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Abstract
Tsetse flies are confined to sub-Saharan Africa where they occupy discontinuous habitats. In
anticipation of area-wide control programmes, estimates of gene flow among tsetse populations are
necessary. Genetic diversities were partitioned at eight microsatellite loci and five mitochondrial loci
in 21 Glossina pallidipes Austin populations. At microsatellite loci, Nei’s unbiased gene diversity
averaged over loci was 0.659 and the total number of alleles was 214, only four of which were shared
among all populations. The mean number of alleles per locus was 26.8. Random mating was observed
within but not among populations (fixation index FST = 0.18) and 81% of the genetic variance was
within populations. Thirty-nine mitochondrial variants were detected. Mitochondrial diversities in
populations varied from 0 to 0.85 and averaged 0.42, and FST = 0.51. High levels of genetic
differentiation were characteristic, extending even to subpopulations separated by tens and hundreds
of kilometres, and indicating low rates of gene flow.

Keywords
Breeding structure; gene flow; microsatellites; single strand conformational polymorphism; tsetse;
Diptera; Glossina pallidipes

Introduction
Glossina pallidipes Austin (Diptera: Glossinidae) is one of 33 species of tsetse flies. All are
exclusively blood feeders. Females possess paired ovaries that consist of only four ovarioles.
Fecundity is very low and a frequently fed female requires at least 15 days to produce her first
offspring, a mature larva that rapidly pupariates. Further reproductive cycles each require a
minimum of nine days. It is unsurprising, therefore, that compared with related Diptera such
as blow flies, house flies, and Drosophila spp., tsetse fly populations are small. Despite their
small populations, tsetse flies are economically highly significant, because they are the
exclusive vectors of African trypanosomiasis.

Glossina pallidipes is among the most economically important tsetse flies. It is zoophagic
throughout its range and although flies in some subpopulations may take human blood meals,
most will not (Leak, 1999). Glossina pallidipes abundance depends critically on the availability
of mammalian hosts and adequate environmental conditions (Rogers & Randolph, 1985). Its
geographic distribution extends from south-western Ethiopia to Kenya, Tanzania,
Mozambique, and west to the Democratic Republic of the Congo (Ford, 1971; Jordan, 1993;
Rogers & Robinson, 2004). Glossina pallidipes populations are scattered and patchy, and
weather patterns can explain much of their presence or absence (Robinson et al., 1997a,b).
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However, where appreciable human densities exist, G. pallidipes populations seem to be low
or altogether absent.

Glossina pallidipes bionomics varies regionally (e.g. Langley et al., 1984), suggesting the
possibility of a species complex. Because of their blood feeding requirements and low
fecundity, tsetse flies are difficult and expensive to culture. Genetic work therefore lags behind
that of many other economically and medically important insects (Gooding & Krafsur, 2005).
Recently, however, research has begun on the population genetics of G. pallidipes. Diverse
populations were sampled in East and southern Africa and allozyme, microsatellite, and
mitochondrial variation assessed (Krafsur et al. 1997; Krafsur & Wohlford, 1999; Krafsur,
2002). Results suggested a high degree of population structure and lesser rates of gene flow
than might be inferred from the substantial ecological literature. The picture afforded by the
foregoing studies requires sharpening. How may we explain the high degree of genetic
differentiation, in view of well conducted, authoritative ecological research that predicts an
opposite expectation? How important is isolation by distance? Can population differentiation
be simply explained by inhospitable habitats that lay between tsetse infested patches? Or by
earlier bottlenecking in population densities and reduced geographic distribution? The
historical record suggests large reductions in tsetse densities and distribution caused by
recurring rinderpest epizootics 75 to 105 years ago that greatly reduced mammalian host
populations (Ford, 1971). More intensive sampling than heretofore may help answer some of
these questions.

