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Recent studies have demonstrated that ecological interference among some childhood diseases may have

important dynamic consequences. An interesting question is, when would we expect the interference effect

to be pronounced? To address the issue, here we develop a seasonally forced two-disease age-structured

model, using empirically derived age-specific force of infection (ASFOI) for numerous infections of

childhood. Our comparative numerical analysis shows that when the ASFOIs for the two diseases largely

overlap, the dynamics predicted by the two-disease model are generally different from those predicted by

the analogous single-disease model, suggesting strong fingerprints of disease interference. When the

ASFOIs overlap less, on the other hand, both diseases behave as predicted by the single-disease model,

suggesting weak interference. We conclude that age structure is an important factor that should be taken

into account in order to explore the underlying mechanisms of disease interference.
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1. INTRODUCTION
Over a century ago, clinical epidemiologists in the UK

noted that epidemics of measles and whooping cough were

typically out of phase—a major epidemic of one was

followed approximately a year later by an epidemic of the

other (Creighton 1894; Laing & Hay 1902). The precise

mechanism responsible for any such interaction was

unclear at the time and was assumed to be immune-

mediated. Recently, Rohani et al. (1998, 2003) proposed a

general ecological mechanism for interaction among

antigenically distinct infections. The interaction is envi-

saged to arise via competition for susceptible hosts and the

subsequent dynamic consequences of the removal of

individuals after infection (temporarily due to quarantin-

ing and convalescence or permanently as a result of

infection-induced mortality). Mathematical models

demonstrated that the clearest signature of ‘interference’

between infections is systematic phase differences in

multiennial dynamics: the epidemics of the two diseases

oscillate out of phase (Rohani et al. 1998). This finding

was shown to be consistent with European case fatality

data for measles and whooping cough in the early decades

of the twentieth century (Rohani et al. 2003). Given that—

in addition to measles and whooping cough—there are a

number of other widely co-circulating micro-parasitic

infections of childhood (such as chickenpox, mumps and

rubella) and that they all effectively compete for hosts, do

we expect strong interference within this epidemiological

community? It was argued by Rohani et al. (2003) that

interference is likely to be most intense when infections

compete for the same cohort of hosts, which in such

infections is likely to be the case when infections have a

similar distribution of age at infection, as determined by
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the basic reproductive ratio, R0 (Anderson & May 1991).

The systematic exploration of this issue clearly requires

the detailed age structure of transmission to be taken into

account.

The issue of age dependency in contact rates, resulting

from increased transmission within schools, has been of

interest to epidemiologists for a long time (Anderson &

May 1982a; Schenzle 1984). Great efforts have been made

by empirical and theoretical epidemiologists to explore the

age-related characteristics of diseases, such as the age

distribution at infection and the age-specific force of

infection (ASFOI), which is the probability per unit of

time that a susceptible of a certain age is infected

(Anderson & May 1985a,b, 1991). These age-related

aspects of transmission are relatively well documented for

the major childhood diseases. It is known, for instance,

that in the pre-vaccine era in the developed world the

mean age at infection (A) for measles and whooping cough

was 4–5 years, whereas for chickenpox and rubella it was

6–8 and 9–11 years, respectively (Anderson & May

1982b). Additionally, there are subtle differences in the

profile of ASFOI distribution between these infections.

The epidemiological consequences of age-structured

effects have been documented in a number of studies

(Schenzle 1984; Dietz & Schenzle 1985; Greenhalgh

1988; Hethcote 1988, 1997; Inaba 1990; Bolker &

Grenfell 1993; Greenhalgh & Dietz 1994; Ferguson

et al. 1996).

Here, we aim to examine the age-related competition

between different diseases by presenting a two-disease

model, where both age dependency and seasonality in

transmission rates are explicitly considered. By comparing

the predictions of single-disease and two-disease models,

we aim to examine two key questions: (i) what are the

qualitative and quantitative consequences of disease

interference, and (ii) how much overlap in the ASFOIs is

necessary for the epidemics of two infections to interfere?
q 2006 The Royal Society



Table 1. Epidemiological parameters associated with the four common childhood diseases (from Grenfell & Anderson 1985;
Farrington 1990; Anderson & May 1991; Rohani et al. 1998). (‘LP’, ‘IP’ and ‘CP’ represent, respectively, latent, infectious and
convalescent period.)

