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Stabilization and maturation of synapses are important for

development and function of the nervous system. Previous

studies have implicated cholesterol-rich lipid microdo-

mains in synapse stabilization, but the underlying mecha-

nisms remain unclear. We found that cholesterol stabilizes

clusters of synaptic acetylcholine receptors (AChRs) in

denervated muscle in vivo and in nerve–muscle explants.

In paralyzed muscles, cholesterol triggered maturation of

nerve sprout-induced AChR clusters into pretzel shape.

Cholesterol treatment also rescued a specific defect in

AChR cluster stability in cultured src�/�;fyn�/� myotubes.

Postsynaptic proteins including AChRs, rapsyn, MuSK and

Src-family kinases were strongly enriched in lipid micro-

domains prepared from wild-type myotubes. Microdomain

disruption by cholesterol-sequestering methyl-b-cyclo-

dextrin disassembled AChR clusters and decreased AChR–

rapsyn interaction and AChR phosphorylation. Amounts

of microdomains and enrichment of postsynaptic proteins

into microdomains were decreased in src�/�;fyn�/� myo-

tubes but rescued by cholesterol treatment. These data

provide evidence that cholesterol-rich lipid microdomains

and SFKs act in a dual mechanism in stabilizing the

postsynapse: SFKs enhance microdomain-association of

postsynaptic components, whereas microdomains provide

the environment for SFKs to maintain interactions and

phosphorylation of these components.
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Introduction

Synaptogenesis is a key process in the development and

function of the nervous system. In a first phase, neurotrans-

mitter receptors and associated proteins accumulate to form a

postsynaptic density. Proteins and nonprotein factors trigger

synaptic differentiation (Fox and Umemori, 2006). A major

factor is glia-derived cholesterol, which induces synapto-

genesis in cultured retinal ganglion cells (Mauch et al,

2001). Its roles in vivo and specifically in postsynaptic

assembly remain unknown. In a second phase of synapto-

genesis, some synapses and postsynaptic densities mature

and are stabilized, while others are eliminated. Whereas

neural activity is known to regulate this process (Cohen-

Cory, 2002), the effector machinery in synapse stabilization

is poorly understood.

Cholesterol, along with sphingolipids, is enriched in sub-

compartments of the cellular membrane system. These lipid

microdomains, often isolated due to their detergent-resis-

tance, also include signaling proteins, regulate trafficking

and signal transduction processes, and may partly corres-

pond to membrane rafts, dynamic structures that bring toge-

ther activated receptors and transducer molecules (Brown

and London, 1998; Simons and Toomre, 2000; Golub et al,

2004; Pike, 2006). The cholesterol-rich lipid microdomains

(CRLMs) are involved in aspects of synaptic function in

cultured cells. Depletion of cholesterol leads to loss of surface

AMPA receptors and of synapses in hippocampal neurons

(Hering et al, 2003). In ciliary neurons, CRLMs are necessary

for the maintenance of a7 neuronal nicotinic acetylcholine

receptors (AChRs) in synapse-associated clusters (Bruses

et al, 2001). At the neuromuscular junction (NMJ), the

presence of plasmalemmal cholesterol is necessary for proper

AChR gating functions (Barrantes, 1993); AChRs associate

with CRLMs in trafficking toward the plasma membrane

in transfected heterologous cells (Marchand et al, 2002).

However, the relevance of lipid microdomains and choles-

terol for synaptogenesis in vivo, and the identity of the

signaling pathways operating through the microdomains,

has remained unclear.

During NMJ formation, myotubes respond to neural agrin,

assembling AChRs at nascent synapses (Gautam et al, 1996).

This scaffolding function is assigned to MuSK, the trans-

membrane kinase that translates agrin into a clustering signal

(Glass et al, 1996). Besides MuSK and AChR, rapsyn is the

third core protein for the AChR clustering process (Gautam

et al, 1995; Marangi et al, 2001). In response to agrin, the

association of rapsyn with AChRs increases and mediates

binding to cytoskeletal proteins (Moransard et al, 2003).

AChR b subunits become tyrosine-phosphorylated and

this modification regulates cytoskeletal linkage and efficient

clustering (Borges and Ferns, 2001).

During the maturation of NMJs, plaque-shaped AChR

clusters are stabilized and adopt pretzel-shaped configura-

tions, with AChRs located at the crests of postjunctional folds.

AChR half-life time is highly increased and synaptic proteins

are selectively produced by subsynaptic nuclei (Sanes and

Lichtman, 2001). The molecular mechanisms mediating this

postnatal NMJ stabilization differ from those involved in NMJ

induction, and much less is known about them (Willmann

and Fuhrer, 2002). Stability of AChR clusters can also be

analyzed in cultured myotubes, by adding and then with-
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drawing agrin or other factors and studying the half-life time

of clusters. Although the time scale is different, this assay

reveals many parallels to postnatal NMJ stabilization in vivo.

Thus, the utrophin complex with its components dystro-

glycan and dystrobrevin, and Src-family kinases (SFKs) are

important in postsynaptic stabilization both in vivo and

in vitro (Grady et al, 2000; Jacobson et al, 2001; Smith

et al, 2001; Marangi et al, 2002; Sadasivam et al, 2005).

SFKs are activated by agrin (Mittaud et al, 2001) and maintain

AChR–rapsyn interaction and AChR b phosphorylation

(Sadasivam et al, 2005). In cultured src�/�;fyn�/� myotubes,

agrin- or laminin-induced AChR clusters are unstable and

disperse rapidly after withdrawal of these factors (Smith et al,

2001; Marangi et al, 2002). Interfering with SFK function

in vivo causes postsynaptic disintegration of adult NMJs

(Sadasivam et al, 2005). Since SFK functions are specifically

associated with CRLMs in other cells (Resh, 1999; Simons

and Toomre, 2000), these results raise the possibility that

microdomain-dependent processes might be involved in

postsynaptic apparatus maintenance through SFKs.