In the present study the population genetic structure of G. pallidipes was examined at eight
microsatellite loci. Only three loci were previously scored in this species (Krafsur, 2002) and
intra- and inter-locus variances were substantial. Mitochondrial variation was also assessed to
provide independent estimates of genetic differentiation and gene flow. Most samples were
obtained from Kenya, a generally mountainous country extensively dissected by the Rift
Valley. Habitats include the coastal, semi-desert, savannas and forests, some of which may act
as physical barriers to gene flow. To lend broader geographic perspective, samples were
included from Kenya’s northern (Ethiopia), western (Uganda), and southern neighbours
(Tanzania), and also more distant populations from Zambia and Zimbabwe.

Materials and methods
Sampling procedures

Twenty-one G. pallidipes population samples from six countries in East and southern Africa
(fig. 1) and totalling 720 flies were examined for genetic variation. Fourteen populations were
sampled from Kenya between 2000 and 2003 (Lambwe Valley, Kodera, Busia, Kathekani,
Dakabuku, Tsavo West, Shimba Hills, Oloibortoto, Sampu, Kalema, Lengongu, Shompole,
Nguruman and Lengobei). One population was from Tanzania (Muvumoni, near Tanga) in
2000, one from Zambia (Kakumbi), two from Zimbabwe (Mana Angwa and Mana Pools) in
1996, and two were Ethiopian (Arba Minch and Chankar), sampled in 1996–97. The flies were
caught with Epsilon or biconical traps and then preserved in 85% aqueous ethanol. Uganda
flies were a laboratory culture maintained at the IAEA laboratory in Seibersdorf, Austria for
c. 80 generations. Samples were grouped based on their geographic proximities: group 1, west
and south-western Kenya and Uganda; group 2, southern Africa – Zimbabwe, Zambia; group
3, coastal Kenya and north-eastern Tanzania; group 4, south-western Ethiopia; and group 5,
south-western Kenya.

DNA extraction and microsatellite genotyping
Total genomic DNA was extracted by using the CTAB (hexadecyltrimethylammonium
bromide) method as described by Krafsur & Wohlford (1999). Most flies were females. Eight
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polymorphic loci were examined. Primer sequences for these loci are described in Ouma et
al. (2003, GenBank accession numbers AY220498–AY220504), and Baker & Krafsur
(2001, GenBank accession number AY033512).

Polymerase chain reaction (PCR) amplification was performed as described in Ouma et al.
(2003). One primer was end-labelled with one of two fluorescent dyes (FAM or HEX). PCR
products were resolved in ABI Prism 377 automatic DNA sequencer, using GenescanTM ver.
3.1.2 and the TAMRA-350 size standard (PE Biosystems, Foster City, California).
Subsequently, allele sizes were scored by using ABI GenotyperTM software version 2.5.

Mitochondrial variation
Haplotype diversities were examined at five loci, r16SII, COI, COII, COIITLII and CyB1 by
using the single strand conformation polymorphism (SSCP) technique, which allowed the
identification of haplotypes, i.e. single stranded DNA conformations, based on their differential
mobility when resolved through native polyacrylamide gels (Orita et al., 1989). Three major
steps were involved: PCR of mitochondrial loci, SSCP electrophoresis, and visualization of
variants though silver staining of SSCP gels.

PCR amplification of mitochondrial loci was accomplished using primers: N1-J-12585 and
LR-N-12866 for the 16S ribosomal RNA (r16SII, 300 bp) gene; C1-J-1751 and C1-N-2191
for cytochrome oxidase I (COI, 440 bp); C2-J-3279 and C2-N-3494 for cytochrome oxidase
II (COII, 214 bp) gene; TL2-J-3034 and C2-N-3389 for a fragment mapping between
cytochrome oxidase II and transfer RNA leucine (COIITLII, 350 bp); CB-J-10933 and CB-
N-11367 for cytochrome B1 (CyB1, 350 bp). Their sequences are set out in Simon et al.
(1994). PCR and SSCP methods were as outlined in Krafsur & Wohlford (1999) and Marquez
& Krafsur (2002). The SSCP gel phenotypes were visualized by silver staining as described
in Black & DuTeau (1997). Haplotypes were identified based on their migration distances from
the gel origin, by referencing their migration to that of the 200 bp fragment of the Øx174/
HinfI size marker (Promega G1751, Madison, Wisconsin), and by comparing their migration
to that of allele standards in each gel. The authenticity of SSCP gel electromorphs was checked
by sequencing five to ten flies of each gel phenotype.

