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Abstract:  Several biomedical vocabularies are often 
used by clinical applications due to their different 
domain(s) of coverage, intended use, etc. Mapping 
them to a reference terminology is essential for inter-
systems interoperability. Manual vocabulary 
mapping is labor-intensive and allows room for 
inconsistencies. It requires manual searching for 
synonyms, abbreviation expansions, variations, etc., 
placing additional burden on the mappers. 
Furthermore, local vocabularies may use non-
standard words and abbreviations, posing additional 
problems. However, much of this process can be 
automated to provide decision-support, allowing 
mappers to focus on steps that absolutely need their 
expertise. We developed hybrid algorithms 
comprising of rules, permutations, sequence 
alignment and cost algorithms that utilize the UMLS 
SPECIALIST Lexicon, a custom knowledgebase and 
a search engine to automatically find probable 
matches, allowing mappers to select the best match 
from this list. We discuss the techniques, results from 
assisting to map a local codeset, and scope for 
generalizability. 
 
INTRODUCTION 
 
A combination of biomedical vocabularies (both 
standard vocabularies such as SNOMED, LOINC, 
etc. and local vocabularies for lab, billing, etc.) is 
often required to meet the requirements of a complex 
clinical information system. It is practically 
impossible for one vocabulary to cover all these 
applicable domains. For a clinical information system 
to effectively use them, these vocabularies need to be 
mapped to a single vocabulary, often called a 
Reference Terminology.  
 
The Reference Terminology serves as the superset of 
all vocabularies used by the organization, allowing 
translation between various terminologies, and 
seamless integration between various clinical 
applications that use multiple vocabularies[1]. In the 
absence of a Reference Terminology, a single clinical 
application will need to implement many of the 
aforementioned vocabularies natively, leading to 
difficulties in relating and translating between the 
concepts in multiple terminologies. The mapping 

process becomes more challenging when an 
institution uses non-standard terminologies such as 
local charge codes, lab codes, etc., which do not 
adhere to well-accepted standards[2]. 
 
In this article, we discuss a hybrid approach we 
developed to map a local codeset named CodeSet-1 
(CS-1) to the 3M Healthcare Data Dictionary (3M 
HDD, our Reference Terminology).  We present our 
results from applying this technique for mapping CS-
1 to 3M HDD, and initial attempts at generalizing 
these algorithms to other medical vocabularies. 
 
BACKGROUND 
 
The hybrid techniques described in this paper were 
developed to map CS-1 to the 3M HDD. CS-1 is an 
internally developed charge codeset used by a large 
hospital to capture all billable items. We needed to 
map CS-1 to the 3M HDD to facilitate integration 
with other applications that use the 3M HDD as the 
underlying vocabulary. The goal is to translate 
between CS-1 and CPT-4 (Current Procedural 
Terminology) or HCPCS (Healthcare Common 
Procedure Coding System), and the 3M HDD already 
has CPT-4 and HCPCS mapped to it. 
 
CS-1 was developed over a period of time by 
multiple users without adhering to vocabulary 
standards[2], and has more than 10,000 concepts. The 
surface forms in CS-1 were highly abbreviated. CS-1 
lacked formal definitions, concept uniqueness, and 
used nonstandard abbreviations. The representations 
(surface forms) were abbreviated in an inconsistent 
fashion, and often the abbreviations were clumped 
together as a single word. CS-1 often used different 
acronyms to denote the same word in different 
concepts. It also used the same acronym for different 
words in different concepts.  
 
CS-1 often used a single word such as the name of a 
chemical substance to denote a lab test done to detect 
that substance using a specific method. It also used 
the just name of prosthesis or a catheter to denote a 
specific procedure for its implantation. In addition, 
CS-1 had several misspellings. CS-1 also had 
variability in terms of punctuations and space within 
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and after acronyms, space between individual words, 
etc. CS-1 lacked expanded surface forms (“long 
names”) for the concepts. CS-1 ID and 
Representations (shown in Table 1) were the only 
data available to perform the mapping. 
 
