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We use a mathematical model to study the evolution of influenza A during the epidemic dynamics of a

single season. Classifying strains by their distance from the epidemic-originating strain, we show that

neutral mutation yields a constant rate of antigenic evolution, even in the presence of epidemic dynamics.

We introduce host immunity and viral immune escape to construct a non-neutral model. Our population

dynamics can then be framed naturally in the context of population genetics, and we show that departure

from neutrality is governed by the covariance between a strain’s fitness and its distance from the original

epidemic strain. We quantify the amount of antigenic evolution that takes place in excess of what is

expected under neutrality and find that this excess amount is largest under strong host immunity and long

epidemics.
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1. INTRODUCTION
Seasonal influenza A epidemics are a significant cause of

morbidity and mortality in temperate zones of both

hemispheres. In the Northern Hemisphere, annual

epidemics occur between November and April and since

the early 1900s have caused more cumulative mortality

than the three major pandemic events of the twentieth

century (Earn et al. 2002). The characteristics that make

these annual influenza outbreaks unusual among non-

childhood diseases is that they are periodic and sustained.

Periodicity has often been attributed to seasonal changes

in transmissibility or mixing patterns (Schulman &

Kilbourne 1962; Davey & Reid 1972; Anderson & May

1991), and more recently to a possible dynamical

resonance between low intrinsic seasonality and loss of

host immune memory (Dushoff et al. 2004). Sustainability

of annual epidemics is the result of viral immune escape

through antigenic drift (Webster et al. 1992; Cox &

Subbarao 2000; de Jong et al. 2000b; Hay et al. 2001;

Hampson 2002).

Antigenic drift—the accumulation of point mutations in

virus antigens—is easily detectable in sequence data cover-

ing almost four decades of influenza activity (Macken et al.

2001). The resulting immune escape, as measured by

haemagglutinin inhibition (HI) tests, indicates that influ-

enza can escape a significant amount of herd immunity after

only 2–3 years (de Jong et al. 2000b; Coiras et al. 2001; Hay

et al. 2001). Since hosts lose immunity gradually, the

influenza virus population need not mutate to a completely

new antigenic form. Rather, influenza benefits from each

additional amino acid replacement in its surface proteins by
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becoming slightly less recognizable to the hosts on whom it

previously conferred immunity. Mutations occur during

replication in host epithelial cells, and the virus persists and

replicates as long as host contacts sustain a chain of

transmission in the host population. These chains of

transmission enable influenza to accumulate mutations;

the resulting mutated progeny viruses are often called

antigenic drift variants or simply drift variants.

Here, we consider the forces that govern antigenic drift in

influenza A. While it is well known that significant antigenic

drift causes severe influenza outbreaks (Kilbourne 1973;

Cox & Subbarao 2000; de Jong et al. 2000a; Hay et al. 2001),

little is known about the effects of influenza outbreaks on

antigenic drift. These two processes are of course

concurrent and tightly coupled. Epidemic dynamics unroll

a series of between-host transmission events, which

increase viral population size and offer the influenza virus

a means to reproduce, mutate, and escape host immunity.

Viral immune escape then lowers the host population’s

effective immunity and adds momentum to the ongoing

epidemic. The benefits of immune escape may be some-

what delayed as hosts maintain some short-term non-

specific immunity (Ferguson et al. 2003; Xia et al. 2005).

To model antigenic drift during a single season

of influenza, we use a standard susceptible–infected–

recovered (SIR) framework (Kermack & McKendrick

1927; Anderson & May 1991). We classify the various

influenza strains by their distance from a reference strain.

Our model can be described as an SI0I1.In-model, where

the subscript denotes antigenic distance from the

reference strain I0. This antigenic distance reflects a one-

dimensional antigenic space as in previous models (Pease

1987; Sasaki 1994; Andreasen et al. 1996; Haraguchi &

Sasaki 1997; Sasaki & Haraguchi 2000; Gog & Grenfell

2002; Andreasen 2003; Lin et al. 2003; Boni et al. 2004);

however, it is important to remember that a realistic
q 2006 The Royal Society
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mapping of antigenic type onto immune escape would

have higher dimensionality (Lapedes & Farber 2001).

