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Abstract
Background: Frequently Sampled Intravenous Glucose Tolerance Test (FSIVGTT) together with
its mathematical model, the minimal model (MINMOD), have become important clinical tools to
evaluate the metabolic control of glucose in humans. Dimensional analysis of the model is up to
now not available.

Methods: A formal dimensional analysis of MINMOD was carried out and the degree of freedom
of MINMOD was examined. Through re-expressing all state variable and parameters in terms of
their reference scales, MINMOD was transformed into a dimensionless format. Previously defined
physiological indices including insulin sensitivity, glucose effectiveness, and first and second phase
insulin responses were re-examined in this new formulation. Further, the parameter estimation
from FSIVGTT was implemented using both the dimensional and the dimensionless formulations of
MINMOD, and the performances were compared utilizing Monte Carlo simulation as well as real
human FSIVGTT data.

Results: The degree of freedom (DOF) of MINMOD was found to be 7. The model was maximally
simplified in the dimensionless formulation that normalizes the variation in glucose and insulin
during FSIVGTT. In the new formulation, the disposition index (Dl), a composite parameter known
to be important in diabetes pathology, was naturally defined as one of the dimensionless
parameters in the system. The numerical simulation using the dimensionless formulation led to a
1.5–5 fold gain in speed, and significantly improved accuracy and robustness in parameter
estimation compared to the dimensional implementation.

Conclusion: Dimensional analysis of MINMOD led to simplification of the model, direct
identification of the important composite factors in the dynamics of glucose metabolic control, and
better simulations algorithms.
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Background
To mathematically model a physiological mechanism, the
factors that govern its modus operandi can be taken as inde-
pendent or dependent variables in the mathematical
model and the behavior of the whole system be described
by a set of simple or complex, differential or integral equa-
tions. The minimal model of glucose regulation, MIN-
MOD, is one such model. First formulated and introduced
by Richard Bergman and colleagues, it describes the kinet-
ics of plasma glucose and insulin during a Frequently
Sampled Intravenous Glucose Tolerance Test (FSIVGTT),
and allows dissection of the composite effects of insulin
secretion and insulin sensitivity on glucose tolerance and
risk for diabetes [1-3]. The model was termed as "mini-
mal" for it was the least complex mathematical represen-
tation that is capable of accounting for the observed
dynamic relationship between insulin and glucose disap-
pearance [1,2]. In FSIVGTT, after overnight fasting, indi-
vidual subjects are given an initial infusion of glucose
bolus of 300 mg/kg body weight at the beginning of the
experiments. At periodic time intervals afterwards, blood
samples for glucose and insulin measurement will be
taken for up to 180 minutes -normally, every 2–5 minutes
within the first 30 minutes, every 5–10 minutes for 30–60
minutes, and every 30 minutes from 60 to 180 minutes.
Mathematically, the regulation of plasma glucose concen-
tration G(t) was formulated to be [1-3]:

where Gb is the baseline glucose concentration, p1 is the
insulin-independent glucose disappearance rate, and X(t)
is an auxiliary function representing insulin-excitable tis-
sue glucose uptake activity. It is proportional to the insu-
lin concentration in a "remote" interstitial compartment
(which was later shown to be the interstitial fluid [4]), and
is described by

where lb is the baseline insulin concentration, p2 is the rate
constant of the spontaneous decrease in X(t), and p3 is the
rate of insulin-dependent increase in tissue X(t). The
change in insulin is given by

where n is the disappearance rate of endogenous insulin,
γ(G - h) t is the Insulin Delivery Rate (IDR) of second
phase insulin secreted into the venous circulation (cor-
rected for hepatic extraction), and h is the threshold value
of glucose above which the endogenous insulin secretion

will be stimulated. Under stimulatory glucose exposure,
insulin release from pancreas normally is biphasic. More
details of the parameters used in MINMOD can be found
in table 1B. The initial conditions are assumed to be: G(0)
= G0, X(0) = 0, and I(0) = I0, and the equilibrium state is
given by G(∞) = Gb, X(∞) = 0, and I(∞) = Ib. Using this
model, parameter values can be estimated from FSIVGTT
measurements, and four independent parameters can be
derived that were believed to represent a comprehensive
metabolic portrait of an individual [1,2,5]:

• Insulin sensitivity: , where cap dot

represents time derivative, and SS stands for steady state.
This is a measure of the capability of insulin-stimulated
glucose uptake.

• Glucose effectiveness: . It

measures the glucose facilitated, insulin-independent glu-
cose uptake.

• First phase pancreatic responsiveness

, where AIR = (I0 - Ib)/n

(Acute Insulin Response) is the total insulin release dur-

ing first phase [6], and φ1 measures first phase insulin

release per unit rise of glucose above basal.

• Second phase pancreatic responsiveness φ2 = ∂2 (IDR2)/
∂G∂t = γ, is the dependence of rate of rise of the 2nd phase
insulin secretion on glucose.