To investigate mechanisms of postsynaptic maturation, we

determined whether, and through what signaling molecules,

cholesterol and lipid microdomains might stabilize NMJs

in vivo and in vitro. We find that cholesterol addition stabi-

lizes NMJs and promotes their maturation from patch- to

pretzel-type configurations. Postsynaptic proteins reside in

CRLMs, and CRLM dispersion disrupts AChR clusters, AChR–

rapsyn interaction and AChR b phosphorylation. In src�/�;

fyn�/� myotubes, cholesterol addition normalizes the redu-

ced CRLM association of postsynaptic proteins and stabilizes

AChR clusters. These results suggest a dual mechanism for

postsynaptic cluster stabilization through SFKs, involving

an enhancement of the association of cluster components

with CRLMs, and interactions and phosphorylation of these

components at the microdomains.

Results

Cholesterol stabilizes AChR clusters in vivo

To investigate a possible role of cholesterol and lipid micro-

domains in promoting postsynaptic apparatus maintenance

in vivo, we analyzed the state of assembly of AChR clusters at

denervated NMJs in the absence or presence of exogenous

cholesterol. The sciatic nerve was cut in 1-month-old mice,

and AChR clusters were visualized 12 days later in two DeSyn

muscles (lateral gastrocnemius and medial gastrocnemius),

which exhibit substantial postsynaptic cluster disassembly

under these experimental conditions (Pun et al, 2002). To

visualize denervated synaptic sites, we counterstained

muscle sections with an antibody against p75, a protein

upregulated in Schwann cells in the absence of nerve contact

(Taniuchi et al, 1986). As expected, denervated synaptic sites

exhibited only remnants of AChR clusters after 12 days

of denervation (Figure 1A; note irregular AChR labeling

patterns, with only small regions of intense labeling). In

contrast, when cholesterol was applied daily to denervated

muscles, starting 5 days after denervation, AChR signals at

denervated synaptic sites were much better preserved

(Figure 1A; note that p75 signals were not affected by the

cholesterol treatment). These AChR signals were comparable

to clusters in nondenervated control animals (not shown, but

refer to an earlier paper (Pun et al, 2002)). A quantitative

analysis of AChR labeling intensities revealed that synaptic

sites had lost most of their AChR signal 12 days after

denervation, but that the synaptic signal was largely pre-

served in the presence of exogenous cholesterol (Figure 1C).

To investigate AChR cluster protection by cholesterol

under more challenging experimental conditions, we ana-

lyzed nerve–muscle explant preparations of soleus main-

tained at 371C in Ringer solution supplemented with

calcium. To reliably identify synaptic sites, we carried out

these experiments using transgenic mice expressing a synap-

tophysin-GFP construct in neurons (Thy1-spGFPmu) (De Paola

et al, 2003). Under these experimental conditions, many

synaptic sites lost most of their AChR signal after 3 h

ex vivo, such that about half the synapses appeared normal

while others had only low-intensity AChR label (Figure 1B

and C). Inclusion of the cholesterol sequestering agent

methyl-b-cyclodextrin, which disrupts CRLMs (Simons and

Toomre, 2000; Tansey et al, 2000; Ma et al, 2003), accelerated

the loss of AChR signal (Figure 1B and C). In contrast,

inclusion of cholesterol in the culture medium protected

most AChR clusters (Figure 1B and C).

To determine whether cholesterol might also promote the

assembly of new AChR clusters in vivo, we used reporter mice

expressing membrane-targeted GFP in neurons (Thy1-mGFPs)

(De Paola et al, 2003) and carried out cholesterol supplemen-

tation experiments in lateral gastrocnemius muscle chroni-

cally treated with Botulinum toxin A. These experimental

conditions (lateral gastrocnemius in 1-month-old mice; toxin

applications every 4th day for a total of 20 days) induce the

disassembly of postsynaptic apparatus at NMJs, a massive

nerve sprouting response, and induction of small ectopic

AChR plaques along the nerve sprouts (Figure 2A and B

(left panels); see also Santos and Caroni, 2003). Daily local

applications of cholesterol from day 10 of the BotA treatment,

that is, at a time when NMJ disassembly and nerve sprouting

were not yet pronounced (Santos and Caroni, 2003), led to a

suppression of the AChR cluster disassembly process, which

was accompanied by a suppression of nerve sprouting and of

ectopic AChR plaque induction by sprouts in these paralyzed

muscles (Figure 2A, right panels). The resulting AChR signals

appeared very similar to those in nontreated control animals

(not shown; but refer to Santos and Caroni, 2003).

Significantly, initiation of the cholesterol treatment at day

15, when sprouting was well advanced (Santos and Caroni,

2003), led to the assembly of large, pretzel-shaped ectopic

AChR clusters along the sprouts (Figure 2B).

Taken together, these data provide evidence that local

applications of exogenous cholesterol in vivo protect AChR

clusters against denervation-induced disassembly, and pro-

mote the maturation of sprout-induced ectopic AChR clusters

in paralyzed muscles from an embryonic-type plaque shape

into a pretzel shape. We thus propose that cholesterol is an

important factor for the maturation and stabilization of the

NMJ in vivo.