We first introduce a neutral model with epidemic

dynamics and mutation and show that the strain population

has a Poisson distribution whose mean moves forward

in time according to a molecular clock (Zuckerkandl &

Pauling 1965; Kimura 1968, 1969). A second model

includes host immunity, where strains that escape host

immunity through antigenic drift have higher transmissi-

bility. This non-neutral model has high dimensionality

and persistent nonlinearities; we solve it numerically.

Fortunately, the model’s population dynamics can be

naturally expressed in a population-genetic framework,

which allows us to extract key viral fitness components and

analyse their effects on antigenic drift. Using the neutral

model as a baseline, we are able to study the forces that

drive influenza antigenic drift in human populations.
2. NEUTRAL MODEL
We first consider a many-strain, single-season influenza

epidemic model, where all strains are equally fit. Once

recovered, hosts cannot become reinfected, and the

epidemic ends when the susceptible pool is depleted.

The epidemic begins with a particular strain which we call

the epidemic strain or the zero-strain; individuals infected

with the zero-strain are said to be in the population class

I0. The zero-strain can mutate, and when it acquires one

amino acid change the harbouring individual becomes a

member of the population class I1. The I1 class represents

those hosts that are infected with any strain which is

exactly one amino acid different from the original

epidemic strain; if a host’s infecting virus undergoes

another mutation event, that host would move into the I2
class. In general, hosts in the class Ik are infected with a

strain that is k amino acids different from the original

epidemic strain.

Real individuals are most likely to be infected with a

virus population of great diversity, but we can approximate

the genetic distance between a host’s infecting influenza

virions and the original epidemic-causing strain by

considering the mean distance of a host’s virus population

from the original strain. In this model, we neglect within-

host evolution and place individuals in population classes

according to the strain they are most likely to transmit at a

given moment.

We assume a homogeneous mutation rate across the

HA1 segment (987 nt) of influenza’s haemagglutinin

surface protein. We focus on the HA1 because of its

rapid evolution and importance to immune escape (Fitch

et al. 1997; Bush et al. 1999; Plotkin & Dushoff 2003).

Since back mutation is highly unlikely and recurrent

mutations (double hits) are somewhat unlikely, individ-

uals in the Ik class are assumed to move only to the class

IkC1 when an amino acid replacement occurs.

Using S to denote susceptible hosts, we write the

neutral dynamical model as

_S ZKbS
Xn
kZ0

Ik;

_I0 Z bSI0KðnCmÞI0;

_Ik Z bSIkKðnCmÞIk CmIkK1 for 0!k!n;

_In ZbSInKnIn CmInK1;

9>>>>>>>=
>>>>>>>;

ð2:1Þ
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where b is the compound parameter describing the

transmission rate and the host contact rate, and n is the

hosts’ recovery rate from infection. The class In denotes

individuals infected with a strain at least n amino acids

away from the zero-strain. The parameter m is the non-

synonymous mutation rate in the HA1. For the purposes

of our model, m is the RNA polymerase’s error rate, times

the proportion of possible mutations in the HA1 that

cause amino acid changes, times the proportion of new

mutations that are not lost due to stochastic fluctuations.

We will refer to m simply as the mutation rate. For low

population sizes and slow transmission, stochastic extinc-

tion of new mutants would need to be modelled explicitly.

To investigate relative strain frequencies, we write

IðtÞZ
Pn

kZ0 IkðtÞ and ikðtÞZ IkðtÞ=IðtÞ. Using (2.1), the

dynamic equations for the strain frequencies are

di0
dt

ZKmi0;

dik
dt

ZKmik CmikK1 for 0!k!n;

din
dt

ZCminK1;

9>>>>>>>>>=
>>>>>>>>>;