SI later led to the definition of the disposition index DI =
SI * AIR [7,8] (notice that it is dimensionless). Bogardus
and colleagues have demonstrated that Dl was an excel-
lent predictor (prognostic index) for which individual will
develop type 2 diabetes mellitus (T2DM) in the Pima
native American population [9]. In addition, SI was found
to possess greater heritability than indices defined by
other models including the homeostasis or the fasting
insulin model assessments [4,10]. The model is now the
basis for a large number of laboratory and clinical investi-
gations (~50 reports/year) [4,11]. According to the Amer-
ican Diabetes Association Consensus Development
Conference on insulin resistance [12], it is one of the only
two methods (the other one is the euglycemic insulin
clamp) that are recommended for assessing peripheral
insulin resistance due to their satisfactory, consistent per-
formance.
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Since the publication of MINMOD, its mathematical
structure, system properties, as well as simulation tech-
niques of its computer program have also been studied
[11,13,14]. However, up to now, a dimensional analysis is
still lacking. How many degrees of freedom (DOF) does a
system described by MINMOD have? How many inde-
pendent indices can be defined from the model to charac-
terize the system? How many indices are needed to
differentiate different pathological states of glucose meta-
bolic control? These questions have not been examined in
depth. In addition, in a mathematical model, each varia-
ble or parameter has an associated dimension or unit that
reflects its influence on the system behavior. One could
carry out model analysis and computer simulation by tak-
ing the parameters as they are, with their respective units,
as has been done with MINMOD up till now. There are
certain disadvantages with such approaches. The parame-
ters do not necessarily have the same range of values.
While some vary within a narrow scale, others may span a
wide range such that the absolute values of these parame-
ters can be extremely different from each other. This
makes it difficult to compare the relative importance of
the parameters in controlling the system properties, as
there is no uniform scale – a reference scale – based on
which all the parameters can be studied [15].

Dimensional analysis is a process to simplify mathemati-
cal models expressed in differential equations [16,17].
The technique rescales every variable and parameters in
terms of their intrinsic reference quantities so that the
equations can be expressed in terms of dimensionless var-
iables and parameters whose typical scales are all ~O(1)
[16]. An intrinsic reference quantity is one that reflects the
intrinsic value scale of the variable; it can be its basal or
maximal value, or its dynamic range of variation, for
example. This process reduces the number of variables by
removing redundant degrees of freedom. Using it, one can
analyze the behavior of the system regardless of the units
used to measure the variables. The dimensionless formu-
lation helps to identify the dominant terms in the equa-
tions, as well as their interactions in the model behavior
and their influence on the solution structure. It reveals
which variables, or rates of change, can be thought of as
small, or even 'negligible' relative to others. In addition,
the process often reveals that some of the parameters do
not affect the system's dynamic behavior independently,
and they can be combined into dimensionless indices that
reflect their collective effect. Such indices are usually the
most effective predictors of system behavior. Examples
include the Reynolds number (the ratio of the inertial
force to the viscous force) in fluidics, the R number in epi-
demiology of infections, and the ratio of tumor growth to
normal growth in oncology. Furthermore, with dimen-
sional analysis, one can rescale models to duplicate the
behavior of the original system provided that the govern-

ing dimensionless parameters have the same values in the
two systems [18]. This will allow the identification of
scale-invariant parameters, and the translation between
animal models and human studies.

In this paper we carry out dimensional analysis of MIN-
MOD. We show that it leads to the direct identification of
important pathological indices. Further, we implement
the computer simulation of MINMOD using the dimen-
sionless formulation of glucose regulation. Utilizing
Monte Carlo simulation as well as real human FSIVGTT
data, we compare the new implementation to the original
dimensional implementation in terms of model fit, speed
of convergence, accuracy of parameter estimation and
robustness against noise.

Methods
Dimensional analysis of MINMOD
The dimensions of the state variables and parameters
The mathematical structure of MINMOD consists of two
first-order ordinary differential equations (ODE) for glu-
cose disappearance (equations 1A-B) and one first-order
ODE for insulin kinetics (equation 1C). The state varia-
bles and parameters along with their normal value ranges
and units, as well as their dimensions in terms of the fun-
damental units of mass (M), length (L) and time (T) are
presented in table 1A and 1B.

There are totally 10 parameters (p1, p2, p3, n, γ, h, Gb, G0, lb,
l0) in MINMOD, expressed in a total of 3 fundamental
units. According to Buckingham's Pi theorem [17,19], the
DOF of this system is 7, implying that the model can be
described in a simplified form with 7 free dimensionless
parameters. Usually there is more than one way to non-
dimensionalize a multi-parameter model, and it is worth-
while to make a choice that is meaningful and also maxi-
mally simplifies the equations. For example, it would be
worthwhile to carefully define the intrinsic reference scale
for each quantity, such that all rescaled dimensionless
quantities vary within the same order of magnitude in
value.

