,
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Fijian Copelatus (with Aglymbus as an out-group; 1939

characters, 604 parsimony-informative) resulted in 283

shortest trees of length 2894 (homoplasy indexZ0.637;

retention indexZ0.739). The strict consensus tree

showed Fijian Copelatus were monophyletic and sister to

a clade of Australian and New Guinean taxa. The optimal

maximum likelihood tree derived from the shortest

parsimony trees (see §2) showed identical topology.

Many individuals were heterozygous or produced ambig-

uous reads at one or more H3 bases. These were scored as

N for the analysis. As a result, H3 contributed only two

parsimony-informative characters (for the Fiji in-group

samples) and exclusion of the data had no effect on tree

topology. We identified three major Fijian lineages,

hereafter referred to as clades I, II and III (figure 1).

Clade III contained 109 individuals and included

exemplars from all five islands sampled. We identified 26

tip clades corresponding to well-supported nodes in

parsimony analyses and characterized by one or more

similar individuals (short branches) separated from others

by comparatively longer branches. Each tip clade was

composed of individuals from only one island, but thirteen

(i.e. 50%) included individuals from more than one

locality on a given island. The small islands Kadavu and

Lakeba were each represented by a single lineage, while

Taveuni harboured five distinct lineages from throughout

clade III.
(b) Divergence times

Divergence times were estimated using both geological

data and sequence divergence. Nodal age calibrations

were first obtained by setting the Kadavu–Viti Levu node

to 2 Myr ago, based on the geological evidence suggesting

Kadavu’s age is between 1.5 and 2.5 Myr ago (node A,

figure 1). Using this calibration, and based on 100

pseudoreplicates used to estimate node confidence, the

basal node of the Fijian Copelatus lineage was inferred to

be 9.9 (s.d. 1.8) Myr ago and the base of the most diverse

lineage (clade III) was 3.7 (s.d. 0.5) Myr ago. Age

calibration using sequence divergence was obtained by

applying the widely accepted insect mtDNA molecular

clock of 2.3% MyK1 (Brower 1994). Mean sequence

divergence between individuals from Kadavu and Viti

Levu was 2.4% (s.d. 0.3%, uncorrected p-distance),

corresponding to 1.04 Myr ago (instead of 2 Myr ago

used above). This was slightly more recent than the

inferred age of Kadavu (P. D. Nunn 2004, personal
Proc. R. Soc. B (2006)
communication), and extrapolates to a more recent arrival

of Copelatus in Fiji (5.0 Myr ago s.d. 0.8) and diversifica-

tion of clade III (1.9 Myr ago).
(c) Group delineation based on DNA sequences

Grouping procedures based on multi-dimensional scaling

produced three major clusters (figure 2a), corresponding

to clades I, II and III. Mean pairwise divergence among

the three major clades was 8.9% (I and II), 9.0% (I and

III) and 7.8% (II and III) for cox1 and slightly greater for

cob (data not presented). Within clade III, mean cox1

divergence was 3.2% and ranged from 0 to 4.5%; however,

a separate analysis failed to show any discrete clusters

within this group (figure 2b). Statistical parsimony analysis

of mtDNA produced 22 networks separated by a

minimum of 17 steps (N1–N22 in figure 1). These

corresponded to well-supported monophyletic groups in

all but a single case (N16, figure 1). Mean genetic

divergence within the 22 mtDNA networks was always

less than 1% (table 1). Among networks, divergence

ranged from 1.3 to 5.6% (table 1).
(d) Groups based on morphology

Male beetles were assigned to 25 distinct morphological

groups which, based on the degree of observed differences,

would be differentiated as species in current taxonomic

practice for Dytiscidae (e.g. Miller 2002; Fery 2003).

