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We study the interplay of ecological and evolutionary dynamics in communities composed of populations

with contrasting time-scales. In such communities, genetic variation of individual traits can cause

population transitions between stationary and cyclic ecological regimes, hence abrupt variations in fitness.

Such abrupt variations raise ridges in the adaptive landscape, where the populations are poised between

equilibrium and cyclic coexistence and along which evolutionary trajectories can remain sliding for long

times or halt at special points called evolutionary pseudo-equilibria. These novel phenomena should be

generic to all systems in which ecological interactions cause fitness to vary discontinuously. They are

demonstrated by the analysis of a predator–prey community, with one adaptive trait for each population.

The eco-evolutionary dynamics of the system show a number of other distinctive features, including

evolutionary extinction and two forms of Red Queen dynamics. One of them is characterized by

intermittent bouts of cyclic oscillations of the two populations.
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1. INTRODUCTION

Understanding the determinants of population dynamics

is an important theme throughout biology, from human

health to conservation. In studying population dynamics,

much research has addressed how ecological interactions

affect population stability yet ignoring the genetic diversity

and ensuing evolvability of populations. Ford (1949) was

perhaps the first to document that evolutionary change

and population dynamics can occur interdependently;

Pimentel (1968), Stenseth et al. (1984) and Metz et al.

(1992), subsequently, conceptualized the notion of the

ecological and evolutionary dynamics of a population

being entangled in a feedback loop. The dynamical

interplay of ecology and evolution prompts three general

questions (May & Anderson 1983; Ferrière & Gatto 1993,

1995; Abrams 2000): (i) how does evolution of adaptive

traits affect the ecological stability of a community? (ii)

Under which conditions are ecological interactions

expected to beget fluctuations in a population’s genetic

state? (iii) How do eco-evolutionary dynamics respond to

environmental change?

Although, a significant number of studies have dealt

with some aspects of these three questions, there has been

so far no attempt to address them simultaneously in a
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unified framework. Moreover, most models of the

adaptive evolution of traits related to inter- and/or intra-

specific interactions have assumed stable ecological

equilibria for all trait values in the relevant trait space.

This study aims at developing a unified analysis of eco-

evolutionary dynamics in communities containing ‘slow’

and ‘fast’ populations, which allows us to relax the

ecological equilibrium assumption.

Slow–fast systems are composed of populations whose

ecological fluctuations develop on contrasting time-scales.

Predator–prey communities offer many instances of

contrasting ecological time-scales. Prey is often smaller

than predator, hence faster in growing and reproducing. In

the plankton food chain, the turnover of algae is faster

than that of most zooplankton species which, in turn, grow

faster than fish (Scheffer 1998). The Boreal forest is also

rich in examples: plants (forbs and grasses) have fast

dynamics in comparison with most herbivores (hares,

squirrels and small rodents) which reproduce faster than

their predators (lynx, coyote and red fox) (Stenseth et al.

1997). The opposite case, namely that of slow prey and

fast predator, is also frequently observed in nature—

spruce budworm (Ludwig et al. 1978) and larch budmoth

(Baltensweiler 1971) provide typical examples among

plant–insect interactions. Hereafter, we investigate theor-

etically the coevolution of a slow predator and fast prey.

This analysis will serve to demonstrate the general features

of eco-evolutionary dynamics of slow–fast populations

that we first outline qualitatively in §2.
q 2006 The Royal Society
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Figure 1. Evolution of the traits in the neighbourhood of the
boundary separating stationary coexistence (region S) from
cyclic coexistence (region C). (a) Evolutionary sliding toward
T (solid boundary) and crossing (dotted boundary). (b)
Evolutionary sliding toward the pseudo-equilibrium P.

984 F. Dercole and others Coevolution of slow–fast populations
2. COEVOLUTIONARY DYNAMICS OF SLOW–FAST
POPULATIONS: GENERAL RESULTS
Eco-evolutionary processes, generally, assume two main

ingredients: genetically based variation of individual traits

generated through reproduction, and selection on this

variation resulting from ecological interactions. This is a

complex process because individual traits under consider-

ation may affect both the birth process and the ecological

interactions. The assumption of rare mutations of small

effects allows one to approximate the dynamics of

population densities and trait distributions with determi-

nistic models.

