
Applying Hybrid Algorithms for Text Matching to Automate d Biomedical
Vocabulary Mapping

Senthil K. Nachimuthu, MDa and Lee Min Lau, MD PhDa,b

a. Department of Medical Informatics, University of Utah, Salt Lake City, Utah.
b. 3M Health Information Systems, Salt Lake City, Utah.

Abstract: Several biomedical vocabularies are often
used by clinical applications due to their different
domain(s) of coverage, intended use, etc. Mapping
them to a reference terminology is essential for inter-
systems interoperability. Manual vocabulary
mapping is labor-intensive and allows room for
inconsistencies. It requires manual searching for
synonyms, abbreviation expansions, variations, etc.,
placing additional burden on the mappers.
Furthermore, local vocabularies may use non-
standard words and abbreviations, posing additional
problems. However, much of this process can be
automated to provide decision-support, allowing
mappers to focus on steps that absolutely need their
expertise. We developed hybrid algorithms
comprising of rules, permutations, sequence
alignment and cost algorithms that utilize the UMLS
SPECIALIST Lexicon, a custom knowledgebase and
a search engine to automatically find probable
matches, allowing mappers to select the best match
from this list. We discuss the techniques, results from
assisting to map a local codeset, and scope for
generalizability.

INTRODUCTION

A combination of biomedical vocabularies (both
standard vocabularies such as SNOMED, LOINC,
etc. and local vocabularies for lab, billing, etc.) is
often required to meet the requirements of a complex
clinical information system. It is practically
impossible for one vocabulary to cover all these
applicable domains. For a clinical information system
to effectively use them, these vocabularies need to be
mapped to a single vocabulary, often called a
Reference Terminology.

The Reference Terminology serves as the superset of
all vocabularies used by the organization, allowing
translation between various terminologies, and
seamless integration between various clinical
applications that use multiple vocabularies[1]. In the
absence of a Reference Terminology, a single clinical
application will need to implement many of the
aforementioned vocabularies natively, leading to
difficulties in relating and translating between the
concepts in multiple terminologies. The mapping

process becomes more challenging when an
institution uses non-standard terminologies such as
local charge codes, lab codes, etc., which do not
adhere to well-accepted standards[2].

In this article, we discuss a hybrid approach we
developed to map a local codeset named CodeSet-1
(CS-1) to the 3M Healthcare Data Dictionary (3M
HDD, our Reference Terminology). We present our
results from applying this technique for mapping CS-
1 to 3M HDD, and initial attempts at generalizing
these algorithms to other medical vocabularies.

BACKGROUND

The hybrid techniques described in this paper were
developed to map CS-1 to the 3M HDD. CS-1 is an
internally developed charge codeset used by a large
hospital to capture all billable items. We needed to
map CS-1 to the 3M HDD to facilitate integration
with other applications that use the 3M HDD as the
underlying vocabulary. The goal is to translate
between CS-1 and CPT-4 (Current Procedural
Terminology) or HCPCS (Healthcare Common
Procedure Coding System), and the 3M HDD already
has CPT-4 and HCPCS mapped to it.

CS-1 was developed over a period of time by
multiple users without adhering to vocabulary
standards[2], and has more than 10,000 concepts. The
surface forms in CS-1 were highly abbreviated. CS-1
lacked formal definitions, concept uniqueness, and
used nonstandard abbreviations. The representations
(surface forms) were abbreviated in an inconsistent
fashion, and often the abbreviations were clumped
together as a single word. CS-1 often used different
acronyms to denote the same word in different
concepts. It also used the same acronym for different
words in different concepts.

CS-1 often used a single word such as the name of a
chemical substance to denote a lab test done to detect
that substance using a specific method. It also used
the just name of prosthesis or a catheter to denote a
specific procedure for its implantation. In addition,
CS-1 had several misspellings. CS-1 also had
variability in terms of punctuations and space within

AMIA 2005 Symposium Proceedings Page - 555

and after acronyms, space between individual words,
etc. CS-1 lacked expanded surface forms (“long
names”) for the concepts. CS-1 ID and
Representations (shown in Table 1) were the only
data available to perform the mapping.