ð2:2Þ

which is a linear and autonomous system, whose dynamics

are governed by a subdiagonal matrix and which is

independent of the population dynamic variables S and

I. If all the strains at time zero are of type zero, i0ð0ÞZ1

and ikð0ÞZ0 for kO0, the solution to (2.2) is

ikðtÞZ
ðmtÞk

k!
eKðmtÞ; ð2:3Þ

for all k!n and tO0; the trajectory of in is determined by

noting that
P

ikZ1. The strain frequencies are Poisson-

distributed with mean mt. Thus, even in the presence of

host population dynamics, we obtain the standard result

that neutral mutation produces a molecular clock (we use

the term loosely since our clock follows the mean number

of changes in a heterogeneous population, rather than the

number of fixation events of new variants). If mZ0.1 per

day and the epidemic lasts 120 days, the strain population

at the end of the epidemic will be a mean distance 12

amino acids away from the original epidemic strain. Our

neutral system has the same assumptions and behaviour as

a standard Poisson process.
3. NON-NEUTRAL MODEL
In this section, we remove the neutrality assumption by

allowing for immune structure in the host population and

viral fitness differences based on host immunity. In our

non-neutral model, influenza strains cause weaker infec-

tions in immune hosts and are thus less transmissible by

these hosts; a strain’s fitness (transmissibility) in a

particular host depends on the host’s immunity to that

particular strain. As the virus population mutates, variants

that are distant from this season’s epidemic strain will be

able to cause increasingly transmissible infections, even in

hosts whose immunity to earlier variants may have been

quite strong. As in the neutral model, hosts cannot

become reinfected and the epidemic ends when it runs

out of susceptibles.
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Figure 1. Results from integrating the modified model (3.6)–(3.10). bZ1.0, qZ0.6, aZ0.1, NZ105; mZ0.02 is marked by the
dashed line. The red line represents the force of infection I (left-hand scale). The curve bounding the filled area is bQ Cov (left-
hand scale) from equation (3.13) and shows here that selection for new variants is more intense in the beginning phases of the
epidemic. Comparing the covariance term with the dotted line (m) shows the relative non-neutral and neutral contributions to
total antigenic drift. The two drift lines correspond to values on the right-hand vertical scale. After about 116 days, the epidemic
is over and the mean number of amino acid changes is around five; under neutral drift we would expect about two.
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We extend the p–q equations from our previous model

(Boni et al. 2004, p. 180) to include multiple strains;

susceptibles are denoted by the variables qi, where

qiZfrequency of hosts who are susceptible and whose last

infection was i amino acids away from this season’s

zero-strain; i2f0; 1;2;.g.

Susceptible hosts q0; q1; q2;.; have decreasing immunity

as the subscript increases. Infected individuals require two

subscripts: the current infecting strain and the previous

immunizing strain. We define

pjkZfrequency of hosts whose last infection was j amino

acids away from this season’s zero-strain and who

are currently infected with strain k; j2f0;1; 2;.g,

k2f0;1;.; ng.

This season’s strain k differs by k amino acids from this

year’s zero-strain, and in a one-dimensional amino acid

space, in accordance with our assumptions, individuals in

class pjk have a distance of jCk amino acids between their

immunizing strain and their current infecting strain. As

the distance between challenging strain and immunizing

strain increases, immunity decreases (Gill & Murphy

1976; Smith et al. 2004). We assume that immunity wanes

exponentially with antigenic distance. Individuals in the

class pjk have their transmissibility reduced to 1KtjCk,

where tmZeKam; the scaling parameter a describes the

amount of immune escape conferred by each additional

amino acid change. We use the number of amino acid

changes as a proxy for immune escape, although their

location also plays an important role. An example of this is

the 18 strongly selected codons identified by Bush et al.

(1999), which are known to be associated with antibody-

combining sites.
Proc. R. Soc. B (2006)
Our dynamical equations for susceptible individuals

are:

_qi ZKqi b
XN
jZ0

Xn
kZ0

ð1KtjCkÞpjk

 !

for i Z 0; 1;2;.;

ð3:1Þ

where the parenthetical term represents the total force of

infection in the population. The dynamic equations for the

infected individuals are constructed similarly, but we need

to take into account the boundary situations kZ0 and

kZn. The equations are:

_pj0 Z bqj
XN
iZ0

ð1KtiÞpi0KðnCmÞpj0; ð3:2Þ

_pjk Z bqj
XN
iZ0

ð1KtiCkÞpikKðnCmÞpjk Cmcjkpj;kK1

for 0!k!n;

ð3:3Þ

_pjn Z bqj
XN
iZ0

ð1KtiCnÞpinKnpjn Cmcjnpj;nK1; ð3:4Þ

where

cjk Z
1KtjCkK1

1KtjCk

� �
ð3:5Þ

is a number between 0 and 1. This definition is a fairly

close approximation to cjkZ1, which would be the natural

way to write down the model from first principles. We

define cjk as in (3.5) for mathematical convenience; the

result of this approximation is a slightly slower rate of

antigenic drift. The parameters b, n and m are defined as

before.