In the limit of rare mutations of small effects, the rate of

change of an adaptive trait over evolutionary time is

proportional to the resident population birth output per

unit time (proportional to the probability that a mutation

occurs within a small time interval), and to the derivative,

with respect to mutant’s trait, of the per-capita rate of

increase of a mutant population per generation (when

positive, proportional to the probability of mutant non-

extinction; Metz et al. 1996). In the general situation of a

trait z, resident population density n at equilibrium, per-

capita birth rate b (i.e. 1/b is the expected time between

birth), mutant’s trait z 0 and instantaneous per-capita rate

of increase S, this translates into the so-called canonical

equation of adaptive dynamics (Dieckmann & Law 1996):

_zZ kðbnÞ
s

b

� �
; ð2:1Þ

where sZvS=vz0jz0Zz is called selection derivative, and k is

a parameter proportional to the probability that an

offspring is a mutant and to the variance of mutation.

Since, the resident population density is at equilibrium,

this equation simplifies as both b cancel out.

Here, we need an extension of equation (2.1) to the

case of more general resident population attractors. The

rigorous derivation of such an extension is a hard

mathematical exercise that lies beyond the scope of this

paper (see Dieckmann & Law (1996), for a heuristic

discussion of the problem). However, as explained below,

averaging the mutation term (bn), and selection term

(s/b), over the attractor is appropriate in the case

considered in this paper. In formulas, this results in

_zZ khbni
s

b

� �
; ð2:2Þ

where brackets indicate temporal averaging over the

resident population attractor.

At this point, the analysis of eco-evolutionary dynamics

through equation (2.2) would remain problematic

because, in general, the resident population attractor is

not known analytically in closed form. Slow–fast systems

represent a significant exception to this predicament.

Indeed, any slow–fast population attractor can be

approximated with the so-called singular attractor corre-

sponding to completely separated time-scales (Rinaldi &

Scheffer 2000), and this permits explicit calculation of the

averages in equation (2.2). The case of slow-predator–

fast-prey limit cycles is particularly favourable because the

cycle can be easily identified. Moreover, such cycles are

characterized by long phases of slow motion of both

populations alternating with fast phases of significant prey

variation. Thus, slow–fast cycles are very long, so that

mutant populations experience little variation in the
Proc. R. Soc. B (2006)
resident state during their initial phase of growth or

decline (with the only exception of particular mutations

occurring during the short episodes of fast variation of the

prey). This supports the use of equation (2.2), which

indeed takes the expectation of (bn) and (s/b) over all

possible resident states at the time of mutant arising.

A key evolutionary consequence of slow–fast ecological

interactions is that the selection pressure becomes

discontinuous across the trait space when stationary and

cyclic coexistence are possible for different combinations

of the traits. This is so because the transition from an

equilibrium to a singular cycle is discontinuous (Rinaldi &

Scheffer 2000). General implications for eco-evolutionary

dynamics can be outlined by focusing on two populations,

e.g. a prey and a predator, coevolving in a two-

dimensional trait space. Predator–prey interactions have

long been known for their potential to generate a whole

spectrum of ecological dynamics in response to variation

in individual trait values, from extinction to stable

equilibria and cycles. Thus, the trait space splits in three

regions: extinction of at least one population in E,

stationary coexistence in S, and cyclic coexistence in C.

The selection pressure driving the dynamics of the two

traits is continuous inside region S and region C, but it is

discontinuous at the boundary separating S and C. Two

different evolutionary gradients are associated with each

point of the boundary: one is the vector tangent to the

evolutionary trajectory driven by the selection pressure

operating in region S and the other is the vector tangent to

the evolutionary trajectory driven by the selection pressure

operating in region C (see figure 1 for an example). If the

transversal components of these two vectors with respect

to the discontinuity boundary have the same sign, as in

figure 1a (dotted part of the discontinuity boundary), the

trajectory crosses the boundary and the populations

switch from cyclic to stationary (or vice versa). On the

contrary, if the transversal components of the two vectors
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are of opposite sign, i.e. if the two evolutionary gradients

are ‘pushing’ in opposite directions (solid part of the

discontinuity boundary in figure 1), the traits are forced to

remain on the boundary and ‘slide’ on it. In other words,

the boundary separating the two possible ecological

regimes can raise an attractive ridge in the adaptive

landscape, along which evolutionary trajectories from

various ancestral conditions are canalized. The evolution

on the ridge can be temporary, as in figure 1a, where the

sliding motion terminates at point T, or permanent, when

the sliding motion halts at a so-called pseudo-equilibrium,

namely at a point P on the boundary (see figure 1b), where

the two evolutionary gradients align. A pseudo-equili-

brium has all the properties of an equilibrium (in

particular, it can be an attractor, a saddle or a repellor)

even if the selection pressures do not vanish at that point.