CS-1
ID

CS-1
REPRESENTATION

EQUIVALENT
STANDARD FORM

4523 ACETONEQUNT
Acetone, serum;
quantitative

6534 ALBUMINUR Urine Albumin
5634 BMW GWIRE Guide Wire

7354 BONEMAR ASP
Bone marrow;
aspiration only

8676
EMERGENCY
ROOM

Emergency Department
Visit

4356
EMINASE 30
UNITS

Injection, anistreplase,
per 30 units

8567 LYMPATIC SCAN Lymphatic Scan

1321 NASOPHARNYX
Radiologic examination;
neck, soft tissue

6566
LONG ARM
ADULT CA

Application, cast;
shoulder to hand (long
arm)

Table 1. Examples of non-standard surface forms
in CS-1 and their equivalent standard forms

obtained from their 3M HDD Mappings.

Due to this limitation, automapping using traditional
automated keyword searches, and other hybrid
methods[3] including Natural Language Processing
were ineffective. Human expertise was required to
understand these non-standard terms. But manually
translating non-standard abbreviations into standard
forms (shown in Table 1), and then finding their
synonyms for the thousands of concepts in CS-1 was
inefficient.

These limitations necessitated the development of a
new method to automatically translate these terms
into a standard form, and find their possible
synonyms. We developed a translation algorithm to
generate possible standard forms for each CS-1
concept, and a synonym generator to find possible
synonyms for these multiple standard forms. We then
integrated this algorithm with a search engine to
automatically search the HDD for matches, and
present them to a vocabulary mapper for human
review and a final mapping decision. These
algorithms were deployed as a single web application
named ‘HyperSearch’. An important goal was to
ensure that the algorithms being built were
generalizable to other biomedical vocabularies.

METHODS

The HyperSearch application consists of two closely
related components – the translation and synonym
generation (TranSyn) component, and the search
engine component.

Fragment
Generator

CS-1 Fragments:
CA

GLUC

CS-1
Translator

‘Standard’ Fragments:
Calcium
Cancer
Glucose

Gluconate

UMLS LVG
Processor

Standard Synonyms:
Carcinoma
Malignancy

Dextrose
Sugar…

Sequencer

All valid sequences:
Calcium Gluconate
Calcium Glucose

Carcinoma Glucose
Calcium Dextrose…

Cost Limiter

Custom
CS-1 KB

‘Best’ Sequences:
Calcium Gluconate
Calcium Glucose

Carcinoma Glucose
Calcium Dextrose

Input
CS-1 Term:
CA GLUC

To Search
Engine Component

Figure 1. ‘TranSyn’ Component Flow Diagram

TranSyn component
Due to the use of non-standard abbreviations in CS-1,
the non-standard representations are first translated
into their standard forms by the translation algorithm.
Next, the synonym generation algorithm generates
synonyms, abbreviation expansions, etc. The
translation and synonym generation algorithms are
closely integrated and work in tandem, and hence are
called together as the ‘TranSyn’ component. An
overview of the algorithm with an example is shown

AMIA 2005 Symposium Proceedings Page - 556

in Figure 1. The TranSyn component uses many
algorithms similar to those used in DNA
Sequencing[4], and are frequently referred to in this
paper for better understanding. The individual steps
in this algorithm are as follows.

 Fragment Generator
The first step in translating the term is the generation
of synonyms. Due to the highly variable nature of the
abbreviations in CS-1, it was not possible to use
semantic or linguistic methods. We were required to
using syntactic parsing methods.

The Fragment Generator takes the input term and
splits it into individual tokens, and tags each token
with its position in the input string. It uses spaces,
punctuation and special characters as delimiters. This
causes splitting valid terms such as ‘W/O’ (meaning
‘without’) into two separate tokens, but this is
essential to handle inconsistencies in the input data.
Such splitting of valid multi-token terms into
individual tokens is compensated for by the custom
CS-1 Translator.