Cholesterol stabilizes AChR clusters in cultured

src�/�;fyn�/� myotubes

To analyze the mechanism of action of cholesterol in stabiliz-

ing AChR clusters, we turned to aggregation assays in cul-

tured myotubes. Furthermore, we took advantage of cells

from mice lacking Src and Fyn, where AChR clusters are

normally induced by agrin or laminin treatment, but disas-
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semble within a few hours after the removal of these factors

from the medium (Smith et al, 2001; Marangi et al, 2002). We

treated src�/�;fyn�/� myotubes with agrin to induce maximal

AChR clustering, then withdrew agrin and determined

whether the addition of cholesterol might stabilize AChR

clusters. We found that after 5 h, cholesterol-treated cells

showed the same number of AChR clusters as cells from

which agrin was not withdrawn (Figure 3). Cells from which

agrin was withdrawn for 5 h, without addition of cholesterol,

showed a low cluster number, comparable to the level of

spontaneous clustering. In wild-type cells, clusters were very

stable following removal of agrin, as published previously

(Smith et al, 2001; Marangi et al, 2002). This stability

prohibited assessing significant effects of cholesterol.

We next determined whether cholesterol might compen-

sate for agrin withdrawal by enhancing signaling processes

involved in the formation of the NMJ. Cholesterol addition

to wild-type myotubes did not induce formation of AChR

clusters (Figure 4A) and did not lead to phosphorylation of

MuSK or the b-subunit of AChRs, unlike agrin (Figure 4B and

C). These data show that cholesterol stabilizes AChR clusters

in cultured myotubes but does not activate agrin/MuSK

signaling.

The proteins involved in AChR cluster stabilization

reside in CRLMs

Cholesterol is a key component of lipid microdomains, and its

action in cluster stabilization might involve microdomain-

dependent processes. We therefore prepared and analyzed

CRLMs from cultured wild-type myotubes using a well-estab-

lished detergent-free protocol (Song et al, 1996a, b; Riddell

et al, 2001; Nishio et al, 2004; Rhainds et al, 2004; Zhang

et al, 2005). Cell homogenates were floated on discontinuous

sucrose gradients, and fractions were analyzed by immuno-

blots. The CRLM fractions (4–6) were found at the interface

between 5 and 35% sucrose and defined by strong enrich-

ment of typical markers such as caveolin-3, flotillin-2, choles-

terol and the sphingolipid, ganglioside GM1 (Figure 5A

Figure 1 Cholesterol stabilizes AChR clusters in denervated muscles. (A) Appearance of AChR clusters in two DeSyn muscles 12 days after
denervation. Sciatic nerves were cut in 1 month mice; the absence of intact axons is confirmed by the expression of p75 in Schwann cells.
Where indicated, cholesterol was applied daily, starting 5 days after denervation. The larger p75-positive area in the medial gastrocnemius
panel with cholesterol is due to the particular plane of section, and does not reflect a systematic elevation of Schwann cell p75
immunofluorescence signals in denervated muscles treated with cholesterol. (B) Examples of AChR clusters (visualized by rhodamine-a-
bungarotoxin; RITC-a-BT) in soleus nerve–muscle explants after 3 h in vitro. (C) Quantitative analysis of data as shown in (A) (left) and (B)
(right). AChR labeling intensities (RITC-a-BT) were compared to controls; shown are fractions of NMJs with signal at least 70%, or less than
20% of control values. The 20 and 70% boundaries were selected to highlight the differences among the samples of these experiments. N¼ 300
AChR clusters (from 3 mice each). Bars: 40 (A) and 20 mm (B).
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and B). Measurement of protein concentration showed that

fractions 4–6 contained little of the overall protein

(only 9.570.2%; mean7s.e.m., n¼ 5); most protein was

found at the bottom of the gradient, in fractions 8–12

which contain free (not microdomain associated) cellular

proteins (Figure 5C). Another negative control was a-tubulin,

which did not associate with CRLMs and was mostly recov-

ered in the free fractions (Figure 5A). These controls estab-

lished the validity of the method for preparation of CRLMs

from myotubes.

We probed fractions for the content of postsynaptic pro-

teins. We found the AChR highly enriched in CRLMs, as 70%

of the total receptor present in all fractions of the gradient

resided in fractions 4–6 (Figure 5D and E). This reflects a 7.3-

fold enrichment over bulk protein (Figure 5C). Like AChRs,

elements of the agrin signaling pathway such as MuSK and

rapsyn were similarly concentrated in CRLMs. The same was

true for SFKs (Figure 5D and E), which are known from other

cell types to be typical constituents of CRLMs (Resh, 1999;

Simons and Toomre, 2000). Finally, b-dystroglycan and

a-dystrobrevin-2, members of the utrophin complex impor-

tant for NMJ stabilization (Grady et al, 2000; Jacobson et al,

2001), were also recovered efficiently in CRLMs. An overnight

incubation with agrin, sufficient to produce maximal AChR

clustering, did not detectably affect CRLM-association of

AChR, rapsyn and MuSK (data not shown).

Dispersion of CRLMs disrupts AChR clusters,

AChR–rapsyn interaction and AChR b phosphorylation

Besides microdomain-association of proteins, another stan-

dard tool to investigate the role of CRLMs in a given cellular

process is to disrupt them by methyl-b-cyclodextrin (MbCD).

We treated wild-type myotubes overnight with agrin to

induce maximal AChR clusters and then added MbCD for

1–1.5 h. The number of clusters of normal size and morpho-

logy was strongly reduced by MbCD (Figure 6). On MbCD

treatment, we noticed many smaller clusters and areas con-

taining cluster fragments. The myotube morphology was

unaffected, and following removal of MbCD the myotubes

lived for extended periods of time and formed normal agrin-

induced stable AChR clusters, like untreated controls (data

not shown). This indicates that the MbCD effect was specific

and not a consequence of impaired myotube health. These

data thus show that the integrity of CRLMs is required to

maintain the accumulation of large focal AChR clusters at the

cell surface.