Among the three state variables, only G(t) and l(t) can be
measured. X(t), which reflects the amount of insulin in
the interstitial compartment, cannot be measured directly.
In addition, equation 1B can be solved with

. In FSIVGTT

X(0) = 0, it follows that .

Therefore we will focus on the reference choices for G and
l, and explore and compare several means of non-dimen-
sionalization of MINMOD.
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Non-dimensionalization choice a, rescale time by the glucose 
disappearance rate

One natural choice to rescale G and l is with their baseline

values and define . In the model fitting of

FSIVGTT with MINMOD, we usually start with the second
time point when the plasma glucose and insulin concen-
trations have peaked after the initial glucose bolus. There-
fore the initial values of G0 and I0 are also the maxima for

the glucose and insulin secretion (during the second
phase of endogenous insulin release, the insulin concen-
tration can peak again, but normally with a much lower
peak value than in the first phase release). Under this
choice, the rescaled glucose and insulin concentration

vary between  and , respectively. It might be

argued that in the effort to uptake the exogenous glucose,
the system can overcorrect and reach a concentration
lower than Gb before it reaches the equilibrium value of

Gb. De Gaetano et al have carried out a steady state analy-

sis of MINMOD, and showed that likely the system

approaches the steady state Gb from below [13]. Even if

this is the case, the minimal value is still very close to Gb,

with .

There are two natural time scales in this system, 1/p1 the
time scale of the glucose disappearance on its own, and 1/
n the time scale of the insulin disappearance. If we chose
to use 1/p1 to rescale time, equations 1A–1C become:

with τ = p1t,
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Table 1A: State variables, their meanings, values ranges in humans, units, and dimensions in terms of the fundamental units of mass 
(M), length (L) and time (T).

Quantity Description Value and Unit Dimension

M L T

G(t) Plasma glucose concentration at time t ~100–300 mg/dl 1 -3 0
l(t) Plasma insulin concentration at time t ~10–30 μU/ml 1 -3 0
X(t) An auxiliary function proportional to insulin concentration in the interstitial compartment. ~0–10-3min-1 0 0 -1

Table 1B: Parameters in MINMOD.

Quantity Description Value and Unit Dimensions

M L T

p1 Insulin-independent glucose disappearance rate. Also known as glucose effectiveness (SG). ~10-2 min-1 0 0 -1
p2 Rate constant expressing the spontaneous decrease of tissue glucose uptake ability. ~10-2 min-1 0 0 -1
p3 Insulin-dependent increase in tissue glucose uptake ability, per unit of insulin concentration 

excess over baseline insulin.
~10-5 min-2 (μU/ml)-1 -1 3 -2

n Disappearance rate of endogenous insulin. ~10-1 min-1 0 0 -1
γ Rate of second phase endogenous insulin secretion ~10-2–10-3 (μU/ml) min-2 0 0 -2
Gb Baseline plasma glucose ~100 mg/dl 1 -3 0
G0 Initial glucose concentration during FSIVGTT ~300 mg/dl 1 -3 0
h A threshold value (higher than basal) for plasma glucose above which the second phase 

insulin secretion is stimulated
~100 mg/dl 1 -3 0

lb Baseline plasma insulin ~10 μU/ml 1 -3 0
l0 Initial insulin concentration ~30 μU/ml 1 -3 0
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, and . The initial conditions become:

, and . All the barred vari-

ables and parameters are unitless. The number of free
parameters in the system indeed reduces to 7:

, and [ 0].

Choice b, rescale time by the insulin disappearance rate

Similarly, we can rescale time by 1/n, the disappearance
rate of endogenous insulin. In this choice the dimension-

less parameters are τ = nt,

, and , and the differential equations become

With initial conditions: (0) = 0, and (0) = 0. The

number of free parameters again reduces to 7 as expected:

, and 0.

Choice c, rescale to normalize the variation in glucose and insulin

A more sophisticated choice is to rescale glucose and insu-
lin in a way to ensure that they vary within the same scale,

by defining . Now  ∈ [0,1],

and  ∈ [0,1]. Normally insulin facilitated glucose disap-
pearance is the major mode of glucose uptake, and insu-
lin's own kinetics will directly impact on that. Therefore
we chose to rescale time by the disappearance rate of

endogenous insulin during first phase secretion: τ = nt. It
follows that other parameters can be defined by:

,

and . The equations become:

where , and . The initial condi-

tions become: (0) = 1, and (0) = 1 and equilibrium

state has (∞) = 0, and (∞) = 0. Therefore both glucose
and insulin vary within a unit range of [0, 1]. The 7 free

parameters are: , and 1. Among the

three choices, choice c maximally simplifies the equations
and the initial conditions.