Three females could not be classified. Nine of the

morpho-groups occurred in multiple localities, and two

(groups 14 and 20) were found on multiple islands. Each

locality contained representatives of one to five sympatric

morphological groups, and this number was remarkably

similar to the number of parsimony networks present on

each island. However, the extent of morphological groups

differed from those defined by DNA. Mapped onto the

preferred tree, eight morphological groups were para-

phyletic (groups 1, 2, 10, 12, 14, 20, 23, 24; figure 1). The

morphological groupings were generally more finely

subdivided than the parsimony networks, and any one

network included between one and eight morphological

groups. Only four of the morphologically defined species

were completely congruent with the parsimony networks.

Three of these were groups from the small islands of

Kadavu (N6), Lakeba (N18) and Taveuni (N19). The

fourth was represented by a single individual from Viti

Levu (N10) not linked to any other in the statistical

parsimony analysis. Most incongruence involved closely



Table 1. Mean, minimum and maximum pairwise genetic divergence (%) between any two sequences within and among the 22
mtDNA haplotype networks (see figure 1). (Divergence was calculated as uncorrected p-distance using MEGA v. 2.1 with gaps
and missing data treated with pairwise deletion. Minimum values of 0.0 indicate identical haplotypes were present.)

within networks among networks

gene mean (s.d.) min max mean (s.d.) min max

rrnL 0.2 (0.2) 0.0 1.0 1.3 (0.7) 0.0 3.4
cox1 0.5 (0.4) 0.0 1.3 4.7 (2.2) 1.4 10.0
cob 0.9 (0.7) 0.0 2.6 5.6 (2.3) 1.8 11.7
combined 0.4 (0.3) 0.0 0.9 3.4 (1.4) 1.0 7.3
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related networks, and occurred within, rather than among,

islands. Only in two cases were individuals of the same

morphological group found in widely divergent networks

(morphological groups 2 and 14 with mtDNA grouped in

clade I and II).
4. DISCUSSION
The Fijian Copelatus exemplify a common situation where

the lack of basic information about species identity and

distribution hampers our understanding of biological

diversity and consequently any efforts for conservation

(Abell 2002). We show that DNA-based inventories can

provide a rapid assessment for taxonomic classification at

the species level and provide an evolutionary framework

for the group. The Fijian Copelatus are monophyletic and

stem from a single colonization out of the Australian

region within the last 10 Myr ago. Lineage diversification

occurred predominantly during the recent Pleistocene,

particularly in the highly diverse clade III. We encountered

a great diversity of haplotypes whose spatial distribution

showed complex overlapping ranges. The analysis of

mtDNA haplotypes identified clearly separated groups

recognizable in the nested clade analysis, but the genetic

distance among groups was variable and very low in many

instances. Most of these networks included multiple

species identified in the morphological analysis, but their

extent was frequently incongruent with the DNA-based

groupings.

The findings raise questions about the application of

DNA barcodes and Linnaean names in ‘taxonomically

complex groups’ (Ennos et al. 2005), such as rapidly

diversifying island radiations. Least problematic were

populations from the small islands of Kadavu and Lakeba,

where unique sets of genotypes were narrowly restricted

geographically and coincided with the morphological

groups. These are distinct species by the criteria of

diagnosability (Cracraft 1983) or exclusivity (Wiens &

Penkrot 2002), confirming that recognizable species did

originate during the evolutionary time frame under

investigation here. However, assemblages from all other

localities were highly polyphyletic at the scale of islands

and at the scale of sampling localities within islands.

Twenty of the 22 networks had fully or partially

overlapping distributions with members of up to four

different networks found at a particular locality. This

suggests either that populations on the large islands

constitute a single, if highly diverse species, or that

multiple sympatric (syntopic) species with various degrees

of genetic differentiation coexist in most localities.

The recognition of different morphological groups,

established on criteria of phenotypic variation without
Proc. R. Soc. B (2006)
consideration of their geographic distribution, supports

the multiple species scenario. The spatial arrangement of

the 25 morphological groups was complex, consisting of

sympatric groups that were widespread within an island,

but rarely found on multiple islands, confirming wide

movement on islands and more restricted movement

among islands in agreement with the DNA data. The

incongruence of genetic and morphological boundaries

suggests a variety of processes are involved in generating

the complex patterns. On the one hand, introgression and

persistence of ancient polymorphisms is common in island

radiations (Gillespie & Roderick 2002; Shaw 2002).