Data analysis
Hardy-Weinberg and linkage disequilibria analyses were performed on microsatellite loci to
test the null hypotheses of their Mendelian inheritance and genotypic independence across loci.
These tests were performed by using FSTAT version 2.9.1 software (Goudet, 1995).

Recently bottlenecked populations lose rare alleles via drift but heterozygosities are reduced
at lesser rates (Cornuet & Luikart, 1996). Bottleneck software (Piry et al., 1999) was used to
test for recent bottlenecks in population size. The two phase model was used to test for
disequilibrium between heterozygosities and allele numbers in grouped populations because
neither the infinite alleles model nor the stepping stone model of mutation strictly apply to
micro-satellite loci.

Because of full linkage among mitochondrial loci, analysis was done on the frequencies of
composite haplotypes formed by combining in each fly its haplotypes over five loci. Diversities
at microsatellite and mitochondrial loci were analysed by using F statistics (Weir, 1996) and
the hierarchical diversity analysis of Nei (1987). The F statistics were estimated from the
analysis of variance (ANOVA) of allele frequencies as prescribed by Weir (1996) and Weir &
Cockerham (1984), with a nested model of samples within groups and random effects. The
ANOVA afforded a hierarchical partition of allele frequency variance into its components and
the estimation of the fixation index FST, which is formally defined, for k loci and x alleles, as
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∑K σx
2/∑K[(XT)(1 − XT)] the standardized variance of allele frequencies among populations.

FST also can be interpreted as the correlation of alleles among subpopulations S with respect
to the total population T and it also estimates their degree of differentiation in terms of
departures from random mating among the subpopulations. Thus, FST is a measure of genetic
drift. FIS is the correlation of alleles in individuals averaged over subpopulations; it measures
the average departure from random mating within subpopulations. FIT is the correlation of
alleles in individuals relative to that in the entire gene pool; it measures departures from random
mating thus:

(1 – FIT) = (1 – FIS)(1 – FST).

F statistics were estimated at different hierarchies to examine the degree of population
structuring.

The stepwise mutation model, via replication slippage, is thought to explain most microsatellite
diversity. If so, variance in allele repeat sizes can recover more information than can variance
in allele frequencies (Slatkin, 1995). The statistics RIS, RST, and RIT, analogous to the
corresponding F statistics, were computed by using GENEPOP version 3.2a software
(Raymond & Rousset, 1995). The R statistics are based on allele repeat numbers and F statistics
on allele frequencies.

The hierarchical analysis of diversity (Nei, 1987) proceeded by estimating the unbiased
population diversity as

he = 2n(1 –∑ Xi
2) / (2n – 1)

with n for haploid systems, where xi is the frequency of the ith allele or haplotype, and n is the
number of individuals sampled. The average diversity over s populations was estimated as
HS = ∑he/s. The minimum genetic distance between two populations is

Dij = (Ji + J j) / 2 – Jij

where Ji = ∑Xi
2 is the identity of population i, and Jij = ∑ xixj is the shared identity between

populations i and j. Thus Dij represents the unshared identity between populations. The average
Dij over s populations,

DST =∑ Dij / s(s – 1)

is the mean diversity among populations. The variance of DST was estimated according to Nei
& Roychoudhury (1974). The total gene diversity, HT, was estimated as the sum of the
diversities within populations, HS, between populations within groups, DSG, and diversity
between groups, DGT, according to the relation,

HT = HS + DSG + DGT

Genetic differentiation between groups was estimated as GGT = DGT/HT, and that among
populations within groups as GSG = DSG/HT. GST = DST/HT and is analogous to Wright’s
FST; both estimate the average degree of differentiation among populations. GST is a linear
measure of genetic distance and FST is a geometric distance measure.