Maintenance of the AChR–rapsyn interaction and of AChR

b-phosphorylation depends on SFKs and is crucial in main-

taining clusters (Sadasivam et al, 2005). We therefore ana-

lyzed the role of CRLMs in these processes. Myotubes were

again treated overnight with agrin to induce maximal cluster-

ing, followed by addition of 5 mM MbCD for 1.5 h. AChRs

were isolated from cell lysates, and associated rapsyn or

phosphotyrosine content determined by immunoblotting.

We found that the agrin-induced increase in AChR–rapsyn

interaction was disrupted by MbCD (Figure 6C). Likewise,

agrin-induced phosphorylation of AChR b was reduced to

basal levels by MbCD (Figure 6D).

Figure 2 Cholesterol promotes AChR cluster assembly at original
and ectopic NMJs in paralyzed DeSyn muscles. Low- (A) and high-
magnification (B) views of presynaptic nerves (mGFP) and post-
synaptic AChR clusters (RITC-a-BT) in lateral gastrocnemius
muscles treated with Botulinum toxin A (BotA). The chronic BotA
treatment elicited a massive nerve sprouting response in this DeSyn
muscle; cholesterol promoted AChR cluster assembly, and inhibited
nerve sprouting. Note pretzel-shaped AChR clusters (arrows, right)
induced by sprouts (arrows, left) in the presence of exogenous
cholesterol. Bars: 200 (A) and 40mm (B).

Figure 3 Cholesterol stabilizes AChR clusters in src�/�;fyn�/� myo-
tubes. (A) src�/�;fyn�/� myotubes were not treated or stimulated
overnight with 1 nM agrin to induce AChR clusters (top row). Agrin
was withdrawn, cells were washed and incubated for 5 h in agrin-
free medium lacking (bottom left) or containing (bottom right)
75mM cholesterol. Myotubes were stained with rhodamine-a-BT
to visualize AChR clusters. (B) For cluster quantification, visual
fields covering about three times the area of a panel shown in (A)
were taken, and only compact clusters with a mimimum size of
5mm were counted.
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Taken together, these results show that dispersion of

CRLMs prevents the maintenance of large focal AChR clusters

by disrupting agrin-induced AChR–rapsyn interaction and

AChR phosphorylation.

Impaired partitioning of postsynaptic proteins into

CRLMs in the absence of Src and Fyn, and rescue

by cholesterol

To further define the molecular mechanism through which

cholesterol and lipid microdomains stabilize AChR clusters,

we analyzed the composition of CRLMs prepared from src�/�;

fyn�/� myotubes, in which clusters are unstable. Like those

from wild-type cells, CRLMs from mutant myotubes were

enriched for ganglioside GM1, caveolin-3 and flotillin-2

(Figure 7A). A cholesterol profile revealed enrichment in

CRLMs, but to a lesser extent than in wild-type cells

(Figure 7B), as the CRLM peak was smaller (fractions 4–6)

whereas non-CRLM fractions (e.g. 8) were increased (see also

Figure 7E). CRLMs from src�/�;fyn�/� myotubes contained

little overall protein (Figure 7C), as did wild-type CRLMs.

Interestingly, significantly less of the total AChR and MuSK

were in CRLMs from src�/�;fyn�/� myotubes when compared

to wild type, the decrease being 30% for AChRs and 23% for

MuSK (Figure 7D).

The overproportionally decreased CRLM association of

AChRs in src�/�;fyn�/� myotubes could have two reasons:

Src and Fyn may maintain normal numbers of CRLMs in

a myotube and/or act as a recruitment signal that brings

postsynaptic proteins (such as AChRs) into CRLMs. To inves-

tigate these possibilities, we quantitated CRLM partitioning

of typical CRLM markers. 19% less of total cholesterol were

found in the CRLM fractions 4–6 in src�/�;fyn�/� myotubes

when compared to wild type (Figure 7E) and similar observa-

tions were made for caveolin-3 (Figure 7F). Overall cellular

levels of cholesterol, quantified per microgram of cellular

protein, were normal in the mutants, excluding overall non-

specific effects from the lack of Src and Fyn (Figure 7G).

These data suggest that src�/�;fyn�/� myotubes have less

CRLMs than wild-type cells. The reduction in CRLMs how-

ever appears smaller than the reduction in CRLM association

of AChRs. Thus, Src and Fyn most likely also act as a

recruitment factor for AChRs (and MuSK) into CRLMs.

Importantly, cholesterol addition to src�/�;fyn�/� myo-

tubes not only stabilized AChR clusters (Figure 3), but

restored the CRLM partitioning of AChRs and MuSK back

to normal (Figure 7D). Likewise, the CRLM enrichment of

cholesterol itself and of caveolin were normalized by choles-

terol treatment (Figure 7E and F). Thus, while the absence of

Src and Fyn decreases the number of CRLMs and the recruit-

ment of postsynaptic proteins into these microdomains,

cholesterol addition overcomes this, normalizing the enrich-

ment of AChR and MuSK in CRLMs. Taken together, these

loss- and gain-of-function data strongly implicate a role of

intact CRLMs, through SFKs, in AChR cluster stabilization.

As the half-life time of AChRs is highly increased at

postnatal NMJs, we investigated if changes in AChR turnover

may underlie some of our CRLM effects on cluster stability.