disease force of infection (five age classes) R0 LP (days) IP (days) CP (days)

measles [0.18,0.40,0.42,0.2,0.02] 17 8 5 7
whooping cough [0.15,0.48,0.24,0.05,0.05] 17 8 10 14
chickenpox [0.13,0.22,0.19,0.14,0.08] 11 10 10 14
rubella [0.08,0.14,0.12,0.09,0.05] 7 9 11 14
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2. MODEL FRAMEWORK
We extend the simple two-disease SEICR model proposed

by Rohani et al. (1998), with contact rates both age- and

seasonally dependent. Initially, individuals are, S, Suscep-

tible to both diseases. They enter the, E, Exposed class when

contracting one disease. After the latent period, the

individuals become, I, Infectious. Typically, children

would be sent to hospital or home for, C, Convalescence

once symptoms appear, and this usually would be followed

by, R, complete Recovery and lifelong immunity. In the

entire epidemiological process, we assume that the

probability of co-infection is negligible. For childhood

diseases, contact rates are the most important parameters

in which age-related heterogeneity needs to be taken into

account. The other epidemiological parameters, such as

latent, infectious and convalescent periods, will be

assumed to be age-independent for simplicity. The model

with continuous time and continuous age can be described

by a 13-dimensional set of partial differential equations

(see appendix A). In application, individuals fall into age

discrete groups (Schenzle 1984). Specifically, we adopt

the common approach of splitting hosts into five age

classes: 0–5, 6–10, 11–15, 16–20 and R 21 years, which

roughly correspond to, respectively, pre-school children,

primary school children, middle school students, high

school students and adults. We further assume that the

contact matrices have the following form:

C Z

c1 c1 c3 c4 c5

c1 c2 c3 c4 c5

c3 c3 c3 c4 c5

c4 c4 c4 c4 c5

c5 c5 c5 c5 c5

0
BBBBB@

1
CCCCCA;

which is known as the WAIFW matrix (‘Who Acquires

Infections From Whom’; see e.g. Anderson & May 1991).

This type of WAIFW matrix has been intensively adopted

in the literature and is believed to be plausible in modelling

childhood infections. The matrix contains five distinct

elements, which can be either fitted directly to disease

incidence data (Bolker 1993; Bolker & Grenfell 1993) or

estimated indirectly from a corresponding ASFOI distri-

bution derived from case notification or serological data

(Grenfell & Anderson 1985). We use the ASFOI

distributions for micro-parasitic childhood infections

documented in the literature (e.g. Grenfell & Anderson

1985; Farrington 1990; Anderson & May 1991;

Farrington & Kanaan 2001; Whitaker & Farrington

2004). For the detailed algorithm to estimate the contact

rates from a given ASFOI distribution, we refer interested

readers to Anderson & May (1991). In addition to age-

dependent contacts, we assume that transmission rates are
Proc. R. Soc. B (2006)
determined by seasonality, mimicking the pattern of

opening and closing of schools during the year (model

details are presented in Appendix A).
3. COMPARATIVE NUMERICAL SURVEY
In order to examine the relationship between disease

interference and the age at infection profiles, we numeri-

cally study and compare the epidemic patterns in the two-

disease model for some specific pairs of diseases. We focus

on three specific pairs: measles and whooping cough,

measles and chickenpox, and measles and rubella, in

which whooping cough, chickenpox and rubella have

similar epidemiological traits (latent/infectious periods),

but have markedly different age at infection profiles

(table 1). The difference in age at infection most likely

results in different dynamical consequences when inter-

acting with measles. The systematic numerical survey

consists of three steps: (i) examine the dynamics of diseases

in isolation, (ii) determine the dynamics of diseases when

they are coupled in pairs and (iii) identify any interference

effects by comparing the single and paired dynamics.

(a) Single-disease dynamics

Under the term-time seasonal forcing, the single-disease

measles model predicts annual cycles when the amplitude

of seasonality is small. These annual epidemics give way to

biennial cycles as seasonal amplitude increases (figure 1): a

pattern that is consistent with numerous other studies

(e.g. Bolker 1993; Rohani et al. 1998; Earn et al. 2000). In

direct contrast, the epidemics of whooping cough,

chickenpox and rubella are rigidly annual within the

specified range of seasonality, due to their longer

infectious periods (figure 1) (Keeling et al. 2001; Rohani

et al. 2002; Greenman et al. 2004).