Assuming mutation-drift equilibrium and the infinite mutation model, the rate of gene flow
can be estimated as
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Nm~(1 – GST ) / 4GST
where Nm is the mean number of reproducing individuals per generation. The variance of
GST was estimated according to Chakraborty (1974). For mitochondrial loci, the appropriate
denominator is 2GST. An independent estimate of gene flow was obtained by Slatkin’s private
allele method (Slatkin, 1985; Slatkin & Barton, 1989), which was estimated by using SAS
software version 8.2 (SAS Inc., 2001). A correlation analysis between genetic and geographic
distance matrices was performed according to Smouse et al. (1986) after Mantel (1967). The
matrix correlation index was estimated as

rXY = SCP(X , Y ) / SS(X )SS(Y ) −1/2

where SS is the sum of squares and SCP the sum of squares and cross products of matrices X
and Y. The confidence interval for the matrix correlation index was estimated by permuting
the n–1 columns and rows on one matrix while holding the other constant. After each
resampling, the correlation index was computed and its null distribution established. Statistical
calculations were done by using SAS.

Results
Sequencing SSCP electromorphs

Nucleotide sequence analysis of SSCP electromorphs indicated that variation was
underestimated (table 1). From 20 electromorphs (i.e. gel phenotypes) 33 genotypes were
detected, for an overall mean detection of 61%. Only 33% of variants were detected by SSCP
at COI but all were detected at COIITLII.

Allele frequency distributions
No significant departures were detected from linkage equilibrium between microsatellite loci
when using linkage disequilibrium tests and the sequential Bonferroni correction. All loci were
polymorphic and the number of alleles per locus ranged from 11 in GpCAG133 to 42 in
GpB20b, with an average of 26.75 ± 8.7. A total of 214 alleles was detected and their frequency
distribution was hyperbolic showing that most microsatellite alleles were present in low copy
number (fig. 2), thereby arguing against a recent bottleneck (Luikart et al., 1998). Only one
allele at each of four loci was detected in all populations, 21 alleles were private (i.e. found in
one sample only), and 37 (17%) were singletons (i.e. found in one fly only).

Tests for recent bottlenecks indicated that allele frequency distributions in all populations were
typically hyperbolic thereby showing no loss of rarer alleles. Moreover, only one of 21
populations showed a significant excess of heterozygotes, a result to be expected in c. 5% of
such trials. Thus the microsatellite data provide no evidence of recent, stringent bottlenecks in
G. pallidipes populations.

Among five mitochondrial loci, the number of SSCP single locus electromorphs ranged from
three in COI to six in COII, and yielded a total of 39 composite haplotypes, clearly an
underestimate of the underlying nucleotide variation. No haplotype was found in all
populations or grouped populations. The most common composite haplotype was shared by
12 populations distributed among three population groups. Twenty-four haplotypes of 39
(62%) were confined to a single population group. Thirteen haplotypes were private (33%) and
nine were singular (23%), thus most were rare at frequencies of 5% or less (fig. 2).

The number of composite haplotypes in populations varied from one in Mana Angwa
(Zimbabwe) and Sampu (Kenya) to ten in Lambwe (Kenya). Southern African populations
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showed only four haplotypes, but 23 were recorded in south-eastern Kenya and north-eastern
Tanzania. It is interesting that 50% of the haplotypes in southern Africa were private or singular.

Gene diversities
Microsatellite single locus expected diversities (heterozygosities) varied from 0.435 at
GpCAG133 to 0.813 at GpB20b with an overall average of 0.659. Heterozygosities averaged
over loci exceeded 50% in all populations.