The half-life time of surface AChRs was the same in wild-

type, src�/�;fyn�/�, and src�/�;fyn�/� myotubes treated with

cholesterol (Supplementary Figure 1). Furthermore, our

MbCD and cholesterol treatments, or the absence of Src and

Fyn, did not affect the overall distribution of AChRs between

surface and intracellular pools (Supplementary Figure 2).

Thus, our observed effect of CRLMs on cluster stability is

unlikely to originate from changes in AChR degradative or

synthetic pathways.

Discussion

We have shown that cholesterol is an important factor for the

stabilization and maturation of the NMJ in vivo and in vitro.

This involvement of cholesterol does not stem from activa-

tion of the agrin/MuSK signaling pathway, but from promot-

ing the incorporation of postsynaptic proteins into CRLMs.

We provide evidence that CRLM integrity is important for the

maintenance of AChR clusters, and that SFKs trigger post-

synapse stabilization by enhancing the association of critical

postsynaptic proteins with these microdomains. CRLMs, in

turn, allow SFKs to phosphorylate the AChR and to maintain

AChR–rapsyn interaction. These data show that concerted

Figure 4 Cholesterol does not induce AChR clustering and phos-
phorylation of MuSK and AChR b subunits. (A) Cholesterol or 1 nM
agrin were added overnight to C2C12 myotubes. Cells were stained
with rhodamine-a-BT and AChR clusters quantitated as in Figure 3.
(B, C) C2C12 myotubes were treated with different doses of
cholesterol, or with 1 nM agrin for 40 min, as indicated; C, untreated
control. From cell lysates, MuSK was immunoprecipitated (B) or
AChRs were precipitated using biotin-a-BT and streptavidin-agarose
(Tox-P; C). Phosphotyrosine immunoblotting detected phosphory-
lation of MuSK and AChR b subunits. The identity of these phos-
phoproteins was confirmed by reprobing with MuSK- or AChR
b-specific antibodies (not shown).
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action of cholesterol with lipid microdomains and SFKs forms

a mechanism for stabilization of the postsynapse of NMJs.

Cholesterol promotes postsynaptic stabilization

We provide the first evidence that cholesterol promotes

synaptic stability in vivo. Cholesterol addition to denervated

adult DeSyn gastrocnemius muscle during 12 days prevented

the postsynaptic disassembly that would normally occur.

Furthermore, soleus nerve–muscle explants exhibited sub-

stantial AChR pretzel disassembly within 3 h, which was

largely prevented by cholesterol treatment. Finally,

Botulinum toxin A caused massive nerve sprouting and

induction of plaque-shaped AChR clusters along the sprouts.

When applied before this response, cholesterol stabilized

existing AChR pretzels at NMJs; when applied after massive

sprouting had started, cholesterol treatment promoted

maturation of sprout-induced AChR cluster to adopt adult-

type pretzel shape. Cholesterol addition, at the time of

agrin withdrawal, also stabilized AChR clusters in cultured

src�/�;fyn�/� myotubes.

Conversely, sequestering cholesterol by MbCD treatment,

leading to disruption of lipid microdomains, accelerated the

disassembly of AChR pretzels in explants of soleus muscle,

and it disrupted clusters of AChRs in wild-type myotubes in

culture. These data establish cholesterol as a factor for the

stabilization and maturation of the postsynaptic apparatus at

the NMJ.

Interestingly, the mechanism of cholesterol action in post-

synaptic stabilization does not involve a reactivation of those

pathways that lead to the formation of the NMJ: we find that

cholesterol addition to myotubes does not cause AChR clus-

tering, activation of MuSK or phosphorylation of AChR b
subunits. Since cholesterol nonetheless stabilizes AChR clus-

ters, this shows that the pathways for stabilization of post-

synaptic clusters are different from those for induction of

cluster formation.

Figure 5 Postsynaptic proteins associate with CRLMs in myotubes. CRLMs were prepared from wild-type myotubes (C2C12 or clones SW10
and SW5), and fractions of the discontinuous sucrose gradients were collected. Fractions 9–12 represent the bottom gradient step (45%
sucrose) containing the total cell extract. Fractions 5–8 represent the 35% sucrose layer and fractions 1–4 the top layer (5% sucrose).
(A) Fractions were analyzed by immunoblotting (a-tubulin, caveolin-3, flotillin-2) or dot blotting (ganglioside GM1). Fractions 4–6 contain
CRLMs and a-tubulin served as a negative control. (B) Fractions were analyzed for the content of cholesterol, showing high enrichment in
CRLM fractions 4–6 (n¼ 4). (C) Protein assays of gradient fractions reveal the bulk of protein in the bottom fractions, illustrating the specificity
of the CRLM preparation (n¼ 4). (D) Fractions were subjected to immunoblotting, showing that MuSK, AChRs (b-subunit), rapsyn, SFKs,
a-dystrobrevin-2 (a-DB-2) and b-dystroglycan (b-DG) all partition efficiently into CRLMs. (E) Blots as shown in (D) were quantitated
by densitometric scanning. For each protein, the intensities of bands in CRLM fractions 4–6 were related to the sum of all fractions to quantify
the percentage in CRLMs (n¼number of experiments).
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Cholesterol action in postsynaptic stabilization occurs

via CRLMs

To investigate the mechanism of action of cholesterol, we

used myotubes in culture. We found that AChRs, rapsyn,

MuSK, SFKs, a-dystrobrevin-2, and b-dystroglycan were

highly concentrated in CRLMs, and the degree of concentra-

tion, ca. 70% of total, was similar to cholesterol. Importantly,

cholesterol addition to cultured src�/�;fyn�/� myotubes

increased the CRLM association of AChRs and MuSK. It

also augmented CRLM participation of cholesterol in these

cells (see Figure 7E), suggesting that the cholesterol treat-

ment increased the number of these microdomains.