Equations (3.1)–(3.4) now define a complete, infinite-

dimensional dynamical system. As in our neutral model,
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we collapse some of our variables by defining:

S Z
XN
jZ0

ð1KtjÞqj ; QZ
XN
jZ0

qj ; Ik Z
XN
jZ0

ð1KtjCkÞpjk;

I Z
Xn
kZ0

Ik:

The variable S denotes the total amount of susceptibility

in the population (or the total amount of potential

infectivity) and is a number between 0 and 1. Q denotes

the total fraction of hosts that are susceptible, irrespective

of their immune histories. Ik is the force of infection of

strain k, while I is influenza’s total force of infection. Q and

S obey the dynamical equations:

_S ZKbSI and _QZKbQI ;

which means that the ratio S/Q does not change with time.

We call qZ1KS=Q the immunity in the host population; q

measures the herd immunity to the zero-strain of the

susceptible individuals in the host population. Alterna-

tively, q can be viewed as the expected immunity of any

susceptible individual in the population.

As before, ikZIk/I is the frequency of strain k, and

equations (3.1)–(3.4) reduce to:

di0
dt

Z bQi0 ð1KqÞK
Xn
lZ0

ð1KqtlÞil

 !
Kmi0; ð3:6Þ

dik
dt

ZbQik ð1KqtkÞK
Xn
lZ0

ð1KqtlÞil

 !
Kmik CmikK1

for 0!k!n;

ð3:7Þ

din
dt

Z bQin ð1KqtnÞK
Xn
lZ0

ð1KqtlÞil

 !
CminK1: ð3:8Þ

With the dynamical equations for Q and I,

dQ

dt
ZKbQI ; ð3:9Þ

dI

dt
Z bQI

Xn
kZ0

ð1KqtkÞikKnI : ð3:10Þ

Equations (3.6)–(3.10) now describe an (nC2)-dimen-

sional dynamical system, which keeps track of the strain

frequencies, the total force of infection and the number of

susceptibles.
(a) Population genetics

The quantity wkZ1Kqtk has the natural population-

genetic interpretation as the fitness of strain k, and

W Z
Xn
kZ0

ð1KqtkÞik where 0%W%1 ð3:11Þ

is thus the mean fitness of the entire virus population. The

dynamical equations (3.6)–(3.10) then resemble standard

population-genetic equations where the key determinant

of a variant’s increase or decrease in frequency is its fitness

(wk) relative to the population’s mean fitness (W ).

To see how mean fitness behaves as a function of time,

we differentiate equation (3.11) and approximatingtninz0,

_W Z bQ VarðwkÞCmð1Kt1Þð1KW Þ;
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which, if we set mZ0, is the continuous analogue to Fisher’s

fundamental theorem of natural selection (Fisher 1930).

To investigate the dynamic properties of antigenic drift,

we define:

DZ
Xn
kZ0

kik; ð3:12Þ

which is the mean antigenic distance from the strain

population at time t to the zero-strain. The quantity D

follows the dynamics of system (3.6)–(3.10). Approxi-

mating inz0, we have:

_DZmCbQ
X

kwkikK
X

wkik
X

kik

h i
ZmCbQ Covðdistance; fitnessÞ; ð3:13Þ

which is a form of the Price equation (Price 1970, 1972).

Distance refers to the number of amino acid replacements

a strain is away from the original invading strain, and

fitness refers to wkZ1Kqtk. Since strain fitness always

increases with added distance from the zero-strain, the

covariance term—which in the above equation is calcu-

lated across the strain frequencies at time t—will always be

non-negative. At tZ0, the covariance is zero, and its

derivative with respect to time is bmqð1KeKaÞ. At the

beginning of the epidemic, when there are strains of high

and low fitness, the covariance term will be positive and

increasing; then, as Q decreases and as antigenic drift

causes most of the strains in the virus population to have a

fitness close to one, the covariance term will tend back

towards zero. When there are no fitness differences among

strains (neutral mutation), the covariance term is always

zero and

_DZm; ð3:14Þ

which can also be derived from (2.3).