The contrasts between observed and expected heterozygosities provide a measure of departures
from Hardy-Weinberg equilibria, expressed by using F statistics. FIS is a measure of departures
from random mating within populations (table 2). There were no significant differences
between observed and expected heterozygosities (FIS ~ 0). Average microsatellite alleles per
locus varied from 3.5 in Kalema and Lengongu to 13.9 in Tanga. Overall, grouped populations
in coastal Kenya and Tanzania were the most diverse, with an average mean number of alleles
per locus of 22.4 and an average heterozygosity of 0.821. The south central Kenya group was
the least diverse, with mean number of alleles and heterozygosity of 9.9 and 0.619, respectively.
Expected and observed heterozygosities and mean alleles per locus differed significantly
among the grouped populations (table 2).

Mitochondrial diversity is the probability that two randomly chosen flies have different
composite haplotypes. Mitochondrial diversities were heterogeneous among grouped
populations (χ2

4 = 10.97, P < 0.03), ranging from only 0.04 in southern Africa to 0.60 in south
central and western Kenya and averaged 0.42 ± 0.02 over all samples (table 3).

Genetic differentiation
Nei’s methods were used to partition microsatellite diversity into within and between groups
thereby providing estimates of the mean unshared diversity between groups, which was three-
fold greater than that of populations within groups (table 4). Differentiation between groups
was fourfold greater than differentiation within groups. Assuming the infinite allele model, the
foregoing values would be equivalent to average exchange rates of 1.6 reproducing flies per
generation among groups and 5.8 among populations within groups. The analysis of variance
of allele frequencies showed that only 13% of the variance lay between groups, 5% among
samples within groups, and 81% within samples. The corresponding fixation indices indicated
that there was a similar degree of differentiation among groups (FGT = 0.13) as among all
populations (FST = 0.18; Table 4). Nei’s GST = 0.22 was essentially the same.

The hierarchical partition of mitochondrial diversity is set forth in table 5. The amount of
unshared diversity between groups, DGT = 0.55, can also be interpreted as the mean genetic
distance among groups. The corresponding distance among all populations, DST = 0.175.
Diversity of populations within groups, GSG = 0.21, indicates greater similarity of populations
within groups than between them, GGT = 0.45, as can be expected because of their relative
geographic proximities. GSG can also be interpreted as the probability that any two haplotypes
randomly chosen from two groups are different. GST = 0.52, which estimates the chance that
any two random flies from different populations have different haplotypes. Analysis of
variance in haplotype frequencies showed that 48% of variance lay within samples, 36% in
samples within groups, and only 15% among groups (table 5). The corresponding fixation
indices indicated again a substantial degree of structuring (table 5).

Single locus variance estimates based on repeat size (RST) were greater than variances based
upon allele frequencies (FST table 6). Both measures show substantial interlocus variance.
Departures from random matings within populations (FIS) were substantial although
statistically non-significant. They are commonly observed when scoring microsatellite loci.
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Another method of estimating the standardized variance in allele frequencies is by converting
the estimate of Nem obtained via the private allele method (Slatkin & Barton, 1989) into FST
via the island model of migration. The mean frequency of private alleles was 0.053, thus
Nem = 1.3 and the corresponding value of FST is 0.158. The same method applied to
mitochondrial haplotype private allele frequency of 0.216 yielded Nem = 0.178 with
corresponding FST = 0.738.

Comparing results in tables 7 and 8, the average pairwise genetic differentiation between
groups was greater at mitochondrial (GIJ = 0.57 ± 0.01) than at microsatellite (GIJ = 0.25 ±
0.01) loci, as detected by Kruskal-Wallis ANOVA (χ2

4 = 13.19, P ~ 0.01). Based on
mitochondrial variation, mean G = 0.73 for southern African populations compared with G ~
0.5 for the other population groups. Within group variation at microsatellite loci varied from
0.29 among western populations to a low of 0.20 among populations near the East African
coast. At microsatellite loci, genetic differentiation (GST) within grouped populations varied
from 0.19 in western Kenya and Uganda to a low of 0.05 among the Ethiopian samples. These
are substantial levels of differentiation. Mitochondrial loci indicated surprisingly high levels
of differentiation in southern Africa and south central Kenya.