The rest of the paper focuses on a specific predator–

prey model to demonstrate patterns of evolutionary sliding

and pseudo-equilibria, and to recast them among other

distinctive features of predator–prey coevolution. Such

features include enhancement of Red Queen dynamics

through the increase of genetic variation of the prey,

generic occurrence of evolutionary extinction in the

predator, and coevolution acting against ecological

destabilization resulting from environmental enrichment.
3. A MODEL OF PREDATOR–PREY
ECO-EVOLUTIONARY DYNAMICS
Our presentation of a specific model of slow–fast

populations and their eco-evolutionary dynamics focuses

on the main features of the model, while details on

mathematical derivations and approximations are rele-

gated into the electronic supplementary material.

The predator–prey model we consider is the so-called

Rosenzweig–MacArthur model (Rosenzweig & MacArthur

1963) composed of a logistic prey and a Holling type II

predator

_xðtÞZ xðtÞ r 1K
xðtÞ

K

� �
K

ayðtÞ

hCxðtÞ

� �
; ð3:1Þ

_yðtÞZ yðtÞ bCe
axðtÞ

hCxðtÞ
Kd

� �
; ð3:2Þ

where x(t) and y(t) are prey and predator population

densities at time t. In the absence of predator, the prey

population grows logistically (with intrinsic growth rate r

and carrying capacity K ), while in the absence of prey the

predator population decays exponentially (the intrinsic birth

rate b is smaller than the death rate d but the maximum birth

rate (bCea) is greater than d ). The maximum predation rate

is a, the functional response half-saturation constant is h,

and the extra natality resulting from predation is pro-

portional to the predation rate through an efficiency

coefficient e. The presence of a saturating functional

response makes stationary and cyclic coexistence possible

for different parameter settings (§A1 in electronic sup-

plementary material). The limit cycle is not known

analytically, yet if prey grow at a much faster rate than

predators, it can be approximated by the singular limit cycle

(derived algebraically in §A1 in electronic supplementary

material).

Let u and v denote the adaptive traits for the prey and

predator, respectively. Assume that the prey has density- and
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trait-independent birth rate, while its death rate has a

density-dependent component controlled by u. Thus, in

equation (3.1) r is constant, while K depends on u. We

further assume thatK peaks at u0, for which the prey is most

effective. Similarly, the predator intrinsic birth rate b is

constant, while its death rate d depends upon v and is

minimum at v0, at which predators are best adapted to their

environment. The predation rate is a function of both traits,

and predator (prey) benefit (lose) most from the interaction

when traits are balanced, i.e. when u and v are in a suitable

relationship, which defines a ‘bidirectional axis of prey

vulnerability’ (Abrams 2000). This mechanism is present if,

for example, the searching effectiveness of the predator

depends upon both traits but with a certain degree of

plasticity, so that the same effectiveness can be achieved for a

continuum of pairs (u, v). Since, the half-saturation

constant h is inversely related to searching effectiveness,

h(u, v) must be minimum when u and v are balanced, i.e.

uZv provided both traits are measured on an appropriate

scale. These are standard assumptions for predator–prey

community modelling (Abrams 2000), which have the

advantage of involving the minimum possible number of

demographic parameters. In our analyses we use (§A3 in

electronic supplementary material):

KðuÞZK0

2

u

u0

� �2

C
u0

u

� �2
;

dðvÞZ d0

v

v0

� �2

C
v0

v

� �2

2
;

hðu; vÞZ h0 Ch1ðuKvÞ2:

ð3:3Þ

The trait space (u, v) can be partitioned into the three

regions E, S and C previously described (§A4 in electronic

supplementary material). At the boundary between S and C
all quantities associated with the asymptotic regime of the

slow–fast system are discontinuous.