CS-1 
ID 

CS-1 
REPRESENTATION 

EQUIVALENT  
STANDARD FORM 

4523 ACETONEQUNT 
Acetone, serum; 
quantitative 

6534 ALBUMINUR Urine Albumin 
5634 BMW GWIRE Guide Wire 

7354 BONEMAR ASP 
Bone marrow; 
aspiration only 

8676 
EMERGENCY 
ROOM 

Emergency Department 
Visit 

4356 
EMINASE 30 
UNITS 

Injection, anistreplase, 
per 30 units 

8567 LYMPATIC SCAN Lymphatic Scan 

1321 NASOPHARNYX 
Radiologic examination; 
neck, soft tissue 

6566 
LONG ARM 
ADULT CA 

Application, cast; 
shoulder to hand (long 
arm) 

Table 1. Examples of non-standard surface forms 
in CS-1 and their equivalent standard forms 

obtained from their 3M HDD Mappings. 
 
Due to this limitation, automapping using traditional 
automated keyword searches, and other hybrid 
methods[3] including Natural Language Processing 
were ineffective. Human expertise was required to 
understand these non-standard terms. But manually 
translating non-standard abbreviations into standard 
forms (shown in Table 1), and then finding their 
synonyms for the thousands of concepts in CS-1 was 
inefficient. 
  
These limitations necessitated the development of a 
new method to automatically translate these terms 
into a standard form, and find their possible 
synonyms. We developed a translation algorithm to 
generate possible standard forms for each CS-1 
concept, and a synonym generator to find possible 
synonyms for these multiple standard forms. We then 
integrated this algorithm with a search engine to 
automatically search the HDD for matches, and 
present them to a vocabulary mapper for human 
review and a final mapping decision. These 
algorithms were deployed as a single web application 
named ‘HyperSearch’.  An important goal was to 
ensure that the algorithms being built were 
generalizable to other biomedical vocabularies.  

METHODS 
 
The HyperSearch application consists of two closely 
related components – the translation and synonym 
generation (TranSyn) component, and the search 
engine component.  
 

Fragment
Generator

CS-1 Fragments:
CA

GLUC

CS-1 
Translator

‘Standard’ Fragments: 
Calcium
Cancer
Glucose

Gluconate

UMLS LVG
Processor

Standard Synonyms:
Carcinoma
Malignancy

Dextrose
Sugar…

Sequencer

All valid sequences:
Calcium Gluconate
Calcium Glucose

Carcinoma Glucose
Calcium Dextrose…

Cost Limiter

Custom
CS-1 KB

‘Best’ Sequences:
Calcium Gluconate
Calcium Glucose

Carcinoma Glucose
Calcium Dextrose

Input
CS-1 Term:
CA GLUC

To Search 
Engine Component

 
Figure 1. ‘TranSyn’ Component Flow Diagram 

 
TranSyn component 
Due to the use of non-standard abbreviations in CS-1, 
the non-standard representations are first translated 
into their standard forms by the translation algorithm. 
Next, the synonym generation algorithm generates 
synonyms, abbreviation expansions, etc. The 
translation and synonym generation algorithms are 
closely integrated and work in tandem, and hence are 
called together as the ‘TranSyn’ component. An 
overview of the algorithm with an example is shown 
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in Figure 1. The TranSyn component uses many 
algorithms similar to those used in DNA 
Sequencing[4], and are frequently referred to in this 
paper for better understanding. The individual steps 
in this algorithm are as follows.  
 
 Fragment Generator 
The first step in translating the term is the generation 
of synonyms. Due to the highly variable nature of the 
abbreviations in CS-1, it was not possible to use 
semantic or linguistic methods. We were required to 
using syntactic parsing methods. 
 
The Fragment Generator takes the input term and 
splits it into individual tokens, and tags each token 
with its position in the input string. It uses spaces, 
punctuation and special characters as delimiters. This 
causes splitting valid terms such as ‘W/O’ (meaning 
‘without’) into two separate tokens, but this is 
essential to handle inconsistencies in the input data. 
Such splitting of valid multi-token terms into 
individual tokens is compensated for by the custom 
CS-1 Translator. 
 
CS-1 Translator and Knowledgebase 
The CS-1 Translator is a rule-based translation and 
disambiguation engine that finds the correct meaning 
of tokens in the input term from all possible 
alternatives. For instance, the token ‘I’ may mean 
‘incision’, ‘iodine’, ‘intra’, etc. But in the context of 
‘I&D’, it denotes ‘incision’. The tokenizer splits the 
input term at each occurrence of punctuations, special 
characters and spaces. So, we developed a context 
sensitive disambiguation engine to accommodate for 
special characters. This engine compared the current 
token to the unmodified input string to determine the 
context for accurate translation. This two-step 
process was used due to inconsistent use of special 
characters and punctuations in CS-1. 
  