(b) Two-disease dynamics

Coupling whooping cough, chickenpox and rubella with

measles according to our two-disease age-structured

model leads to three combinations of two-disease

interactions. The measles–whooping cough dynamics

clearly suggest a strong interference (figure 2), with three

different aspects to this interaction. (I) The epidemics of

whooping cough in this model become biennial as the

amplitude of seasonality increases, in stark contrast with

the single-disease model. (II) When epidemics are

biennial, epidemics of the two diseases oscillate out of

phase. (III) In the two-disease model, the bifurcation from

annual to biennial outbreaks occurs at a lower amplitude

of seasonality compared to the single-disease model.

These interference signatures, which are fully consistent

with previously reported patterns in age-independent
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Figure 2. One-parameter bifurcation diagrams and example time-series for the two-disease age-structured model. Bifurcation
diagrams for (a) measles–whooping cough, (b) measles–chickenpox and (c) measles–rubella interactions. The related
parameters are listed in table 1. Panels (b), (d ) and ( f ) plot the cycles corresponding to the three pairs of two-disease
interactions, respectively (for seasonal amplitude bZ0.2). Similar to figure 1, measles, whooping cough, chickenpox and rubella
are identified by different degrees of darkness in a decreasing order. The convalescent period is about 7 days for measles and
14 days for the other three diseases. Disease-induced mortality for both diseases is zero.
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Figure 1. One-parameter bifurcation diagrams and example time-series plotted for fixed seasonal amplitude (bZ0.2) for the
single-disease age-structured model. In the bifurcation diagrams, the vertical axis represents the annual average prevalence level.
Measles, whooping cough, chickenpox and rubella are identified by different degrees of darkness in a decreasing order. (a, b)
Measles; (c, d ) whooping cough; (e, f ) chickenpox; (g, h) rubella. The parameters associated with the four diseases, including
the forces of infection (derived from data), latent periods and infectious periods, are given in table 1.
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models (Rohani et al. 1998; Huang & Rohani 2005), are

used to explore the strength of interference effects between

different pairs of infections. The interference signature (I)

reflects the influence of measles on whooping cough,
Proc. R. Soc. B (2006)
whereas the interference signature (III) embodies the

impact of whooping cough on measles.

Examination of the three bifurcation diagrams in figure 2

(and comparison with the corresponding single-disease
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Figure 3. One-parameter bifurcation diagrams and example time-series for the two-disease age-structured model. Bifurcation
diagrams for (a) whooping cough–chickenpox, (b) whooping cough–rubella and (c) chickenpox–rubella interactions. The
related parameters are listed in table 1. Panels (d ), (e) and ( f ) plot the cycles corresponding to the three pairs of two-disease
interactions, respectively (for seasonal amplitude bZ0.2). Whooping cough, chickenpox and rubella are identified by different
degrees of darkness in a decreasing order.
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scenario) reveals interference signature (I). Namely, the

epidemics of measles can also induce biennial cycles in

chickenpox and rubella dynamics for a range of seasonal

amplitudes. However, there are key differences in the

interference signature (III) between the three cases. As

shown in figure 2, the critical amplitude of seasonality at

which the bifurcation from annual to biennial outbreaks

occurs is smaller than that predicted by the single-disease

model for measles–whooping cough and measles–

chickenpox interactions. For measles–rubella, however,

the critical seasonal amplitude is almost identical to that

observed in the single-disease model. These differences

suggest that whooping cough and chickenpox exert a

detectable influence on measles dynamics, whereas the

presence of rubella has almost no impact.

Further examining the dynamics of the other three

pairs of diseases (whooping cough and chickenpox,

whooping cough and rubella and chickenpox and rubella)

we find that, for the given range of amplitude of

seasonality, all diseases exhibit rigidly annual cycles as

observed in the single-disease model and that there is no

significant difference in the amplitude of cycles among the

three cases (see figure 3).

(c) A continuous gradient of interference strength

When the two-disease model exhibits biennial cycles as a

result of disease interference, the amplitude of cycles

provides information about the strength of the inter-

ference effect. In this section we focus on a few scenarios to

examine the change in the interference strength as the

difference between the two diseases’ ASFOIs is varied

smoothly.