Computer simulation of glucose disappearance in the 
dimensionless formulation

A computer program to simulate the glucose disappear-
ance component of MINMOD is developed by us in Mat-
lab using both the dimensional and the dimensionless
formulations. For dimensionless implementation, the for-
mulation in choice c was adopted. The minimization
function Isqnonlin.m available in the optimization tool-
box of Matlab was utilized for parameter estimation. The
program flow is similar as described in figure 1 of [3], and
the same weighting scheme of the measured data points is
adopted. In the initial computer implementation of MIN-
MOD reported in [3], both glucose and insulin profiles
were fitted by the mathematical model (equations 1A–
1C). FSIVGTT and MINMOD were first developed utiliz-
ing a dog model. Later, it was found that as humans are
more insulin resistant [8], and more endogenous insulin
secretion is needed to generate sufficient insulin action in
order for the computer program to accurately estimate the
model parameters. It was found that this demand was
more imperative for assessment of insulin sensitivity in
diabetic (both type 1 and type 2 diabetes) subjects, as
these individuals exhibit diminished or absent insulin-
secretory response and/or higher insulin resistance. To
overcome this problem, modified FSIVGTT protocol was
introduced where a second injection of 100–300 mg tolb-
utamide [20] or 30 mU/kg body weight insulin [21] was
infused 20 min after the initial glucose bolus. In these pro-
tocols, while the glucose regulation can still be adequately
described by equations 1A–1B, the insulin regulation will
require modifications of the original model given in equa-
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tion 1C. In view of the variations in FSIVGTT protocols
presently used in clinical practice, later computer simula-
tions of MINMOD mainly focused on the glucose regula-
tion, and the estimation of parameters p1, p2 and p3 [5]. For

the same reason and for simplicity, we implement our
simulation algorithms only for the glucose regulation
component. The relevant equations are

 and .

Since we are only investigating the glucose regulation
here, and will not estimate for the parameters involved in
insulin secretion, we can for simplicity use a constant time
scale t0 instead of n. A natural choice would be t0 = 60 min,

so that  has the meaning of time in terms of hours,

and τ ∈ [0 3] during typical FSIVTT. The dimensionless

parameters are then 1 = p1t0, 2 = p2t0, 3 = p3 (I0 - Ib),

and . The state variables are

 and  = Xt0, with initial conditions

(0) = 1 and (0) = 0. The program takes experimental
insulin and glucose profiles G(t) and I(t) as inputs, esti-
mates for [p1 p2 p3 G0] in the dimensional implementation;

or calculates (τ) and (τ), and fits for [ 1 2 3 1]

in the dimensionless implementation.

Monte Carlo simulation

The program flow chart for the Monte Carlo simulation is
given in figure 1. Briefly, we first generated 100 simulated
glucose and insulin temporal profiles using equation 1A–
1C of MINMOD, with parameters randomly distributed

within the following ranges: p1 ∈ [1 4]·10-2 min-1, p2 ∈

[1.5 2]·10-2 min-1, ps ∈ [0.32 1.6]·10-5 min-2 (mU/l)-1, n ∈

[1 4]·10-1 min-1, γ ∈ [1 4]·10-3 (μU/ml) min-2, h ∈ [92

125] mg/dl, G0 ∈ [210 310] mg/dl, and I0 ∈ [100 125] μU/

ml. The basal levels of glucose and insulin were fixed at Gb

= 90 mg/dl, and Ib = 14 μU/ml. We then used the gener-

ated profiles to fit for the parameters [p1 p2 p3 G0] in the

dimensional formulation, and for [ 1 2 3 1] in the

dimensionless formulation. The fitting stringencies were
set at ['TolFun', 1e-4, 'ToIX', 1e-4; 'MaxFunEvals', 1e6].
More details of these options of the Isqnonlin function
can be found from Matlab's web site [22]. By default we
adopted the Levenberg-Marquardt least-square minimiza-
tion algorithm, though we have also tried the Gauss-New-
ton method for error minimization and obtained similar
results.

To assess the robustness of our algorithm against noise we
have also added Gaussian noise at the levels of 1–10% to
the glucose profile of these 100 data sets, and examined
the ability of our program to recover the true values of the
parameters.

Human FSIVGTT data
FSIVGTT data of 20 human subjects were kindly provided
to us by the FUSION (Finland-United States Investigation
Of Non-insulin-dependent diabetes mellitus) study group
[23,24]. In this study healthy non-diabetic offspring of
T2DM patients were recruited, and the tolbutamide mod-
ified FSIVGTT protocol [20] was administered to the indi-
viduals. Glucose and insulin were measured at 14 time
points: 0, 2, 4, 8, 19, 22, 25, 30, 40, 50, 70, 100, 120, and
180 min. The initial values of the parameters were deter-
mined using the same method as described in the Monte
Carlo simulation flowchart in figure 1.
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Flowchart of the Monte Carlo simulation.
Page 6 of 15
(page number not for citation purposes)



BioMedical Engineering OnLine 2006, 5:44 http://www.biomedical-engineering-online.com/content/5/1/44
Results
The dimensionless physiological indices in MINMOD
Choice a

In this formulation, the insulin sensitivity index becomes

. The new definition

gives a value that is the original SI times the total basal

insulin secretion during the time scale of the glucose facil-
itated glucose uptake. The new index naturally includes
both insulin sensitivity, and a measure of insulin secre-
tion.