CS-1 Translator and Knowledgebase
The CS-1 Translator is a rule-based translation and
disambiguation engine that finds the correct meaning
of tokens in the input term from all possible
alternatives. For instance, the token ‘I’ may mean
‘incision’, ‘iodine’, ‘intra’, etc. But in the context of
‘I&D’, it denotes ‘incision’. The tokenizer splits the
input term at each occurrence of punctuations, special
characters and spaces. So, we developed a context
sensitive disambiguation engine to accommodate for
special characters. This engine compared the current
token to the unmodified input string to determine the
context for accurate translation. This two-step
process was used due to inconsistent use of special
characters and punctuations in CS-1.

Furthermore, the substitution engine tries to find the
match that involves the largest number of tokens. For
example, ‘A.V.’ had several meanings such as
‘arteriovenous’ or ‘atrioventricular’. But ‘A.V.R.’
meant ‘aortic valve replacement’. So, the CS-1
Translator used a greedy algorithm to find
substitutions for the largest number of tokens as a
single string, starting at any given position. In this
cause, the Translator would substitute ‘A.V.R.’ (three
tokens) in one go as ‘aortic valve replacement’,
before processing ‘A.V.’ (two tokens). Specific
directives were defined for each specific word, telling
the Translator whether or not to continue replacing
shorter matches, if a longer match is already found.

After translation, we had a collection of meaningful
substrings instead of the arbitrary words present in
CS-1. Each of these substrings was tagged with its
positional information in the unmodified input string.
This information is required for the Sequencer later
in the process, as described below.

The word meanings used for substitution, rules for
context-sensitive disambiguation, and directives to
process shorter matches were all defined in the CS-1
Knowledgebase, which was created by one of the
authors (SKN) by manual review of CS-1 over a
period of one week of full-time effort.

UMLS LVG Processor
The translated tokens obtained from the previous step
were further queried against the UMLS SPECIALIST
Lexicon using the UMLS LVG API to obtain all
possible synonyms and abbreviation expansions[5].
This was done in order to match a CS-1 concept
against all its possible synonyms in the 3M HDD.

At the end of this stage, we have several substrings of
the original input string and several synonyms of
these substrings. This is comparable to DNA
Sequencing where a given DNA sample is amplified
and digested to produce several fragments, each
starting and ending at different positions in the
original DNA strand. However, we gathered unique
synonyms rather than multiple copies as is done in
DNA Sequencing.

The synonym fragments, though meaningful, are not
useful by themselves to find matches in the target
vocabulary – the 3M HDD. These synonyms of the
substrings need to be aligned together to obtain
meaningful synonyms of the whole input term. This
is done by the Sequencer.

Sequence and Cost Limiter
The Sequencer and the Cost Limiter together
implement a shortest-path algorithm, a classical
algorithm used in Artificial Intelligence. The
Sequencer strings various synonyms of substrings
together in the correct order to recreate entire
synonyms of the original input string. A popular
example of path finding algorithms is a DNA
sequence alignment algorithm[4] that strings together
the amplified DNA fragments. Another popular
application is in rail and air reservation programs[6].

The Sequencer starts with a substring beginning at
the first token, and tries to find another substring that
begins at the position where the current one ends.
Once it finds such a substring, the Sequencer appends
it to the former. This process is iterated to find all

AMIA 2005 Symposium Proceedings Page - 557

possible paths from the start of the input term to its
end, using all possible substrings that start and end
sequentially. Since ‘connecting’ substrings alone are
used, the nonsensical ‘dangling’ synonyms are
eliminated. We are finally left with only the
meaningful synonyms of the entire input term
(‘successful paths’).

For each ‘successful path’ that is created, a ‘cost’ is
computed. The cost depends on the number of
substrings utilized and the length of each substring.
Large number of substrings increases the cost,
whereas longer substrings decrease it. When the cost
is calculated, the synonyms with the least cost are
often the most accurate[7]. The cost threshold was set
at the 80th percentile after pilot tests, on the basis of
‘noise’ in the generated synonyms. The synonyms
whose costs exceeded the 80th percentile were
discarded.