Based on microsatellite loci, a UPGMA dendrogram of Nei’s minimum genetic distances
(Dij) among populations shows geographically close populations tend to cluster together (fig.
3). Clusters were identical to those used to assign populations to groups. The same procedure
applied to mitochondrial variation was incongruent with the micro-satellite dendrogram and
made no sense geographically. This could, in principle, indicate different dispersal patterns
between male and female G. pallidipes. However, the Mantel test for microsatellite loci
between geographic and genetic distances Dij suggested that isolation by distance helps to
explain the genetic differentiation patterns (r = 0.41, P ~ 0.001) and a similar result was
obtained for mitochondrial haplotypes (r = 0.45, P ~ 0.001).

Discussion
SSCPs disclosed approximately 61% of the existing mitochondrial diversity at the loci
investigated, sufficiently high resolution to investigate questions relating to gene flow. The
method is cost effective in that large numbers of specimens can be examined cheaply relative
to the cost of nucleotide sequencing. The chief drawback is that failure to detect all the variation
can allow a measure of homoplasy. Homoplasy has the effect of underestimating genetic
differentiation, thereby overestimating gene flow (Balloux & Lugon-Moulin, 2002). To
contrast mitochondrial with nuclear variation strengthens demographic investigations because
it offers an independent view of evolutionary forces. Explicit comparisons will be discussed
later, where more appropriate to do so.

We did not detect linkage between microsatellite loci. Glossina pallidipes show only two pairs
of autosomes and a heteromorphic sex bivalent in addition to supernumerary chromosomes
that vary from zero to at least three in number (Southern, 1980). There is no recombination in
males (Gooding, 1984). The eight loci, therefore, seem to be well separated over the autosomes.
The microsatellite loci used here were autosomal (Ouma et al., 2003).

The mild heterozygote deficiencies within populations (estimated by FIS, RIS) were not caused
by inclusion of hemizygous males. Nor is it likely the deficiencies arose because some loci
were located on supernumerary chromosomes, known to be highly variable in number.
Heterozygote deficiencies were much more likely caused by null alleles, a common problem
when using microsatellite loci.

Eighty-two percent of the microsatellite alleles and 90% of mitochondrial haplotypes occurred
at frequencies ≤ 5% and may thus be considered ‘rare’. Only four of 214 microsatellite alleles
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were shared by all populations; the three most common mitochondrial haplotypes were shared
by only three of five grouped populations. Summed over populations, the numbers of rare
alleles and haplotypes are consistent with that of a mega-population near mutation-drift
equilibrium. Based on microsatellites, tests for recent bottlenecks were negative in each
population even though group 1, group 2 and group 5 populations had been exposed to effective
tsetse control programmes in the 1980s and early 1990s (Brightwell et al., 1997; Turner &
Brightwell, 1986; Hargrove, 2003). There are approximately eight generations yearly in tsetse
flies, and tsetse effective population sizes are comparatively small, so four years is probably
the maximum extent that detectable disequilibrium obtains between allelic diversity and
heterozygosity (Cornuet & Luikart, 1996). It therefore seems reasonable to infer that
populations probably recovered full allelic diversities in the intervals between population
minima and the genetic sampling.