Once all the population-genetic structure is extracted

from our population-dynamic influenza model, the

intensity of selection for antigenically distant strains can

be measured by the size of the covariance term in (3.13)

relative to the mutation rate m. The mutation rate m is

responsible for neutral mutation accumulation and sets

the baseline pace of the molecular clock, while the

covariance term changes throughout the epidemic and

accelerates the clock to varying degrees (see figure 1).
(b) Excess antigenic drift

The amount of antigenic drift that occurs during one

season is highly dependent on mK1—the mean number of

days it takes for a neutrally mutating flu population to

acquire, on the average, one additional amino acid change.

Models of within-host flu evolution (Sasaki 1994;

Haraguchi & Sasaki 1997) have calculated a drift speed

that scales with m, while some between-host models

(Andreasen et al. 1996; Gog & Grenfell 2002; Lin et al.

2003) have found a drift speed that scales approximately

with
ffiffiffi
m

p
. In this investigation, we focus on the excess

antigenic drift, d, which we define as the difference

between the amount of drift occurring under neutral

conditions and the amount of drift occurring under non-

neutral conditions. We show that d is relatively insensitive

to the mutation rate m; this means that we can study the

factors that affect d without knowing the true mutation

rate.



Table 1. Parameter descriptions and probable ranges for the non-neutral model.

parameter description range

a immune-escape parameter; when a is large, immune escape is rapid (cross-immunity is weak) 0.01%a%0.50
b transmissibility and host contact rate; assumes nZ0.2, hence 1.2%R0%6.0 0.24%b%1.20
m non-synonymous mutation rate in the HA1: error rate in the RNA polymerase, times

proportion of possible non-silent changes, times proportion of mutants that survive
stochastic loss

0.001%m%0.05

n recovery rate from infection; this is set to nZ0.2, so that an infection lasts 5 days; fixing
this parameter has no qualitative effect on model results; realistic range shown at right

0.1%n%0.3

q population-wide immunity or herd immunity; qZ1 means that the population has full
immunity (i.e. everyone is completely immune); qZ0 means that every host is completely
naive

0%q%1

NK1 inoculum; the initial force of infection that begins the epidemic; the parameter N can be
thought of as the host population size

10K9%NK1%10K3
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Let DS be the amount of antigenic drift that occurs

when there is selection for immune escape, and let DN be

the amount of neutral antigenic drift that would be

expected to occur. We calculate DS by numerically

integrating equations (3.6)–(3.10) with some initial

condition, or inoculum, I(0) that gives the force of

infection at time tZ0. We set Ið0ÞZNK1 and use N as a

proxy for population size. Equations (3.6)–(3.10) are

numerically integrated from time tZ0 until a time tf such

that Iðtf ÞZIð0Þ; we say that the epidemic ends at time tf.

Using definition (3.12), we let DSZDðtf Þ; this is the mean

amount of antigenic drift that occurs when selective

pressure causes the virus to mutate away from the

epidemic strain. To calculate DN for an epidemic of the

same length, we use equation (3.14) and get DNZmtf .

It is then natural to define d as:

dZDSKDN Z b

ðtf
0
QðtÞCovðk;wkÞdt: ð3:15Þ

The covariance term under the integral is the term from

the Price equation (3.13), and tf is the time at which the

epidemic ends. Since the integrand is always non-negative,

we see that a longer epidemic results in a larger d, since it

allows selection more time to operate; this phenomenon

has been analysed in the context of pathogen emergence

by Antia et al. (2003). At first glance, it seems that

increasing transmissibility and host contact rates (via b)

should yield more excess drift; however, higher b-values

correspond to shorter epidemics which can in turn yield

less excess drift. We will characterize the behaviour of d as

we change the model parameters described in table 1.
(c) Parameter ranges

The high dimensionality of our system forces us to study it

numerically. The dynamical system (3.6)–(3.10) has five

parameters (a, b, m, n and q), although n can be scaled out

if we wish; we simply set nZ0:2, fixing the mean infection

length at 5 days. The initial condition Ið0ÞZNK1 must be

set, and we consider it a model parameter. The number of

strains n in all simulations is 60. The parameters b, q and

N can be reasonably varied to simulate strains with basic

reproduction ratios in the range 1!R0%6 (Mills et al.