Furthermore, the substitution engine tries to find the 
match that involves the largest number of tokens. For 
example, ‘A.V.’ had several meanings such as 
‘arteriovenous’ or ‘atrioventricular’. But ‘A.V.R.’ 
meant ‘aortic valve replacement’. So, the CS-1 
Translator used a greedy algorithm to find 
substitutions for the largest number of tokens as a 
single string, starting at any given position. In this 
cause, the Translator would substitute ‘A.V.R.’ (three 
tokens) in one go as ‘aortic valve replacement’, 
before processing ‘A.V.’ (two tokens). Specific 
directives were defined for each specific word, telling 
the Translator whether or not to continue replacing 
shorter matches, if a longer match is already found. 
 

After translation, we had a collection of meaningful 
substrings instead of the arbitrary words present in 
CS-1. Each of these substrings was tagged with its 
positional information in the unmodified input string. 
This information is required for the Sequencer later 
in the process, as described below. 
 
The word meanings used for substitution, rules for 
context-sensitive disambiguation, and directives to 
process shorter matches were all defined in the CS-1 
Knowledgebase, which was created by one of the 
authors (SKN) by manual review of CS-1 over a 
period of one week of full-time effort.  
 
UMLS LVG Processor 
The translated tokens obtained from the previous step 
were further queried against the UMLS SPECIALIST 
Lexicon using the UMLS LVG API to obtain all 
possible synonyms and abbreviation expansions[5]. 
This was done in order to match a CS-1 concept 
against all its possible synonyms in the 3M HDD.  
 
At the end of this stage, we have several substrings of 
the original input string and several synonyms of 
these substrings. This is comparable to DNA 
Sequencing where a given DNA sample is amplified 
and digested to produce several fragments, each 
starting and ending at different positions in the 
original DNA strand. However, we gathered unique 
synonyms rather than multiple copies as is done in 
DNA Sequencing.  
 
The synonym fragments, though meaningful, are not 
useful by themselves to find matches in the target 
vocabulary – the 3M HDD. These synonyms of the 
substrings need to be aligned together to obtain 
meaningful synonyms of the whole input term. This 
is done by the Sequencer. 
 
Sequence and Cost Limiter 
The Sequencer and the Cost Limiter together 
implement a shortest-path algorithm, a classical 
algorithm used in Artificial Intelligence. The 
Sequencer strings various synonyms of substrings 
together in the correct order to recreate entire 
synonyms of the original input string. A popular 
example of path finding algorithms is a DNA 
sequence alignment algorithm[4] that strings together 
the amplified DNA fragments. Another popular 
application is in rail and air reservation programs[6]. 
 
The Sequencer starts with a substring beginning at 
the first token, and tries to find another substring that 
begins at the position where the current one ends. 
Once it finds such a substring, the Sequencer appends 
it to the former. This process is iterated to find all 
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possible paths from the start of the input term to its 
end, using all possible substrings that start and end 
sequentially. Since ‘connecting’ substrings alone are 
used, the nonsensical ‘dangling’ synonyms are 
eliminated. We are finally left with only the 
meaningful synonyms of the entire input term 
(‘successful paths’).  
 
For each ‘successful path’ that is created, a ‘cost’ is 
computed. The cost depends on the number of 
substrings utilized and the length of each substring. 
Large number of substrings increases the cost, 
whereas longer substrings decrease it. When the cost 
is calculated, the synonyms with the least cost are 
often the most accurate[7]. The cost threshold was set 
at the 80th percentile after pilot tests, on the basis of 
‘noise’ in the generated synonyms. The synonyms 
whose costs exceeded the 80th percentile were 
discarded. 
 
The output contains the most meaningful synonyms 
of the entire input term. These are then passed to the 
search engine to obtain their respective matches. The 
search engine supports Boolean queries with multiple 
items. So, we create a large search string that 
combines all the synonyms with an ‘OR’ query. Even 
when one of the synonyms is an exact (or near-exact) 
match for a 3M HDD concept, it generates a very 
good match rank and score to the correct target 
concept. The search engine interface and 
implementation is described below. 
 