These observations, together with the stabilizing effect of

cholesterol on AChR clusters and the disassembly of clusters

by the CRLM-disrupting agent MbCD, led to the conclusion

that cholesterol and lipid microdomains are key players in

stabilizing the postsynaptic apparatus of NMJs, by promoting

the CRLM-association of postsynaptic proteins.

Cholesterol, lipid microdomains and SFKs: a core

mechanism for stabilization of the postsynapse

We used src�/�;fyn�/� myotubes to investigate signaling

pathways by which cholesterol and CRLMs stabilize clusters

of AChRs. The following observations indicate that choles-

terol and CRLMs act in concert with SFKs in postsynaptic

stabilization. First, the absence of Src and Fyn (Smith et al,

2001; Marangi et al, 2002), like the disruption of CRLMs by

MbCD (Figure 6), cause disassembly of AChR clusters in

cultured myotubes. In vivo, SFKs maintain adult NMJs

(Sadasivam et al, 2005), similar to the stabilizing action of

cholesterol (Figures 1 and 2). Second, SFKs themselves are

enriched in CRLMs, suggesting that their action in post-

synaptic stabilization may occur through the microdomains.

In cultured src�/�;fyn�/� myotubes, cytoskeletal linkage of

AChRs is weakened and, following agrin withdrawal, AChR b
phosphorylation and AChR–rapsyn interaction rapidly

decrease (Sadasivam et al, 2005). We show here that addition

of MbCD to agrin-treated wild-type myotubes produces the

same effect, as it reduces AChR–rapsyn interaction and AChR

b phosphorylation. Thus, CRLMs allow SFKs to act in the

stabilization of AChR clusters by phosphorylating the

AChR and maintaining its link with rapsyn and the cyto-

skeleton. Third, in src�/�;fyn�/� myotubes CRLM association

of postsynaptic proteins is reduced due to both a decrease in

the CRLM number and a loss of Src-Fyn-dependent recruit-

ment of postsynaptic proteins into CRLMs. Cholesterol

addition to src�/�;fyn�/� myotubes restores CRLM numbers,

CRLM association of postsynaptic proteins and stability of

AChR clusters.

Based on these results we propose a mechanism involving

a reciprocal relationship between Src, Fyn and CRLMs in

AChR cluster stabilization. In the first aspect of this dual

mechanism, Src and Fyn mediate CRLM integrity and recruit-

ment of postsynaptic apparatus components into the micro-

domains. CRLM integrity is known to involve an optimal

balance between microdomain-lipids and -proteins: upon

addition of excess ganglioside GM1 to cultured MDCK cells,

CRLM proteins participate to a lesser degree into CRLMs,

since the lipid–protein balance in the microdomains is dis-

turbed (Simons et al, 1999). In a similar fashion, absence of

the prominent CRLM components Src and Fyn, which contain

both lipid (double acylation) and protein parts, may cause

deranged lipid–protein ratios in CRLMs, leading to a decrease

in functional microdomains. Treatment with cholesterol over-

comes this, most likely because exogenous cholesterol is

incorporated into the plasma membrane and restores lipid–

protein ratios in the microdomains independently of Src

and Fyn.

Recruitment of proteins into CRLMs is triggered by lipid

modifications that act as anchors, a prominent example being

GPI-linked proteins. SFKs are targeted to the microdomains

Figure 6 MbCD disrupts AChR clusters, AChR–rapsyn interaction
and AChR b phosphorylation in C2C12 myotubes. (A) C2C12
myotubes where first treated overnight with agrin (Ag) to induce
AChR clusters. MbCD was then added in the continued presence of
agrin, causing AChR clusters to fragment and disappear, as revealed
by rhodamine-a-BT staining. (B) Clusters of 5mM minimal size were
quantitated. (C, D) Cells were treated with agrin and MbCD (5 mM,
1.5 h) as in (A). AChRs were precipitated from cell lysates using
biotin-a-BT (Tox-P). In immunoblots, AChR-associated rapsyn (C),
phosphorylation of AChR b (D) and AChR b itself (C, D; whole
protein-control) were detected and quantified by densitometric
scanning (C, n¼ 4; D, n¼ 8). *Po0.05, **Po0.01, by two-tailed
t-test.
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through their fatty acyl groups (Resh, 1999). AChRs and

MuSK lack such modifications but interact with SFKs

(Fuhrer and Hall, 1996; Mohamed et al, 2001); AChRs associ-

ate with several postsynaptic proteins including utrophin

(Fuhrer et al, 1999), which is linked to F-actin (Winder

et al, 1995). These protein interactions are likely to form a

basis for our observed SFK-dependent recruitment of post-

synaptic proteins into CRLMs, and the interactions contribute

to microdomain stabilization through link to the actin cyto-

skeleton.