2004), and populations of various sizes with varying levels

of herd immunity. The tested ranges for these and other

parameters are summarized in table 1.
Proc. R. Soc. B (2006)
The parameters a and m are more difficult to measure

and can vary over a wide range of values. The mutation

rate in influenza’s haemagglutinin has been measured by

Fitch et al. (1997) and Bush et al. (1999) who estimated

the observed, rather than neutral, rate of evolution.

Moreover, depending on whether one calculates distance

from a root strain or mean distance between pairs of strains

isolated in consecutive years, estimates of mutation rates

can vary by an order of magnitude. Worldwide (Macken

et al. 2001) and local (Coiras et al. 2001; Pyhälä et al. 2004)

HA1 datasets suggest that the observed mutation rate

corresponds to between 1 and 13 amino acid changes per

year; the neutral rate can of course be lower. In our

numerical simulations, we test the range of m-values

0:001%m%0:050, which corresponds to between 0.4

and 18 non-synonymous mutations per year. Since d is not

highly sensitive to m, the choice of range for the neutral

mutation rate has little effect on our results.

Finally, a measures immune escape per amino acid

change. The range 0:03%a%0:15 entails that it takes

between 5 and 20 amino acid replacements to evade 50%

host immunity. This seems reasonable based on published

HI tables (de Jong et al. 2000b; Coiras et al. 2001; Hay

et al. 2001) and the antigenic map in Smith et al. (2004).

The tested range for a will be slightly wider: 0:01%a%
0:50. Note that parameter estimates of a and m are a

function of the length of the HA1 molecule (987 nt).
4. RESULTS
According to our model, the keys to generating a large

amount of excess antigenic drift are strong herd immunity

and long epidemics. Host immunity forces the virus

population to mutate to a distant variant so that it can

begin spreading efficiently. Figure 2 shows immunity

driving antigenic drift within the context of epidemic

dynamics, while figure 3 shows excess antigenic drift (d)

increasing as a function of immunity (q). A slow (and thus

long) epidemic allows selection pressure to operate for a

longer period of time and allows the virus population to

drift further than under a short epidemic. The two key

characteristics of a host–parasite system that can lengthen

an epidemic are large host population size and low R0. In

our model, if N is large or if our effective R0Zbð1KqÞ=n is

close to 1, the epidemic will be long and excess drift will be

large.
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Thus, the parameters b, q and N have intuitive effects

on d. Decreasing b or increasing q lowers R0, lengthens the

epidemic, and increases the amount of excess antigenic

drift. In addition, increasing q drives antigenic drift by

augmenting the strength of selection for escape mutants.

An increase in the population size N decreases the relative

size of the inoculum, lengthens the epidemic, and leads to

more excess antigenic drift (higher d).

For the range of a-values that we test, lowering a

decreases the amount of excess drift during the course of

an epidemic. This happens because when a is small

enough, the initial populations of strains that are 1, 2 or 3

amino acids away from the zero-strain are not much more

fit than the zero-strain, and natural selection has little

fitness variation on which to act. In the case of very small

a, antigenic drift is close to neutral. On the other hand, if a
Proc. R. Soc. B (2006)
is very large, d will also be small since fit variants are

achieved with few mutations and the epidemics are

generally short. Figure 4 shows this behaviour of our

model as a function of a; in general, intermediate values of

a maximize d.

Similarly, intermediate values of m appear to maximize

d. Again, low m yields little variation, and thus slow natural

selection. High m yields lots of variation and much

antigenic drift, but most of this antigenic drift can be

explained by the fast mutation rate rather than selective

pressure on the virus population—total antigenic drift is

high, but excess drift is low.

In general, the mutation rate m and immune-escape

parameter a have relatively little effect on the excess drift d.