In conclusion, taking into account that the prey birth

rate is density-independent, the canonical equation (2.2)

can be specified for the two populations as follows:

_uZ kuhxi hsui; ð3:4Þ

_vZ kv bC
eax

hCx

� �
y

D E sv

bC eax
hCx

� �
; ð3:5Þ

where superscripts u and v are used to indicate the

corresponding species. Of course, the selection derivatives

su and sv must be explicitly computed (§A5 in electronic

supplementary material) and the time averages must be

performed in order to transform equations (3.4) and (3.5)

into standard ordinary differential equations. Moreover,

since the time averages are different in the coexistence

regions S and C of trait space, this operation must be

performed twice (§§A6 and A7 in electronic supplemen-

tary material).
4. RESULTS AND DISCUSSION
State portraits for the eco-evolutionary model (3.4)

and (3.5) can be constructed by numerical simulations.

A typical example is shown in figure 2. It contains a small

region (dark), where the predator undergoes evolutionary
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Figure 2. A state portrait of the eco-evolutionary model (3.4) and (3.5). There are three equilibria (a stable node (filled dot) and
an unstable focus (empty dot) in region S and a saddle in region C) and one limit cycle (partly in region S and partly in region C).
There are two attractors, the node and the cycle, and their basins of attraction are separated by the stable manifold of the saddle.
There are three sliding segments, one stable (T1T2, stretched and magnified in the lower right panel) and two unstable (T3T4 and
T5T6). Predator evolutionary extinction occurs in the dark region. Parameter values: kuZ0.1, kvZ1, rZ1, K0Z1, h0Z0.02,
h1Z0.02, d0Z0.01, bZ0.001, eZ0.1, aZ5, u0Z1, v0Z3.
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extinction (Matsuda & Abrams 1994a; Ferrière 2000;

Dieckmann & Ferrière 2004), and two evolutionary

attractors: an equilibrium with low trait values and a

cycle characterized by high trait values. The two basins of

attraction are separated by the stable manifold of the

saddle lying in region C. If the ancestral conditions are

on the left of this manifold, the traits converge to

the equilibrium so that, after evolutionary transients, the

populations coexist at ecological equilibrium, since the

evolutionary equilibrium is in region S. However, for some

ancestral conditions, one piece of the evolutionary orbit

lies in region C: this means that during the corresponding

period of time the populations oscillate along an ecological

cycle that slowly drifts on the evolutionary time-scale. At

evolutionary equilibrium prey evolutionary branching

(Geritz et al. 1997, 1998; Dercole et al. 2003) may

occur, but will not be investigated here.

Population dynamics associated with evolutionary

trajectories in the other basin of attraction are radically

different. Indeed, long periods of time characterized by

slowly varying populations recurrently alternate with long

periods of time during which populations fluctuate on an

ecological cycle, as a consequence of the attracting

evolutionary cycle being partly in regions S and C.

Figure 2 highlights the possibility of coevolution along

adaptive ridges, which are segments of the boundary

separating cyclic from stationary coexistence. Sliding is a

novel type of evolutionary dynamics with important

ecological implications: when traits are sliding along an

adaptive ridge, prey and predator are poised between

stationary and cyclic coexistence, i.e. coevolution drives

the populations toward and maintain them at the onset of

their most complex dynamic behaviour. How sensitive

these phenomena are to parameters is investigated by

means of a thorough bifurcation analysis (§A8 in

electronic supplementary material). Synthesizing the
Proc. R. Soc. B (2006)
results yields a series of eight statements (the first three

are general, while the others are specific of predator–prey

systems) that we list hereafter and illustrate with selected

state portraits (figure 3).

(i) Evolutionary sliding and pseudo-equilibria. Evol-

utionary sliding along the boundary separating

stationary from cyclic coexistence occurs for many

parameter settings. The evolutionary sliding can

be temporary (sliding segment) or halt at an

evolutionary pseudo-equilibrium. When the

adaptive traits are sliding, or resting at a pseudo-

equilibrium, the populations are in critically stable

ecological states and their mean characteristics

(densities, density-dependent parameters) can

vary abruptly for small changes of individual

traits.