The Glucose effectiveness becomes .

p1 represents the dissipation rate of glucose without insu-

lin regulation. It is natural that in its own scale it becomes
of unit value.

The first phase pancreatic responsiveness is

. Notice that it can be also writ-

ten as , where 

is the total endogenous insulin secretion during the first

phase response, and  represents the total glucose

uptake due to glucose facilitated, insulin-independent

mechanism. Therefore  represents their ratio normal-

ized by their baseline levels. The second phase pancreatic
responsiveness is

.

In the new formulation, all rate constants are normalized
with the time scale of glucose facilitated glucose uptake,
and measures of insulin secretion are normalized with
respect to glucose uptake.

Choice b

The insulin sensitivity index is now

. In this formulation

the new index depends on both insulin sensitivity SI, and

total basal insulin secretion during the first phase, which
reflects pancreatic function. It is reminiscent of Dl. Two
critical components are involved in the regulation of

plasma glucose: the pancreatic responsiveness (insulin
release responding to changes in plasma glucose), and the
efficiency of insulin facilitated glucose uptake (insulin

sensitivity).  naturally includes both in its definition.

Like Dl it has the potential to better characterize an indi-
vidual's ability to regulate glucose than a measure of
either component alone.

The glucose effectiveness becomes

. The new

index has the meaning of relative effectiveness of glucose
facilitated glucose disappearance and insulin facilitated
insulin disappearance.

The first phase pancreatic responsiveness

 is now the ratio

between the variation in insulin and the variation in glu-
cose during FSIVGTT. The second phase response is

. It reflects

the rate of second phase insulin secretion rise per unit glu-
cose stimulus, normalized by insulin's own disappearance
rate and the baseline levels of insulin and glucose.

Choice c

The dimensionless counterpart of the insulin sensitivity
index is now

. Thus the

disposition index Dl, which has been found to be predic-
tive of disease pathology [6,9], is naturally defined by the
system.

The glucose effectiveness becomes

, which reflects the relative effec-

tiveness of glucose facilitated glucose disappearance and
insulin facilitated insulin disappearance.

The first phase pancreatic responsiveness becomes

. This result implies that Dl can be inter-

preted as the insulin sensitivity at unit first phase insulin
response. The second phase responsiveness is
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. The

new index reflects the rate of second phase insulin secre-
tion rise per unit glucose stimulus, normalized by insu-
lin's own disappearance rate and the variation ranges of
insulin and glucose.

This is by far the most natural choice to non-dimension-
alize MINMOD. It normalizes the variation in glucose and
insulin. Out of the three choices, it leads to the most sim-
plified expressions of model equations, initial conditions
and steady state solution. Importantly, the new formula-
tion directly leads to the definition of Dl, and points out
that it is an important index for the dynamic regulation of
glucose.

Comparison of the Monte Carlo simulations
Simulation performance
We have found that the simulation in dimensionless for-
mulation is able to converge 20% faster, with mean
number of iterations 6.4 ± 2.7 (Dim'less) versus 8.0 ± 1.4
(Dim'nl), p < 0.001 before converging. On average, each
iteration in the dimensionless program also takes ~20%
less time than one iteration in the dimensional program.
On an Dell OptiPlex GX620 PC with Pentium® dual 3
GHz CPU and 2 GB of RAM, the average CPU times are
0.122 s/per iteration in the dimensionless implementa-
tion versus a 0.159 s/per iteration in the dimensional
implementation. Therefore the dimensionless implemen-
tation takes ~50% less simulation time.

The parameter estimation from the two programs agree
well, with correlation coefficients 0.96, 0.98, 0.97, and
>0.99 for the estimated p1, p2 p3 and G0 values, respec-
tively. Figure 2 presents the estimated values of SG and SI,
from the two implementations for all 100 data sets.

The precision in parameter estimation, reflected by their
fractional standard deviation (FSD, defined as the ratio of
standard deviation of the parameter-estimate to the mean
value of the parameter-estimate), and goodness of fit R2

are not significantly different between the two implemen-
tations. The results are summarized in table 2. Though the
estimations of p2 and p3 seemed to be significantly off
from their true values, the estimations of SI is much better
in both dimensional and dimensionless implementa-
tions.