Effective tsetse management should reduce heterozygosities in the subject populations.
Ethiopian and coastal East African tsetse populations have not been subjected to extensive
control measures. Thus, we might expect population groups 3 and 4 to show more diversities
than the others. Although microsatellite allelic, observed and expected diversities differed
significantly among groups, the Ethiopian samples were not particularly diverse. Southern
African mitochondrial diversities, on the other hand, were very low, such that the odds of two
randomly chosen flies having different haplotypes was only 4%. Tsetse populations in Zambia
and Zimbabwe, according to the historical record, suffered catastrophic declines in distribution
and abundance caused by mortalities of about 90% among their chief mammalian hosts (Ford,
1971). These mortalities were caused by the rinderpest epizootic at the close of the 19th century.
It is interesting that neither allozyme nor micro-satellite diversities showed detectable evidence
of that bottleneck, but the mitochondrial data do provide compelling evidence that tsetse
populations in southern Africa were more strongly affected than populations in East Africa.
Glossina morsitans morsitans Westwood and G. m. centralis Machado showed similar patterns
(Wohlford et al., 1999; Krafsur et al., 2001). Mitochondrial DNA is known to be more sensitive
to population subdivision and bottlenecks than nuclear genes because of its mode of inheritance
and copy number (Wilson et al., 1985).

The population grouping scheme revealed much less genetic differentiation within groups than
among groups, as may be expected among closely located populations. Geographic distances
within population groups were not particularly great – most pairwise distances were well under
100 km. It is therefore important that significant genetic differentiation was detected within
groups, for this suggests that tsetse fly capacity for dispersal may not often be realized.
Hargrove (2003) reviewed field data on dispersion of G. pallidipes and G. morsitans,
concluding that mean square diffusion rates of up to 0.25 km2 per day (= mean step length of
1 km) may obtain such that 30% of a standing population could disperse 10 km in a year. It
would seem, therefore, that flies in the locations we sampled may not have migrated quite so
far for a great many generations. The genetic data could also suggest that mark, release,
recapture experiments somehow induce greater than ‘normal’ displacement rates and that
recolonization of ‘eradicated’ habitats may have had significant numbers of undetected resident
flies. Hargrove (2003) has suggested that as few as 16 inseminated tsetse can initiate a thriving
population. Is it not fair to say that further study is necessary to resolve the issue of dispersion
versus restricted gene flow?

The among-group differentiation estimates were similar when obtained by using Nei’s
(1987) and Weir’s (1996) methods even though the two methods make different assumptions.
Nei’s differentiation index GST considers populations as clades branching from a common
ancestor and is based on probabilities of shared identity among grouped populations. On the
other hand, Weir & Cockerham’s θ, equivalent to Wright’s coancestry coefficient FST,
considers populations equally related to their common ancestor and is based on correlation of
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alleles among grouped populations relative to the overall correlation. When populations share
only a small proportion of their allelic diversity, Nei’s GST provides better estimates than
FST; otherwise, both indices provide good estimates of differentiation. Slatkin’s private allele
method offers yet another way of examining gene flow and the results for both microsatellite
loci and mitochondria were in general agreement with θ and GST.

R means and standard errors were greater in magnitude than the F statistics, a commonly
observed phenomenon (Balloux & Lugon-Moulin, 2002). R assumes that micro-satellites obey
the stepwise mutation model (SMM) but compelling evidence indicates departures from the
SMM. Size homoplasy is a common problem with microsatellites and this has the effect of
depressing estimates of population differentiation. High and variable mutation rates are also
typical of microsatellite loci, which further depress estimates of genetic differentiation,
particularly where exchange rates between populations are low. Finally, high diversities greatly
depress the maximum values that FST can take – the theoretical maximum FST is one minus
the mean diversity (Nagylaki, 1998; Hedrick, 1999).

Indices of genetic differentiation based on microsatellites versus those based on mitochondrial
variation provide more interesting contrasts. Mitochondrial variation showed the greater degree
of differentiation because it represents an effective population size of roughly one quarter that
afforded by sexually reproducing, diploid variation. Mitochondrial sensitivity to demographic
forces is enhanced also by its matrilineal pattern of inheritance (Avise, 2004).