(ii) Evolutionary extinction. There is always a sub-

region (dark in all state portraits), where the orbits

tend toward the boundary of region E. This causes

the predator to go extinct in the long run, a

phenomenon that is not predictable on the basis of

purely ecological arguments. Evolution to extinc-

tion had been noted in predator–prey and

competition models by Matsuda & Abrams

(1994a,b) and Dieckmann et al. (1995); and is

also known to occur in models of mutualistic

(Ferrière et al. 2002) and cannibalistic (Dercole &

Rinaldi 2002; Dercole 2003) interactions. These

examples highlight a common mechanism. Adap-

tive evolution is driven by the ‘marginal’ benefit of

performing better in interactions (predation,

mutualism) than other conspecifics; yet the

‘direct’, physiological cost to the individual can

become so great that eventually the population

growth rate becomes negative, causing extinction.
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Figure 3. Eight state portraits of the eco-evolutionary model (3.4) and (3.5). In the first row, the parameters are kuZ0.1, kvZ1,
rZ1, K0Z1, h0Z0.02, d0Z0.01, bZ0.001, eZ0.1, aZ1.5, u0Z1, v0Z3, and h1Z0.01 in A, h1Z0.017 in B, h1Z0.05 in C,
h1Z0.05 in D. State portrait A 0 is obtained from A by increasing ku from 0.1 to 0.145. State portrait B 0 is obtained from B by
increasing a from 1.5 to 3. State portrait C 0 is obtained from C by increasing v0 from 3 to 3.3. State portrait D 0 is obtained from
D by increasing K0 from 1 to 5. All dark regions correspond to predator evolutionary extinction. Evolutionary sliding is present
in all panels, while pseudo-equilibria (squared points) are present in panels A, A 0, B, D 0.
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(iii) Multiple evolutionary equilibria. The eco-evolution-

ary system most often possesses several equilibria:

attractors, repellors and saddles, in addition to

predator evolutionary extinction. Two general

implications can be drawn. First, in the long

run, the same populations can reach different

evolutionary states and develop different ecologi-

cal dynamics due to ancient differences in their
Proc. R. Soc. B (2006)
genotypic state. Experimental evolution in Escher-

ichia coli provides strong empirical support to this

prediction (Travisano et al. 1995). Second, the co-

occurrence of predator evolutionary extinction

and other viable evolutionary attractors provides a

firm mathematical basis for the notion of evol-

utionary trapping suggested from empirical obser-

vations (Colas et al. 1997; Schlaepfler et al. 2002):
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under given environmental conditions, the pre-

dator population can be trapped on an evolution-

ary trajectory heading to extinction whereas

alternative, ecologically safe evolutionary attrac-

tors could have been reached. Schlaepfler et al.

(2002) and Ferrière et al. (2004) have discussed

the implications of evolutionary trapping in a

conservation perspective.

(iv) Two forms of Red Queen dynamics. The first one

(evolutionary cycle in region S, see portraits B and

A 0) corresponds to slow periodic variations of the

traits entraining slow population cycles. This form

is well-known from Lotka–Volterra models that

did not allow for other forms of Red Queen

dynamics (Abrams 2000). The second form

(evolutionary cycle in region S and C, see portraits

C and B 0) corresponds to slow periodic variations

of the traits accompanied by recurrent and long

bouts of ecological oscillations. This complex

pattern was predicted by Khibnik & Kondrashov

(1997), who have named it ‘eco-genetically driven

Red Queen dynamics’.

(v) Factors enhancing Red Queen dynamics. Our study

confirms that a bidirectional axis of prey vulner-

ability is a potent mechanism for generating

evolutionary cycles (Abrams 2000). By increasing

the impact of the traits on vulnerability the

evolutionary attractor changes in a typical

sequence (see portraits A, B, C): first an

equilibrium associated with steady populations,

then an evolutionary cycle with entrained popu-

lation oscillations, and finally an evolutionary

cycle associated with recurrent bouts of ecological

oscillations. For a further increase of the vulner-

ability mechanism Red Queen dynamics suddenly

disappear (see portrait D), a phenomenon that

has gone unnoticed in previous studies. Increasing

the probability of prey mutation, the variance of

the distribution of prey mutational effects, and the

maximum predation rate can also trigger and

enhance Red Queen dynamics (see portraits

(A, A 0) and (B, B 0)).