Robustness against noise
We have found that the dimensionless implementation of
MINMOD is significantly more robust against noise. Fig-
ure 3 presents the fitting by the two methods to one of the
Monte Carlo glucose profiles, and to the same profile after
5% noise was added. It shows that the simulation using

the dimensionless formulation of MINMOD was less sen-
sitive to noise. When we examined the statistics from all
100 data sets, we found that this is a general feature. Fig-
ure 4A presents the mean R2 of fitting, as a function of the
noise level. A better performance of the dimensionless
implementation is evident.

When there is noise in the data, we observed that the pro-
gram failed to converge in parameter estimation for some
datasets within the default tolerance. The number of
failed fitting goes up with increasing amount of noise. In
real clinical/laboratory set up, noise in measurements are
unavoidable, and it may have been a major factor that
contributed to failure of parameter fitting some investiga-
tors have experienced with MINMOD [25,26]. Using a
threshold of R2 > 0, the failure rate is plotted against the
noise level in figure 4B. Clearly, the simulation using the
dimensionless formulation of MINMOD is significantly

φ
τ

γ γ φ2

2
2

2
0

0
2 2

0

0

1= ∂
∂ ∂

= =
−
−

=
−
−

( )IDR

G

G G

I I

G G

I I
b

b

b

bn n

The comparison of parameter estimations for SG (A) and SI (B) between the simulations using the dimensional (dim'nl) and the dimensionless (dim'less) formulation of MINMODFigure 2
The comparison of parameter estimations for SG (A) and SI 
(B) between the simulations using the dimensional (dim'nl) 
and the dimensionless (dim'less) formulation of MINMOD. 
The results are from the 100 simulated data sets. Good 
agreements are observed in both cases.
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more robust. We have also calculated the mean R2 after
removing the failed fittings. The performance of dimen-
sionless method is still better (figure 4A).

When there is noise, the dimensionless implementation is
also able to better recover the true values of the parame-
ters. In figure 5 we plot the ratio between estimated values
of SG (top panels), SI (bottom panels) and their true values
(the values used to generate the simulated data), at 1%
noise level. Both methods were able to obtain reasonable
good parameter estimation for majority of the data sets.
However, there are some data sets where the estimated
parameters were orders of magnitudes away from the true
values. Using a 5 fold difference from true value as a cut
off value, the number of failed parameter estimations is
plotted against the noise level in figure 6. Overall the

dimensionless implementation is able to better recover
the true value (p < 0.001 for both SG and SI). It is worth
pointing out that the data sets that failed in parameter
estimations do not overlap completely with those that
failed to reach a positive R2. There are some data sets
which upon the addition of noise led to erroneous param-
eter estimations, but the fitting was reasonable with R2 >
0.8.

After removing data sets with erroneous parameter esti-
mations, we have calculated the mean ratio of the esti-
mated SG and SI to their true values, and plotted their
values against noise levels in the right panels of figure 6
(normalized by the first data points). The estimation in SG
is more robust with the dimensionless method, whilst no
significant difference was observed for the SI estimation.

Human FSIVGTT data
Overall it takes many more iterations to fit the human
FSIVGTT data than the simulated data. The improvement
in speed with the dimensionless implementation is more
significant in human data: 14.8 ± 8.8 iterations versus
36.3 ± 74.8 iterations, a 2.5 fold reduction with p = 0.02.
Interestingly, the gain in CPU time per iteration is also
more significant. Using the same PC, it is 0.115 s versus
0.210 s per iteration, leading to an almost 5 fold gain in
CPU time.

Figure 7 compares the contour plot of convergence
between the two methods for subject 9. Contour plot of a
non-linear least square minimization problem can help
understand the nature of convergence, the magnitude of
error and the number of iterations for both dimensional
and dimensionless models implemented. In it the con-
tours represent the values of the cost function (in this case,
the norm of the error between the experimental and pre-
dicted glucose profiles) after each minimization iteration.
As we can see from the figure, starting from the iteration
1, the cost function slowly decreases its magnitude and

An example of model fitting to the Monte Carlo simulation dataFigure 3
An example of model fitting to the Monte Carlo simulation 
data. The fitting algorithm using the dimensionless formula-
tion of MINMOD is able to achieve better fit to data, and is 
less sensitive to noise.

Table 2: Comparison between the dimensional and the dimensionless implementation of MINMOD. Results are from 100 Monte Carlo 
simulations.