In the first case, disease 1 represents measles with fixed

epidemiological traits, as given in table 1, while disease 2

represents an infection with the epidemiological traits of

whooping cough except that the ASFOI is assumed to
Proc. R. Soc. B (2006)
scale as l2Zhlwc, where lwc is the ASFOI for whooping

cough (see table 1) and hR0 is a positive parameter

measuring the relative decrease (h!1) or increase (hO1)

in the elements of lwc. Since l1 is fixed, the parameter h

also measures the degree of overlap (or similarity) between

the two diseases’ ASFOIs. It is clear, in this case, that the

overlapping degree between the ASFOIs of the two

diseases decreases as h decreases. By plotting the two-

disease bifurcation diagram using h as the control

parameter (figure 4), we find that the two diseases always

exhibit biennial cycles, but the difference between

successive annual peaks in disease 2 becomes increasingly

small as h decreases, until the cycles look virtually annual.

Since, for the same parameter values, the single-disease

model predicts annual cycles for disease 2, these results

suggest that two diseases exert a strong dynamical effect

on each other when they infect children in similar age

cohorts. The extent of interference is substantially weaker

when they typically infect children in dissimilar age

groups.

In the second case, disease 1 represents whooping

cough, while disease 2 has exactly the same epidemi-

ological traits as disease 1 except that the ASFOI is

assumed to be l2Zhl1Zhlwc, with h as defined earlier. We

find that as h decreases, the average prevalence level in

disease 2 becomes increasingly low, but there are no

significant changes in the amplitude of cycles (figure 5).

In the third case, disease 1 represents measles, while

disease 2 represents an infection with exactly the same

epidemiological parameters as whooping cough except

that the ASFOI distribution l2 is allowed to vary from

l�2Zlwc in the following manner:

l21Z hl�21; l2j Z h½kl�2;jK1C ð5KkÞl�2j�=5;

for j Z 2;.; 5;
ð3:1Þ
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where l2j and l�2j are, respectively, the jth elements of l2

and lwc. Another index introduced to describe the relative

difference of l2 from lwc is k2[0,5]. It can be seen that, for

fixed h, the mean age at infection for disease 2 increases as

k increases. In particular, l2Zlwc when hZ1, kZ0. Since

the ASFOI for disease 1 is fixed, one can also see that the

ASFOI for disease 2 becomes increasingly different from

that for disease 1 as k increases.

To track the changes in the interference strength as k

increases, we analyse the bifurcation diagrams for the

two-disease model, where k is the control parameter

(see figure 6c). In each diagram (which corresponds to a

fixed h), it can be observed that the difference between

successive annual peaks in disease 2 becomes increasingly

small as k increases. For fixed k, there is also a similar

trend as h decreases (see also figure 4, where h is the

control parameter, while kZ0). In all three diagrams,

disease 1 (measles) exhibits rigidly biennial cycles. Since

disease 1 alone exhibits biennial cycles and disease 2 alone

always exhibits annual cycles for the same epidemiological

parameters, the results suggest again that interference

between the two diseases is relatively strong when they

infect children with similar ages, and is relatively weak

when they infect children with relatively different ages.
4. CONCLUSIONS AND DISCUSSION
Using the age-structured two-disease framework, we have

systematically explored potential ecological interference

between different diseases resulting from convalescence

following infection with a competitor. Our analysis

reinforces the previous conclusion that disease interference
Proc. R. Soc. B (2006)
can have important dynamical consequences (Rohani et al.

1998, 2003; Huang & Rohani 2005). More importantly,

this work demonstrates that the extent of any interference

effect crucially depends on whether the protagonist

diseases infect the same cohort of hosts, or, more precisely,

on the degree of overlap between their distributions of age

at infection. Our comparative numerical study has focused

on the interactions of measles with whooping cough,

chickenpox and rubella, which have roughly the same

infectious periods. In all three cases, interactions via fluxes

in susceptible numbers result in competing infections

entrained onto the measles pattern of epidemics. As shown

by Huang & Rohani (2005), this dynamical domination of

measles is due to its relatively higher transmission rate.

The results presented here also demonstrate that measles

dynamics may be influenced by the presence of competing

infections, which effectively reduces the amplitude of

seasonality required for biennial oscillations to occur. Such

an influence can be clearly observed in the measles–

whooping cough interaction, where the bifurcation from

annual to biennial occurs for a smaller seasonal amplitude,

compared to the measles alone SEIR (susceptible, exposed,

infectious, recovered) model. In contrast, the interaction

between measles and rubella has almost no discernible

influence on measles dynamics.