Alternatively, morphological convergence of distant gen-

etic groups (Gillespie 2004) also may occur through

selection (Losos 1992) or a combination of selection and

hybridization (Grant et al. 2004). Further research on

these few focal groups would help us to distinguish from

among these hypotheses.

The challenge for establishing a formal taxonomic

system, therefore, is to capture the complex pattern of

variation in DNA, and to reconcile the discrepancies

between genetics and morphology. DNA barcoding

studies generally find clean separation of species whose

haplotype divergences was at least ten times greater than

intraspecific distances (Hebert et al. 2003b, 2004), but this

was not the case here. Multi-dimensional scaling to

identify graphically the discontinuities in sequence space

(Hebert et al. 2003a) revealed only the three deeply

divergent lineages of the phylogenetic tree, an over-

simplification of genotype distribution and diversity.

Statistical parsimony analysis provided another means of

grouping the sequence variation without the need for

defining cohesive populations a priori (Templeton 2001).

Previous studies have broadly equated haplotype networks

with distinct species in cases where a taxonomic

classification and information on geographical isolation

had been established independently (Wiens & Penkrot

2002; Morando et al. 2003; Wilder & Hollocher 2003).

The finding that the small islands harboured separated

networks congruent with morphology is significant in this

regard, as species status is supported by multiple sources

of evidence (DeSalle et al. 2005; Page et al. 2005).

However, in all other localities the extent of networks

and morphological groups did not coincide. Traditional

morphological analysis would have accepted the existence

of well-defined groups, focusing on traits perhaps under

(sexual) selection, but naming them would have formal-

ized at best a partial reality and limited the evolutionary

understanding of the lineage. The sequencing approach

provided an extensive summary of the evolutionary history

and present-day distribution of Fijian Copelatus,
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demonstrating the complexity of groupings that is also

confirmed from the incongruences with the morphological

data. However, assigning Linnean names to the DNA-

based groups (such as the networks of the statistical

parsimony analysis) would be equally inappropriate

because of their unclear species status and apparent

propensity for gene exchange.

One purpose of a taxonomic system is to provide a

point of reference for collecting ‘collateral’ information

( Janzen 2004) that can be accumulated under a particular

name and made accessible to comparative biology.

mtDNA surveys of the kind shown here can assume a

similar function, whereby the DNA sequences themselves

constitute a system for grouping and communication.

This ‘DNA taxonomy’, i.e. the evolutionary framework

derived from the sequence information and an analysis of

grouping, is the reference point for accumulating ecologi-

cal, geographical, morphological and other data. This

approach can be used where Linnean species names are

not (yet) available, or, as in the Fijian Copelatus, where

meaningful natural groupings cannot easily be defined

from the patterns of variation. DNA taxonomy relies on

algorithmic grouping procedures, such as statistical

parsimony analysis (Templeton et al. 1992), which cluster

closely related sequences and separate them from others.

These clusters may be labelled for easy recognition, and

can be assessed in a phylogenetic context if the sequences

are sufficiently informative (figure 1). The DNA taxon-

omy of a lineage is a reference system, which is specific to

particular (sets of ) DNA markers. This provides a new

approach to the exploration of taxonomic questions

whereby a DNA-based profile is established for entire

assemblages without prior knowledge of species member-

ship. The procedure removes the need for specialist

morphological analysis (which can be added at a later

stage where desired; Tautz et al. 2003). Rather than

signalling an end to traditional taxonomy (Seberg et al.

2003), DNA profiling of lineages and natural commu-

nities could make the great task of global species

classification achievable where standard taxonomic

methods are inadequate or simply too time consuming.
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