The output contains the most meaningful synonyms
of the entire input term. These are then passed to the
search engine to obtain their respective matches. The
search engine supports Boolean queries with multiple
items. So, we create a large search string that
combines all the synonyms with an ‘OR’ query. Even
when one of the synonyms is an exact (or near-exact)
match for a 3M HDD concept, it generates a very
good match rank and score to the correct target
concept. The search engine interface and
implementation is described below.

Search Engine Component
We used Lucene[8] – an open source search engine
written in Java and released by the Apache Software
Foundation, as a component of HyperSearch. This
search engine supports several useful features that
help in obtaining matches even when the search
string and the target string do not match exactly. This
provides significant advantage over trying to match
using SQL queries, or developing a string
comparison algorithm from scratch. A notable feature
of Lucene is fuzzy search, which helps to search
terms that are misspelled or amalgamated together
(e.g. ‘ACETONEQUNT’, ‘CATHTER’).

Lucene supports various ‘analyzers’ to preprocess the
input terms, to allow for imprecise matches. We used
built-in analyzers that ignored the word order, case,
punctuations, articles and some selected prepositions
that did not add much meaning (e.g. ‘for’, ‘to’, etc).
We also used a stemming algorithm (‘Porter
Stemmer’) that normalized word inflections (tenses,
singular or plural, adverbs, etc). Thus, ‘run’ will
match ‘ran’, ‘runs’, ‘running’, etc. This helped to
obtain matches even when there are minor

insignificant variations between the search string and
the target string.

The output is provided to the vocabulary mapper as a
list consisting of the rank, score, the unique concept
identifier and the surface form in the 3M HDD. The
mapper can then select the correct match from the list
displayed. The whole process is repeated for each
term in the CS-1 codeset. Thus, HyperSearch
provides valuable support to mappers to make
decisions, and frees them from performing mundane
tasks, leading to an increase in consistency,
efficiency and accuracy.

Practical Considerations and Implementation
We decided to use a mix of homegrown and third
party components due to various practical
considerations. We used the UMLS SPECIALIST
Lexicon and Lucene due to their extensive features,
coverage and support. However, we developed our
own specialized algorithms for translation and
synonym generation to achieve high performance.
HyperSearch was written in Java and deployed on a
Tomcat server running on Linux (kernel 2.4) on a
Pentium 4 processor with 1 GB RAM. With this
architecture, we were able to achieve sub-second
response time for most input terms.

RESULTS

To evaluate the accuracy of our hybrid algorithms
(‘TranSyn’), we compared the percentage of terms
matched before and after implementing the TranSyn
component. The Search Engine component remained
the same. The test was done by sending one CS-1
term (its representation) at a time to HyperSearch,
and storing the results into a database. The results
consisted of a ranked list of possible matches from
the 3M HDD. These results were compared with the
manual mapping done for the same terms by a human
mapper at the client’s institution and were provided
to us.

To be considered a positive match, the correct match
as previously determined by the human mapper
should be within the top 10 concepts returned by
HyperSearch. We limited this to the top 10 results to
have a very strict measurement, though more matches
may be allowed in the real world, as described below.

The results are summarized in the following table.
The ‘Before’ (Version 1) results are from a version
with only the search engine and without any TranSyn
component. The ‘After’ (Version 2) results denote
those from a version with the search engine and all
TranSyn components described in this paper.

AMIA 2005 Symposium Proceedings Page - 558

In addition to the top 10, the top 30 results were also
analyzed separately for Version 2, since a mapper
could see at least 30 rows of results at a glance,
without scrolling the page, which is an acceptable
limit for usability[9]. Several incremental
developmental versions were built, with accuracy
metrics falling between Versions 1 and 2.