Comparisons Dimensional Dimensionless Significance

Number of iterations 8.0 ± 1.4 6.4 ± 2.7 P < 0.001
R2 0.97 ± 0.02 0.97 ± 0.03 N.S
p1 % difference from true value (53.2 ± 7.6)% (53.2 ± 9.6)% N.S.
p1, FSD of estimation (14.1 ± 2.7)% (14.9 ± 6.0)% N.S
p2, % difference from true value (188 ± 160)% (187 ± 155)% N.S.
p2, FSD of estimation (11.6 ± 1.6)% (12.1 ± 3.5)% N.S
p3, % difference from true value (513 ± 324)% (505 ± 317)% N.S.
p3, FSD of estimation (11.6 ± 1.7)% (12.1 ± 3.5)% N.S
G0, % difference from true value (1.3 ± 0.4)% (1.3 ± 0.4)% N.S.
G0, FSD of estimation (0.1 ± 0.04)% (0.1 ± 0.06)% N.S
SI, % difference from true value (52.4 ± 25.5)% (52.1 ± 25.5)% N.S
Page 9 of 15
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changes its color from "red" to "blue". The simulation
using the dimensionless formulation of MINMOD exhib-
its much faster convergence to the cost-function minimi-
zation than the dimensional formulation.

Out of the 20 subjects, dimensional implementation
failed to reach a fit (R2 < 0) for one individual (subject 2),
whilst the dimensionless implementation was able to
reach a good fit with R2 = 0.93. We have played with dif-
ferent initial conditions to see that if the fitting by the
dimensional program can be salvaged. With 4 different
sets of initial parameter values, only one led to positive fit-
ting with R2 = 0.84, a value that is still significantly lower
than what can be achieved with the dimensionless pro-

gram. Figure 8 shows the fitting results for this subject
when both methods reached a positive fitting. A close
examination of its glucose profile indicated that the meas-
urements were most likely compromised with noise.
From 8 to 25 min the glucose rose unexpectedly while it
should drop monotonically. This result is consistent with
our findings in the Monte Carlo simulation where the
dimensional implementation is found to be more sensi-
tive to noise.

Excluding subject 2, Figure 9 presents the results for the
remaining 19 individuals using both dimensional and
dimensionless implementation, including the goodness
of fit R2, the number of iterations before reaching the fit,
the estimated SG and SI, and the FSD of the parameter esti-
mations. All data sets can achieve high R2, 0.991 ± 0.014
(Dim'less) versus 0.991 ± 0.015 (Dim'nl).

The estimations in SG and SI by the two approaches corre-
late highly (figures 9C–9D), with correlation coefficient
0.991 and 0.999 respectively. There is a consistent small
difference in SG estimation, with the values derived using
the dimensionless implementation ~11.9% higher on
average than the dimensional implementation (p =
0.002). There is no difference in SI estimation (p = 0.33).
The FSD in the parameter estimation also correlate well
(figures 9E–9F). The FSD in SG estimation in the dimen-
sionless implementation exhibits a significant (p = 0.007)
albeit small improvement over the dimensional counter-
part, suggesting that the higher SG value derived by the
dimensionless implementation could be more accurate.
The FSD in SI is not different (p = 0.26). All p values were
obtained using the paired t-test on the logarithm trans-
formed data, as the distribution of the transformed data is
much less skewed (which can be seen from figure 9).

Discussion
In diabetes research and clinical practice, it is very impor-
tant to assess β cell function and insulin sensitivity, so as
to evaluate the pathological status and risk of an individ-
ual. Many tests have been designed, and numerous indi-
ces have been defined. Using insulin sensitivity as an
example, over a dozen have been experimented [27,28],
none has been deemed best at predicting disease risk.
These indices were all associated with certain units by def-
inition. Some (Cederholm index [29] for example) would
include several constants in the definition to accommo-
date the conversion between different units in measuring
glucose or insulin concentration. Some indices are very
similar by nature, like the Gutt index [30] and the Ceder-
holm index [29], but can appear to be quite different as
the same quantities were defined in different units. There-
fore, when using these indices one must follow exactly
their proposed forms and the glucose/insulin concentra-
tion units in order to obtain meaningful results. These

Comparison of the robustness against noiseFigure 4
Comparison of the robustness against noise. Data shown are 
the results from 100 Monte Carlo simulations, with 0–10% 
noise added. (A) The average goodness-of-fit R2 is plotted 
against the noise level. Overall the dimensionless implemen-
tation is able to achieve better model fitting at all noise levels. 
(B) The number of failed fitting (defined to be those with R2 < 
0) is more in the dimensional implementation than the 
dimensionless counterpart at all noise levels.
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make the utilization of and the comparison between dif-
ferent indices extremely clumsy. A dimensional analysis
and definition of dimensionless parameters will eliminate
most of the problems. In addition, it has been found that
a combination of several measures could predict disease
risk better than individual ones [31]. However, it is not
clear how many measures are needed for best prediction.