The present mathematical framework, which takes age-

structured details into account, has increased our under-

standing of the issue of when diseases might interfere. It

has been demonstrated by simple age-independent

models that the interference effects are most pronounced

between infections with a similar basic reproductive ratio.



Table 2. Brief description of parameters.

parameter description

li(a, t) probability per unit time that a susceptible of age a is infected with disease i at time t
bi(a, a, t) probability per unit time that a disease i infective of age a will infect a susceptible of age a at time t
m age-independent per-capita natural death rate
ri age-independent probability of disease i infectives dying during the convalescent period (0%ri%1)
1/si age-independent average latent period of disease i infectives
1/gi age-independent average infectious period of disease i infectives (prior to being quarantined)
1/di age-independent average convalescent period for disease i infectives

Age structure and disease interference Y. Huang & P. Rohani 1235
However, a complete understanding of the issue cannot be

achieved without taking into account the precise distri-

butions of age at infection. This is simply because diseases

having similar basic reproductive ratios or mean ages at

infection may have quite different age-structured profiles.

In our age-structured two-disease model, we did not

consider some important factors that are relevant to

disease dynamics, such as co-infection, cross-immunity

and vaccination. Our strategy was to focus on relatively

simple scenarios by which we can effectively compare the

dynamic patterns among different pairs of childhood

infections, and to explore the age-structured effects on

disease interference. Further exploration of the issue by

more generalized models is needed in the future.

An important question that is implicit in this study

concerns the extent to which we have to consider the

influence of competing diseases when we try to under-

stand epidemiological data. The present work has partially

answered the question from the perspective of age-

structured effects within a deterministic framework. To

test model predictions, we would need reliable incidence

data for measles, whooping cough, chickenpox and rubella

from the same geographical location, covering the same

period of time. Unfortunately, we currently do not have

access to such data. Previous studies exploring inter-

ference effects between measles and whooping cough have

uncovered little empirical support in case notification data

from England and Wales in the 1950s and 1960s (Rohani

et al. 1998). European case fatality data, however, exhibit

patterns that are consistent with disease interference,

leading Rohani et al. (2003) to propose that interaction

between infections is substantially more pronounced when

disease is associated with a significant risk of death.

Ultimately, these findings suggest, perhaps, that in most

developed countries factors such as demographic and

environmental stochasticity may well mask any inter-

ference effects. The high risk of mortality following

infection may mean that understanding the epidemiology

of the infections considered here from developing world

data, however, would be incomplete if only a single

infection is considered.

This work was supported by the National Science Foun-
dation, the National Institutes of Health and a New Scholar
Award from the Ellison Medical Foundation to P.R. We thank
Helen Wearing, Dan Vasco, Marc Choisy and Matt Bonds for
discussions. We also thank three anonymous referees for their
helpful comments.
APPENDIX A: THE AGE-STRUCTURED
TWO-DISEASE SEICR MODEL
Let x, ei, yi, ui, vi, fi and zi be, respectively, the density of

individuals susceptible to both disease, individuals initially
Proc. R. Soc. B (2006)
exposed to disease i, disease i infectious individuals who

have not been infected by the other disease, disease i

infected individuals in convalescence, individuals suscep-

tible to disease i who have been immune to the other

disease, individuals exposed to disease i who are immune

to the other disease and disease i infectious individuals

who have previously been infected with (and are immune

to) the other disease. According to the simplified

epidemiological life history described in the main text,

the interaction between two diseases can be described by

the following system of partial differential equations

(where the meaning of the parameters is given in table 2):

v

va
C

v

vt

� �
xða; tÞZKðl1ða; tÞCl2ða; tÞCmÞxðt; aÞ; ðA 1Þ

v

va
C

v

vt

� �
e1ða; tÞZl1ða; tÞxða; tÞKðs1CmÞe1ða; tÞ; ðA 2Þ

v

va
C

v

vt

� �
e2ða; tÞZl2ða; tÞxða; tÞKðs2CmÞe2ða; tÞ; ðA 3Þ

v

va
C

v

vt

� �
y1ða; tÞZs1e1ða; tÞKðg1CmÞy1ða; tÞ; ðA 4Þ

v

va
C

v

vt

� �
y2ða; tÞZs2e2ða; tÞKðg2CmÞy2ða; tÞ; ðA 5Þ

v

va
C

v

vt

� �
u1ða; tÞZg1 y1ða; tÞKðd1CmÞu1ða; tÞ; ðA 6Þ

v

va
C

v

vt

� �
u2ða; tÞZg2 y2ða; tÞKðd2CmÞu2ða; tÞ; ðA 7Þ

v

va
C

v

vt

� �
v1ða; tÞZ ð1Kr2Þd2u2ða; tÞKðl1ða; tÞCmÞv1ða; tÞ;