 Before After
Version Number Version 1 Version 2
Technique Search Engine

Alone
Search Engine
+ TranSyn

Number of CS-1
concepts tested

4102 4102

Matched in top 10 870 21.2% 2576 62.8%
Matched in top 30 Not measured 2875 70.1%
Matches grouped by result rank:
Rank 1 369 9% 1521 37%
Rank 2 138 3.4% 325 7.9%
Rank 3 91 2.2% 211 5.1%
Rank 4 51 1.2% 139 3.4%
Rank 5 48 1.2% 99 2.4%
Ranks 6 to 10 173 4.2% 281 6.9%
Ranks 11 to 15 Not measured 125 3%
Ranks 16 to 20 Not measured 65 1.6%
Ranks 21 to 25 Not measured 66 1.6%
Ranks 26 to 30 Not measured 43 1%
Table 2. Comparison of HyperSearch versions
with and without TranSyn hybrid algorithms

About 60% terms that were not mapped by the latest
version (Version 2) were drug brand names, which
were not included in the CS-1 Knowledgebase or the
UMLS Specialist Lexicon. Other terms were
misspellings, or ‘not elsewhere classified’ terms,
which were not captured by the CS-1
Knowledgebase. These accounted for more than 15%
of the unmatched terms.

Overall, HyperSearch in its current form shows
62.8% accuracy in returning a correct match among
the top 10 results, and 70% among the top 30%.

DISCUSSION

The combination of algorithms described in this
paper performs well to interpret and disambiguate
terms in a highly variable and inconsistent
vocabulary, find the synonyms and their matches in
the target vocabulary. The accuracy of this tool can
be improved by enriching the knowledgebase further.

The modules in HyperSearch are also readily
generalizable to other vocabularies. The CS-1

translator and knowledgebase are the only vocabulary
specific components. We deactivated the CS-1
Translator component and built a version that is
currently used for mapping SNOMED CT to the 3M
HDD. This version shows much higher accuracy than
our experience with CS-1, due to the standardized
representations in SNOMED CT. Accuracy
measurements for this version are not available at the
time of this writing.

Thus, in addition to mapping a non-standardized
local vocabulary, the study also shows the
generalizability of these methods to map any given
biomedical vocabulary. Furthermore, this project also
emphasizes need for good vocabulary design,
including the need for standardized representations.

References

1. Spackman KA, Campbell KE, Cote RA. SNOMED
RT: a reference terminology for health care. Proc
AMIA Annu Fall Symp 1997:640-4.

2. Cimino JJ. Desiderata for controlled medical
vocabularies in the twenty-first century. Methods
Inf Med 1998;37(4-5):394-403.

3. Solbrig HR, Elkin PL, Ogren PV, Chute CG. A
formal approach to integrating synonyms with a
reference terminology. Proc AMIA Symp
2000:814-8.

4. Carvalho Junior SA. Sequence Alignment
Algorithms. London: King's College; 2003.

5. Browne AC, Divita G, Aronson AR, McCray AT.
UMLS language and vocabulary tools. AMIA
Annu Symp Proc 2003:798.

6. Pallottino S, Scutella MG. Shortest Path
Algorithms in Transportation models: classical and
innovative aspects: Department of Informatics,
University of Pisa; 1998. Report No.: TR-97.

7. Carberry S. Understanding Pragmatically Ill-
formed Input. In: The 10th International
Conference on Computational Linguistics; 1984;
1984. p. 200-206.

8. Apache Lucene. [cited March 1, 2005]; Available
from: http://lucene.apache.org

9. Nielsen J. Designing Web Usability: New Riders
Publishing, USA; 2000.

Acknowledgements
The authors thank Chengjian Che, MD at the
University of Utah Department of Medical
Informatics for the batch search module used to run
batch queries to measure accuracy, and Jacqueline
Roe at 3M Health Information Systems for compiling
the list of abbreviations used in CS-1. We also thank
various Open Source developers for their invaluable
contributions that were used in this project.

AMIA 2005 Symposium Proceedings Page - 559