As we have stated in the background section, a dimen-
sional analysis can help us to further understand the
model structure, identify the degree of freedom in the
model and a non-redundant set of dimensionless param-
eters that together determines the dynamics of system and
its sensitivity to pathological changes. Specifically, our
analysis of MINMOD revealed that it has seven DOF,
hence a full description of the metabolic control of glu-

cose tolerance requires seven independent dimensionless
parameters. It further offers a candidate set for the seven

free parameters, which includes , and

1. In the original analysis of FSIVGTT by dimensional

MINMOD [1,2,5], four metabolic indices (SI, SG, φ1 and

φ2) were defined that utilized only three of the seven DOF

( 1, , and ). Four additional DOF remain to be

explored: , 1, 1, and a combination of 2 and 3

that is independent of  (  for example). These

additional indices together with the ones that have
already been utilized can potentially offer a better, more
complete description of the metabolic control of glucose
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The ratio between estimated and true values of SG (top panels) and SI (bottom panels) is compared between the dimensional (left panels) and dimensionless implementation (right panels), for the 100 data sets with 1% noiseFigure 5
The ratio between estimated and true values of SG (top panels) and SI (bottom panels) is compared between the dimensional 
(left panels) and dimensionless implementation (right panels), for the 100 data sets with 1% noise.
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Comparison of the robustness in parameter estimationFigure 6
Comparison of the robustness in parameter estimation. The right panels show the number of failed estimations (defined by > 5 
fold difference with the true values) for SG and SI as functions of noise level. The dimensionless implementation is better at 
recovering the true values of the parameters. The right panels plot the ratio of the estimated to true parameter values for 
those after removing failed fittings. The data points at 0% noise was normalized to one.

Contour plot of convergence in error minimization versus the number of iterations, for subject 9 in the FUSION data setFigure 7
Contour plot of convergence in error minimization versus 
the number of iterations, for subject 9 in the FUSION data 
set. The levels of the cost-function in the contour plot are 
represented through their color, and is labeled on each con-
tour. Top: Simulation using the dimensional formulation. Bot-
tom: Simulation using the dimensionless formulation.

An example (subject 2) of the glucose measurements of the FUSION FSIVGTT data, and the model fittings using both dimensional and dimensionless formulation of MINMODFigure 8
An example (subject 2) of the glucose measurements of the 
FUSION FSIVGTT data, and the model fittings using both 
dimensional and dimensionless formulation of MINMOD.
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Comparison of the model fitting between the two methods for the FUSION data setsFigure 9
Comparison of the model fitting between the two methods for the FUSION data sets. (A) R2. (B) Number of iterations it takes 
to reach a fit. (C) Estimated SG values. (D) Estimated SI values. (D-E) FSD in parameter estimation of SG and SI.
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in humans, as well as its dysfunctions under pathological
conditions. We hypothesize that together the complete set
of seven DOF could lead to more accurate disease risk pre-
diction.

Existing evidence from clinical reports have indicated the

relevance of the additional four indices. 1 or 1 each by

itself could be a meaningful index, as they each reflect the
basal glucose or insulin level with respect their dynamic
range of change. An alternative index of glucose effective-

ness that has been in use is [32], where

D is the glucose bolus dose (mg/kg), AUC is the area-
under-curve of the glucose concentration excursion above

basal. 1 is related to it by , where

 is the ratio between total basal glucose uptake and

the glucose bolus dose. The product of 1 and 1 is also

of interest, as , where HOMA =

Gb·Ib is the HOmeostasis Model Assessment of the steady

state β cell function and insulin sensitivity [33]. Recently,
a new composite index for insulin sensitivity defined

using both  and p2 was investigated [34]. There-

fore it would be of interest to explore the physiological
meaning of the remaining 4 DOF further, and their poten-
tial as disease markers.

The fitting failure rate in the Monte Carlo simulation is
high. This is expected to improve if we implement more
sophisticated initial parameter value estimation and base-
line correction algorithms, as found in [5]. In addition,
the model fitting to the 20 FUSION subjects seems to be
much better than the fitting of the Monte Carlo data sets
at any noise levels, with higher R2 values, less failure rate
and better agreements between the two methods. This is
likely due to the fact that the FUSION used the modified
FSIVGTT protocol, which is known to lead to better
parameter estimation. As insulin secretion mechanism in
modified protocol is not known, it is not possible to run
a Monte Carlo simulation for the modified protocol.

Conclusion
In this work we performed dimensional analysis of MIN-
MOD. We found that with a non-dimensionalization
choice that normalizes the variation in glucose and insu-
lin during FSIVGTT, the pathologically important Dl

index is naturally defined in the model and it has the
meaning of the insulin sensitivity at unit first phase pan-
creas response. Several additional dimensionless indices
were also defined, which potentially offer means to better
characterize the metabolic control of glucose and its dys-
regulation under pathological conditions. In addition, we
have explored the advantages of computer simulation of
MINMOD using its dimensionless formulation. Using
simulated data as well as real human FSIVGTT data, we
found that whilst the new approach gives highly correla-
tive (correlation coefficients all above 0.96) parameter
estimations to the original dimensional formulation, it
led to significantly improved simulation speed and is
much more robust against noise.
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