Over a set of 83 994 runs using distinct parameter

combinations, d exhibited partial correlations of 0.12
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Table 2. Partial correlations between a parameter and a dynamic quantity, when the other four model parameters are held constant.
The last column is the partial correlation between d and a parameter when the other four parameters as well as the length of the
epidemic are held constant. For each parameter, the first row uses all simulations (83 994 in all) where the epidemic length was less
than 1000 days. The second row, removes some outliers and uses those simulations (71 227) whose epidemics were shorter than
250 days. Note that accounting for the epidemic length does not explain away a correlation between q and d. Abbreviations: es:
epidemic size, 1KQ(tf); wes: weighted epidemic size, 1KqKS(tf); len: epidemic length, tf ; D: total antigenic drift.

es wes len D d d(len)

b 0.76 0.76 K0.54 K0.44 K0.32 K0.06
0.70 0.76 K0.79 K0.48 K0.34 K0.02

q K0.39 K0.94 0.25 0.49 0.59 0.57
K0.45 K0.98 0.65 0.73 0.78 0.63

a 0.37 0.25 K0.20 K0.12 K0.05 0.09
0.37 0.31 K0.33 0.04 0.18 0.26

m 0.15 0.11 K0.09 0.56 0.12 0.21
0.15 0.13 K0.13 0.84 0.33 0.36

log N 0.17 0.11 0.42 0.35 0.25 K0.02
0.33 0.29 0.85 0.55 0.39 0.00
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with m and K0.05 with a; this suggests low sensitivity of d

to m and a. There is no way to test for statistical

significance since the correlated quantities are the results

of deterministic simulations (see table 2 and electronic

supplementary material, Appendix A). Also, d–m sensi-

tivity is dependent on the choice of cross-immunity

function t. Alternate functional forms of t can produce

a noticeable sensitivity of d to m (electronic supplementary

material, Appendix B).

From these explorations of the effects of the model

parameters on excess drift, we note two curious behaviours

of our single-season model of influenza evolution.

First, the epidemic usually peaks when much of the

drift or excess drift has already happened. Therefore,

sampling isolates during what we believe to be the
Proc. R. Soc. B (2006)
beginning of the epidemic may lead us to overestimate

the amount of drift that happened between seasons, when

in fact, the observed drift may have happened early in the

current season. In figure 2a, the neutral epidemic peaks

after 30 days, having undergone about 1.2 replacements.

In the non-neutral dynamics in figure 2b, the epidemic

peaks after 84 days having undergone 7.9 replacements,

4.6 of which are in excess of what can be explained by

neutral mutation during that time period. Sampling

during the beginning of the non-neutral epidemic (e.g.

between days 60 and 70) may lead to an incorrect

conclusion about that year’s epidemic strain.

This result may help explain a phenomenon described

by Schweiger et al. (2002), namely, that ‘comparable

major antigenic differences may result in a severe
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outbreak—not necessarily during the first epidemic season

[of ] their appearance, but during the second.’ A slow and

mild epidemic can be accompanied by a lot of excess drift

in its early phases; in such an epidemic, distant variants

may be observed in collected flu isolates. If a distant

variant at the end of a mild season starts the epidemic at

the beginning of next season, it will benefit by having

escaped much of the host population’s immunity and may

be able to cause a large epidemic. This pattern was

observed in Germany during the mild 1997/1998 season

and the more severe 1998/1999 season. In general, amino

acid changes accumulate within an epidemic season, but

short-term non-specific host immunity may prevent their

effects from being felt until the following season.

Second, we note that the total size of the epidemic,

1KQðtf Þ, measured as the total fraction of hosts infected,

as well as the weighted size of the epidemic, 1KqKSðtf Þ,

do not always correlate positively with the excess drift d

(partial correlations are K0.15 and K0.06, respectively).

Large epidemics do not always result in a lot of antigenic

drift in part because larger epidemic sizes correlate

negatively (K0.61 and K0.62, respectively) with epi-

demic length, and epidemic length correlates positively

(C0.60) with d. This suggests that a scenario of annual

epidemics with runaway antigenic drift (Boni et al. 2004)

would have to be revisited under the assumption that long

epidemics, rather than large epidemics, yield a lot of drift.