ðA 8Þ

v

va
C

v

vt

� �
v2ða; tÞZ ð1Kr1Þd1u1ða; tÞKðl2ða; tÞCmÞv2ða; tÞ;

ðA 9Þ

v

va
C

v

vt

� �
f1ða;tÞZl1ða;tÞv1ða;tÞKðs1CmÞf1ða;tÞ; ðA10Þ

v

va
C

v

vt

� �
f2ða;tÞZl2ða;tÞv2ða;tÞKðs2CmÞf2ða;tÞ; ðA11Þ

v

va
C

v

vt

� �
z1ða;tÞZs1 f1ða;tÞKðg1CmÞz1ða;tÞ; ðA12Þ

v

va
C

v

vt

� �
z2ða;tÞZs2 f2ða;tÞKðg2CmÞz2ða;tÞ; ðA13Þ
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xða;0ÞZ x0ðaÞ; eiða; 0ÞZ ei0ðaÞ;

yiða; 0ÞZ yi0ðaÞ; uiða; 0ÞZ ui0ðaÞ;

viða; 0ÞZ vi0ðaÞ; fiða; 0ÞZ fi0ðaÞ;

ziða; 0ÞZ zi0ðaÞ; i Z 1; 2;

ðA 14Þ

and boundary conditions

xð0; tÞZm;

eið0; tÞZ yið0; tÞZ uið0; tÞZ við0; tÞZ fið0; tÞ

Z zið0; tÞZ0; i Z 1;2;

ðA 15Þ

where

liða; tÞZ

ðN
0
biða;a; tÞð yiða; tÞCziða; tÞÞda; i Z 1; 2

ðA 16Þ

is the force of infection for the disease i infectives of

cohort a at time t. The function bi(a, a, t) describes the

age- and time-related transmission rate (see table 2).

In application, individuals fall into age groups. The

model can be easily reformulated in this case. For

instance, the equation for the fraction of individuals of

age cohort j susceptible to both diseases (with density xj) is

_x1ðtÞZmKl1x1ðtÞKðl11ðtÞCl21ðtÞCmÞx1ðtÞ; ðA 17Þ

_xjðtÞZ ljK1xjK1ðtÞKljxjðtÞKðl1jðtÞCl2jðtÞCmÞxjðtÞ

for j Z1;.; nK1;
ðA 18Þ

_xnðtÞZ ljK1xjK1ðtÞKðl1nðtÞCl2nðtÞCmÞxnðtÞ: ðA 19Þ

Here, nZ5 is the number of age classes. lj is the

per-capita rate at which individuals enter or leave the

age cohort j. l1j(t) and l2j(t) are, respectively, the time-

dependent ASFOI for diseases 1 and 2:

lijðtÞZ
X
k

biðk; j; tÞð yið j; tÞCzið j; tÞÞ; ðA 20Þ

where bi(k, j, t) corresponds to the (k, j ) element of the

contact matrix C defined in §2. Namely, we use ckj instead

of bkj to denote the contact rate between age class k and j in

the discrete-age models. For each disease i, the contact

matrix has only five different elements cj ( jZ1, ., 5)

which can be calculated by the following procedure.

The contact rates depend not only on the age structure

of the host, but also on the seasonality of school terms.

The function mimicking the seasonal forcing may vary

from a continuous sine wave to a discontinuous binary one

(Dietz 1976; Schenzle 1984). We chose the binary one in

this paper. Since children in age class 2 and 3 (6–15 year

olds) experience the strongest seasonality, we assume that

cjðtÞZ c�j ð1CbfseasðtÞÞ; for j Z2; 3; ðA 21Þ

and that

cjðtÞZ c�j for js2; 3; ðA 22Þ

where c�j denotes the average transmission rate which can

be estimated from data-derived ASFOI, b2[0,1] is the

seasonal amplitude, and fseas(t) is the term-time forcing
Proc. R. Soc. B (2006)
defined as

fseasðtÞZ
1 if 182% ð365!ðtK½t�ÞÞ%268;

K1 otherwise;

(

ðA 23Þ

in which [t] represents the maximum integer less than t

(Bolker 1993).
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