In the second aspect of the dual mechanism for AChR

cluster stabilization, CRLMs in turn create the required lipid

and protein microenvironment for Src and Fyn to act in the

NMJ stabilization pathway. Tyrosine kinases in muscle are

known to be counteracted by phosphatases that control, for

example, the end level of AChR and MuSK phosphorylation

(Wallace, 1994; Madhavan et al, 2005). Incorporation of

postsynaptic components in CRLMs may protect them from

phosphatases, allowing kinases of the Src-family to act in

NMJ stabilization. This action involves enhancement of

Figure 7 In src�/�;fyn�/� myotubes, CRLM association of postsynaptic proteins is reduced but restored by cholesterol. (A–C) Characterization
of CRLMs in src�/�;fyn�/� myotubes. CRLMs were prepared from clones DM11 or DM15, and the content, in gradient fractions, of ganglioside
GM1, caveolin-3, flotillin-2 (A), cholesterol (B, n¼ 12) and total protein (C, n¼ 4) was analyzed. Markers are concentrated in CRLM fractions
4–6, with overall protein enriched at the gradient bottom (negative control). Cholesterol is less enriched in CRLMs than in wild-type cells (B;
we show the profile from Figure 5B for comparison). (D) Gradient fractions were analyzed for the content of AChR and MuSK, and the
percentage of these proteins in CRLM fractions 4–6 was quantified as in Figure 5E. Wild-type cells (C2C12 or clones SW5 and SW10; n¼ 3–7),
src�/�;fyn�/� myotubes (n¼ 4–6) and src�/�;fyn�/� myotubes treated with cholesterol (n¼ 4–5) were used. src�/�;fyn�/� myotubes have
significantly lower percentages of AChRs and MuSK in CRLMs, and cholesterol restores this. (E) Cells were treated as in (D) and the percentage
of cholesterol in CRLM fractions 4–6 was quantitated. CRLM association of cholesterol is lower in src�/�;fyn�/� myotubes (n¼ 12) than in
wild-type myotubes (n¼ 8). Addition of cholesterol to the cell culture medium restores the amount of cholesterol in the CRLM fractions to the
levels of wild-type myotubes (n¼ 6). (F) Analysis as in (E), examining caveolin-3 (Cav). (G) The total amount of cholesterol, detected in total
cell extracts, is the same in wild-type and src�/�;fyn�/� myotubes (n¼ 8). *Po0.05, **Po0.01, by two-tailed t-test.
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protein modifications and of key protein interactions, such

as phosphorylation of the AChR b subunit and interaction

of AChR with rapsyn. The dual mechanism is likely to occur

in a subpopulation of CRLMs, which are known to exist in

various subtypes differing in lipid and protein composition.

Such a subpopulation, affected by the lack of Src and Fyn,

would create a strong effect on postsynaptic stability, while

the decrease in overall CRLM association of postsynaptic

proteins remains moderate when viewed at the level of all

CRLMs.

Besides AChR and rapsyn, SFKs are likely to have other

downstream target molecules in stabilizing the postsynapse,

most likely cytoskeletal organizers (Sadasivam et al, 2005).

CRLMs may participate in the regulation of such downstream

pathways. In agreement with such a proposal, both SFKs and

lipid microdomains are known in other cell types to promote

signaling interactions that locally organize cytoskeletal ele-

ments, for example by favoring activation of Rho-like

GTPases and promoting actin assembly (Golub et al, 2004;

Rodgers et al, 2005), or by organizing microtubules (Cox and

Maness, 1993; del Pozo et al, 2004; Palazzo et al, 2004).

Thereby specialized domains can be formed at the cell

surface as represented by focal adhesion sites, and these

specializations are stabilized through many participating

cytoskeletal elements. Such microdomain-dependent signal-

ing processes occur at or close to the plasma membrane,

consistent with our observation that changes in AChR turn-

over are not a major aspect of CRLM- and SFK-mediated

cluster stability in cultured myotubes.

In summary, our work shows that CRLMs represent a

microenvironment for postsynaptic NMJ proteins. The micro-

domains are formed due to SFK action and in turn allow these

kinases to promote key phosphorylations and protein inter-

actions for maintenance of the postsynaptic apparatus.

The downstream substrates in this cascade remain to be

investigated.

Materials and methods

In vivo and ex vivo experiments
Thy1-mGFPs and Thy1-spGFPmu reporter mice were as described
elsewhere (De Paola et al, 2003); all treatments were initiated when
mice were 1-month-old. Drugs were injected locally, subcuta-
neously (100ml/mouse injection volumes). Botulinum toxin A
(Allergan AG, Lachen, Switzerland) was applied at 0.02 U/g body
weight every 4th day. Where indicated, cholesterol was applied
daily (50 mM in injection solution). Nerve–muscle explants of soleus
were maintained at 371C in calcium-supplemented Ringer solution
for 3 h, and then labeled with RITC-a-BT (2 mg/ml) for the analysis
of AChR clusters. Where indicated, drugs in the incubation medium
were 50mM (cholesterol) and 10 mM (MbCD). Cryostat sections
of unfixed muscles were postfixed (10 min, 3.5% formaldehyde
in PBS) and labeled for immunocytochemistry as described before
(Pun et al, 2002). Fluorescent data were imaged and acquired using
an Olympus (BX61) confocal microscope, Fluoview 4.1 software,
and identical settings for all experiments belonging to one set
(denervation, nerve–muscle explants, paralysis experiments). NMJ
labeling intensities (integral of RITC-a-BTsignal at individual NMJs)
were derived from z-stacks using ImageJ software. Only NMJs lying
en-face with respect to the plane of imaging were included in the
analysis. For paralysis experiments, we analyzed muscle inner-
vation patterns using reporter mice expressing mGFP in neurons
(Thy1-mGFPs) and whole mount preparations of muscles. Briefly,
identified muscles were dissected, fixed in PBS with 3.5%
formaldehyde (30 min, room temperature), washed and counter-
stained with RITC-a-BT (2mg/ml).