In such a scenario, the strain distribution at the end of one

epidemic and the ‘choice’ of a particular strain to start

next season’s epidemic may be critical.
5. DISCUSSION
We analysed a neutral and a non-neutral model of influenza

spread and evolution in a single epidemic season in order to

investigate the forces that drive antigenic drift in influenza.

We solved the neutral model analytically, which provided a

basis for comparison of the numerical results of the non-

neutral model. In the non-neutral model, we examined the

conditions that cause the most excess antigenic drift, which

we defined as the drift that occurs beyond that expected

under neutral mutation. We found that strong host

immunity and long epidemics result in greater excess

antigenic drift, that significant amounts of antigenic drift

can occur in the early phases of the epidemic when there are

still relatively few infected hosts, and that large epidemics

tend to be short, generating little excess drift.

We used a standard deterministic SIR formulation with

multiple strains; our model had no host births and no

immigration so that the epidemic ended when the virus

ran out of susceptibles. This restricts our results to closed

panmictic populations. Antigenic drift on a global scale

would require a meta-population model, which describes

human populations exposed to influenza. In particular,

the stochastic nature of (i) migration between sub-

populations, (ii) summertime transmission dynamics of

influenza in temperate zones (Gog et al. 2003) and (iii)

local extinction of epidemics and new mutants when

infected numbers are small (Girvan et al. 2002; Park et al.

2002) would all need to be better understood.

Our non-neutral model (3.6)–(3.10) fits elegantly into

Price’s covariance formulation of natural selection. Using

Price’s population-genetic framework, we can track

changes in the mean antigenic drift in the virus population
Proc. R. Soc. B (2006)
via the covariance between mutations accumulated (k)

and immunity escaped (wk). This covariance term

increases initially and then wanes, reflecting the differen-

tial selection pressure on the influenza virus population

during the course of an epidemic. Price’s formulation

describes the forces that govern the progression of the

virus population’s mean antigenic distance from the

original epidemic-causing strain, but it tells us nothing

about other properties of the strain distribution. An

important and open problem is the characterization of

the differences between the observed (non-neutral) strain

distribution at the end of an epidemic and the neutral

Poisson distribution.

We identified the parameters in our system that caused

the greatest departures from neutrality. It appears that

immunity (q) has the largest effect on excess antigenic drift

(d). A high level of host immunity puts significant selection

pressure on the virus population, and in addition, it slows

the epidemic, giving natural selection more time to select

for distant antigenic variants. The relationship between q

and d may have important public health consequences as it

indicates that vaccinated populations, as long as they can

still sustain epidemics, can cause significant antigenic drift

(as suggested by Pease 1987, p. 445). Public health

officials may wish to investigate whether the benefits of

vaccination during one season conflict with the feasibility

of vaccination for the following season. If antigenic drift is

indeed greater in more immune populations, preparedness

for influenza pandemics (Webby & Webster 2003) may

need to include vaccination strategies for the second year

after a pandemic with consideration to the effect this will

have on the third year after a pandemic.

The d–q relationship has further importance due to the

discontinuity that appears at R0Z1 in figure 3. The

stochastic nature of mutation, transmission, vaccination

efficacy and population interactions may cause our system

to fall on either side of this discontinuity, either yielding an

unexpected amount of antigenic drift (to the left of the

vertical dashed line) or preventing an epidemic entirely (to

the right of the vertical dashed line). The consequences of

this particular threshold property will need to be explored

with a stochastic model.

With a wealth of sequence data and a high mutation

rate, influenza virus ecology and evolution have a broad

and important intersection with the growing field of

measurably evolving populations (Drummond et al.

2003). Techniques for the accurate estimation of mutation

rates could be applied to detailed, localized influenza

datasets such as the one described by Schweiger et al.

(2002). A precise estimate of influenza’s mutation rate

would be a significant step towards accurate predictions of

near-term antigenic drift. Similarly, the effects of local

population structure during influenza epidemics could be

measured with a technique based on allelic mismatch

distributions as developed by Fraser et al. (2005); this type

of study may help determine whether the observed strain

distributions result more from host population immunity

or host population structure. These methods, along with

the techniques presented in this paper, will help quantify

the driving forces behind antigenic drift in influenza A.
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