Our genetic differentiation estimates indicated a rather high degree of structuring. This is
surprising especially when it is considered that mark, release and recapture data and
recolonization rates show G. pallidipes to be highly mobile, and can demonstrate daily mean
displacement rates of 360 m to 1.1 km, depending on season (Vale et al., 1984; Brightwell et
al., 1992, 1997; Hargrove, 2003). Theoretically, the exchange of approximately one
reproducing fly per generation or two is sufficient to prevent the fixation of different genotypes
in different populations from genetic drift (Wright, 1978). The contradiction between genetic
and ecological data, therefore, is puzzling. Available maps however indicate that morsitans
group tsetse taxa have a patchy distribution (Ford, 1971; Rogers & Robinson, 2004), and there
seems to be little gene flow among patches and surprisingly less than we might expect within
them, based on the ecological data (Krafsur, 2003). A recent trapping study at Nguruman, in
southern Kenya (group 5 locations), showed that G. pallidipes tends to be highly aggregated
even at geographic scales of only 4–5 km (Odulaja et al., 2001). Perhaps habitats in Nguruman
include seasonally inhospitable areas between the thickets in which flies may be caught in all
seasons. Earlier research at Nguruman, however, suggested seasonally extraordinary
immigration rates (Brightwell et al., 1992, 1997) that should greatly overwhelm local genetic
differentiation. Nevertheless, genetic data, including allozymes (Krafsur et al., 1997; Krafsur,
2002), clearly show that the forces of drift seem to be much stronger than migration in G.
pallidipes throughout most of its range.
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Fig. 1.
Approximate sampling locations (○) of Glossina pallidipes.
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Fig. 2.
Microsatellite allele (▪) and mitochondrial haplotype (▪) frequency distribution.
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Fig. 3.
UPGMA minimum genetic distance (Nei, 1987) tree of Glossina pallidipes estimated from
microsatellite loci.

Ouma et al. Page 15

Bull Entomol Res. Author manuscript; available in PMC 2006 September 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ouma et al. Page 16

Table 1
Nucleotide diversity of SSCP electromorphs at mtDNA loci in Glossina pallidipes.

Number of

Locus Flies Genotypes Electromorphs Effective resolution %a

r16SII 19 5 4 80.0
COII 39 8 6 75.0
CyB 30 7 3 43.0
COIITLII 39 4 4 100.0
Totals 158 33 20 Mean 60.6

a
Effective resolution = 100× [no. electromorphs/no. genotypes established by sequencing]
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Table 3
Number of mitochondrial haplotypes and gene diversity in Glossina pallidipes.

Group Sample N No. of haplotypes HS ± SE

1 Lambwe 48 10 0.85±0.03
Busia 48 6 0.73±0.04

Kodera 24 3 0.41±0.10
Uganda 40 2 0.41±0.07

Total and mean 160 16 0.60±0.06
2 Mana Angwa 24 1 0.00±0.00

Mana Pools 48 2 0.04±0.04
Zambia 24 2 0.08±0.07

Total and mean 96 4 0.04±0.03
3 Dakabuku 24 5 0.61±0.09

Kathekani 24 4 0.43±0.12
Shimba Hills 48 6 0.74±0.04

Tanga 48 9 0.71±0.05
Tsavo 24 3 0.45±0.09

Total and mean 168 23 0.59±0.08
4 Arba Minch 24 3 0.24±0.11

Chankar 24 5 0.63±0.10
Total and mean 48 7 0.44±0.10

5 Nguruman 24 4 0.72±0.05
Kalema 14 3 0.38±0.15

Lengobei 24 2 0.29±0.10
Lengongu 18 2 0.42±0.10

Oloibortoto 24 5 0.31±0.12
Sampu 24 1 0.00±0.00

Shompole 24 4 0.31±0.12
Total and mean 152 11 0.35±0.09

Grand total
and means

624 39 0.42±0.02

Kruskal-Wallis test of homogeneity among groups (X24 = 10.97, P = 0.03)
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