Cell cultures and treatments
C2C12, src�/�;fyn�/� (clones DM11 and DM15), and their corres-
ponding wild-type cells (clones SW5 and SW10) were propagated
and fused to form myotubes as described earlier (Smith et al, 2001).
To induce maximal AChR cluster formation, cells were treated with
1 nM recombinant neural agrin C-Ag12,4,8 (Fuhrer et al, 1999)
overnight for 16 h. To withdraw agrin, cells were washed and
incubated in agrin-free medium; this procedure removes the vast
majority of agrin from cells (Mittaud et al, 2004). For cholesterol
treatment, water-soluble cholesterol (Sigma; Fluka, Switzerland)
was aliquoted in PBS, diluted in fusion medium immediately prior
to use, and used at a final concentration of 50 mM if not specified
otherwise. In MbCD treatments, MbCD (Sigma) was diluted in
fusion medium at 100 mM and used at a final concentration of 10 or
5 mM. We confirmed effective depletion of cholesterol from the cell
membrane after incubation with 5 mM MbCD for 40–60 min: total
cellular cholesterol content was reduced to 50–65% of untreated
controls (data not shown).

C2C12, SW5 and SW10 cells gave identical results in all assays
and we refer to them commonly as wild-type cells. Likewise, DM11
and DM15 showed no clonal variation in all methods.

Preparation of CRLMs
We used a detergent-free method that was shown before to be
efficient for preparing CRLMs from C2C12 myotubes (Song et al,
1996a, b), with slight modifications. Briefly, cells grown in 10 cm
dishes were washed two times with ice-cold PBS containing 1 mM
Na-orthovanadate (NaO). After addition of 1.5 ml Buffer A
(Na-carbonate 0.5 M, pH 11; inhibitors cocktail as follows: NaO
1 mM, phenylarsine oxide 50 mM, p-nitrophenylphosphate 10 mM,
NaF 50 mM, aprotinin 25 mg/ml, leupeptin 25mg/ml), cells were
quickly scraped and suspended using the pipette tip, then
homogenized two times in a dounce homogenizer and finally
sonicated two times for 10 s. The inhibitors were always prepared
freshly and added to buffers just before use. The total extract (final
volume: 2 ml) was quickly mixed with 2 ml 90% sucrose in Buffer B
(Mes 25 mM, pH 6.5, NaCl 150 mMþ inhibitor cocktail as above) at
the bottom of a 13-ml tube and overlaid with 4 ml of 35% sucrose in
Buffer C (buffer BþNa-carbonate 250 mM) and then with 4 ml of
5% sucrose in Buffer C, for a total volume of 12 ml. Samples were
centrifuged for 17 h at 37000 rpm in a Sorvall TH-641 rotor at 41C.
1 ml fractions were collected from the top and transferred into 3 ml
ultraclear tubes (Beckman). Samples for protein determination
(50 ml), cholesterol determination (30ml) and ganglioside GM1
detection (2 ml) were taken before diluting each fraction with
2 ml Buffer C. Fractions were then centrifuged for 50 min at
100 000 r.p.m. in a Beckman TLA-100.3 rotor, supernatants were
discarded and pellets were resuspended in Lämmli-buffer for SDS-
Gel electrophoresis and Western blot.

Cell labeling and immunoprecipitation
For AChR stain, cells were incubated 40 min with rhodamine-
coupled a-BTat 371C, washed once in PBS at room temperature and
then fixed in ice-cold methanol for 7 min at �201C. Conventional
fluorescence imaging was carried out using a Zeiss Axioskop 2
microscope equipped with a Hamamatsu Orcacam digital camera.
For quantitation, compact clusters with intensities clearly higher
than background and a minimal size of 5 mM were considered as
detailed previously (Marangi et al, 2001, 2002). Clusters were
counted in at least 15 fields and experiments were repeated at least
three times.

For precipitation of MuSK or AChRs, cell lysates were prepared.
MuSK antibodies followed by protein A-sepharose beads or biotin-a-
BT followed by streptavidin-beads (Tox-P) were added as described
before (Mittaud et al, 2001, 2004).

Protein and lipid detection
Antibodies against phosphotyrosine (mixture of PY20 and 4G10);
the conserved C-terminus of Src, Fyn, and Yes (src-CT); MuSK;
rapsyn (Rap-1); b-dystroglycan; the AChR b subunit (mAb124); and
the AChR a subunit (mAb35) were all used in Western blots as
described previously (Marangi et al, 2001; Mittaud et al, 2001;
Moransard et al, 2003). Antibodies against a-dystrobrevin-2 were a
gift from Dr D Blake (Oxford, UK). Anti-caveolin-3 (Santa Cruz
Biotechnology) was used at 1:2000, anti-flotillin 2/ESA clone 29
(Transduction Laboratories) at 1:1000, and anti-a-tubulin clone
DM1A (Sigma) at 1:500. Anti-p75 was as described before (Pun
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et al, 2002). Densitometric analysis of Western blot signals was
performed as done earlier (Marangi et al, 2001) using the software
Image J (NIH, USA).

For detection of ganglioside GM1, 2ml of each fraction was
applied to a nitrocellulose membrane, blocked with 5% milk in PBS
and probed with horseradish peroxidase-coupled cholera toxin
subunit B (10 ng/ml; Sigma; Hering et al, 2003). To measure
cholesterol, 50ml of each fraction was analyzed with the Amplex
Red cholesterol assay kit (Molecular Probes, Eugene, OR; Hering
et al, 2003) according to the manufacturer’s instruction. Protein
concentration was determined using the BCA protein assay kit
(Pierce).

Statistical analysis
All values are given as mean7s.e.m. Significance was calculated
with a t-test (two-tailed, unequal variance) and is indicated as

*Po0.05 or **Po0.01. In the figure legends, n refers to the number
of experiments.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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