(vi) The predator chases the prey. All evolutionary cycles

we have detected are anticlockwise. Thus, the

predator trait increases when the prey trait is large

and decreases in the opposite case. This results

from the bidirectional axis of prey vulnerability,

and is, indeed, present in all studies where the

prey has a most vulnerable phenotype depending

upon predator’s trait (see Marrow et al. 1992;

Dieckmann et al. 1995; Dieckmann & Law 1996;

Abrams & Matsuda 1997; Khibnik & Kondrashov

1997).

(vii) Evolution toward ecological stability: the paradox of

enrichment. Ecological theory predicts that pre-

dator–prey interactions should cause large ampli-

tude cycles in rich environments (Rosenzweig

1971). The ‘paradox of enrichment’ emphasizes

that this does not occur in nature (e.g. Murdoch

et al. 1998). Abrams & Walters (1996) found an

ecological solution to the paradox for certain types

of predator–prey communities, later confirmed by

experimental findings (McCauley et al. 1999).

Rosenzweig & Schaffer (1978) took a general,
Proc. R. Soc. B (2006)
evolutionary approach to the problem, arguing

that evolution should tend to restore ecological

stability lost through enrichment. Evolution may

actually play such a significant role in light of, e.g.

Yoshida et al.’s (2003) findings on rapid evol-

utionary change in predator–prey systems. Our

work substantiates, refines, and broadens Rosenz-

weig & Schaffer’s view in the case of slow predator

and fast prey. In fact, if the system is at its

evolutionary equilibrium in region S (portrait D),

should evolutionary processes be absent (i.e. u

and v being kept frozen), significant enrichment

would destabilize the populations. This is clearly

recognizable from portrait D 0 where the point � in

region C is the copy of the evolutionary equili-

brium of portrait D. Interestingly, after enrich-

ment the evolutionary processes act in the

opposite direction and the final result (portrait

D 0) is that the traits tend to an evolutionary

pseudo-equilibrium. In other words, the full

destabilization of the populations triggered by

enrichment is opposed by the counteracting forces

of evolution.

(viii) Evolution opposes permanent ecological oscillations.

There seems to be no realistic environmental

conditions under which an evolutionary attractor

is entirely in region C, although evolutionary

trajectories are often trapped on the boundary

between S and C (see statement (i)). Only if the

predation rate is almost independent of prey and

predator traits (i.e. if h1 is of the order of 10K3),

there is an evolutionary equilibrium in C (notice

that for h1Z0, point (u0, v0) is a stable

evolutionary equilibrium in C ). Thus, evolution

seems to oppose permanent ecological

oscillations.
5. CONCLUDING COMMENTS
Our analysis unravels novel evolutionary phenomena

whose scope extends beyond predator–prey coevolution.

This includes the possibility that coevolution guides the

traits along adaptive ridges formed by segments of the

boundary between the regions of stationary and cyclic

coexistence (evolutionary sliding), or comes to a halt at

special points of that boundary (evolutionary pseudo-

equilibria).

Our conclusions for predator–prey coevolution are

likely to be influenced by the specific model chosen to

describe the interaction. The analysis, however, should

in principle be repeatable for any ecological model

involving slow–fast dynamics. Considering the dual

case of slow prey (e.g. plants) and fast predator (e.g.

insects), and how common recurrent insect–pest out-

breaks are in natural or exploited forests, coevolution

might well in this case have just the opposite effect on

ecological dynamics, namely that of favouring cyclic

coexistence.

Finally, the conjecture formulated by Ellner & Turchin

(1995) on the basis of their analyses of population time-

series, namely that ‘ecosystems might evolve toward the

edge of chaos’, finds some support in the present study.

Indeed, our findings suggest that ecosystems might evolve

toward the edge of their most complex dynamic regime,
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which in the case of predator–prey models, is indeed cyclic

coexistence. But the support could become even stronger

once the present analysis is extended to tritrophic food

chains with potentially chaotic ecological dynamics. This

should be feasible since singular cycles and singular

bifurcations responsible for chaotic dynamics have already

been found in such communities (De Feo & Rinaldi

1998). Bifurcations leading to chaos are a likely cause of

discontinuity in fitness across trait space. Complex Red

Queen dynamics involving intermittent bouts of chaotic

fluctuations of the populations would then rank among the

expected outcomes, as predicted by Ellner & Turchin

(1995).
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