Search Engine Component 
We used Lucene[8] – an open source search engine 
written in Java and released by the Apache Software 
Foundation, as a component of HyperSearch. This 
search engine supports several useful features that 
help in obtaining matches even when the search 
string and the target string do not match exactly. This 
provides significant advantage over trying to match 
using SQL queries, or developing a string 
comparison algorithm from scratch. A notable feature 
of Lucene is fuzzy search, which helps to search 
terms that are misspelled or amalgamated together 
(e.g. ‘ACETONEQUNT’, ‘CATHTER’). 
 
Lucene supports various ‘analyzers’ to preprocess the 
input terms, to allow for imprecise matches. We used 
built-in analyzers that ignored the word order, case, 
punctuations, articles and some selected prepositions 
that did not add much meaning (e.g. ‘for’, ‘to’, etc). 
We also used a stemming algorithm (‘Porter 
Stemmer’) that normalized word inflections (tenses, 
singular or plural, adverbs, etc). Thus, ‘run’ will 
match ‘ran’, ‘runs’, ‘running’, etc. This helped to 
obtain matches even when there are minor 

insignificant variations between the search string and 
the target string.  
 
The output is provided to the vocabulary mapper as a 
list consisting of the rank, score, the unique concept 
identifier and the surface form in the 3M HDD. The 
mapper can then select the correct match from the list 
displayed. The whole process is repeated for each 
term in the CS-1 codeset. Thus, HyperSearch 
provides valuable support to mappers to make 
decisions, and frees them from performing mundane 
tasks, leading to an increase in consistency, 
efficiency and accuracy. 
 
Practical Considerations and Implementation 
We decided to use a mix of homegrown and third 
party components due to various practical 
considerations. We used the UMLS SPECIALIST 
Lexicon and Lucene due to their extensive features, 
coverage and support. However, we developed our 
own specialized algorithms for translation and 
synonym generation to achieve high performance. 
HyperSearch was written in Java and deployed on a 
Tomcat server running on Linux (kernel 2.4) on a 
Pentium 4 processor with 1 GB RAM. With this 
architecture, we were able to achieve sub-second 
response time for most input terms.  
 
RESULTS 
 
To evaluate the accuracy of our hybrid algorithms 
(‘TranSyn’), we compared the percentage of terms 
matched before and after implementing the TranSyn 
component. The Search Engine component remained 
the same. The test was done by sending one CS-1 
term (its representation) at a time to HyperSearch, 
and storing the results into a database. The results 
consisted of a ranked list of possible matches from 
the 3M HDD. These results were compared with the 
manual mapping done for the same terms by a human 
mapper at the client’s institution and were provided 
to us. 
  
To be considered a positive match, the correct match 
as previously determined by the human mapper 
should be within the top 10 concepts returned by 
HyperSearch. We limited this to the top 10 results to 
have a very strict measurement, though more matches 
may be allowed in the real world, as described below. 
  
The results are summarized in the following table. 
The ‘Before’ (Version 1) results are from a version 
with only the search engine and without any TranSyn 
component. The ‘After’ (Version 2) results denote 
those from a version with the search engine and all 
TranSyn components described in this paper.  
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In addition to the top 10, the top 30 results were also 
analyzed separately for Version 2, since a mapper 
could see at least 30 rows of results at a glance, 
without scrolling the page, which is an acceptable 
limit for usability[9]. Several incremental 
developmental versions were built, with accuracy 
metrics falling between Versions 1 and 2.  
 

 Before After 
Version Number Version 1 Version 2 
Technique Search Engine 

Alone 
Search Engine 
+ TranSyn 

Number of CS-1 
concepts tested 

4102 4102 

Matched in top 10 870 21.2% 2576 62.8% 
Matched in top 30 Not measured 2875 70.1% 
Matches grouped by result rank: 
Rank 1 369 9% 1521 37% 
Rank 2 138 3.4% 325 7.9% 
Rank 3 91 2.2% 211 5.1% 
Rank 4 51 1.2% 139 3.4% 
Rank 5 48 1.2% 99 2.4% 
Ranks 6 to 10 173 4.2% 281 6.9% 
Ranks 11 to 15 Not measured 125 3% 
Ranks 16 to 20 Not measured 65 1.6% 
Ranks 21 to 25 Not measured 66 1.6% 
Ranks 26 to 30 Not measured 43 1% 
Table 2. Comparison of HyperSearch versions 
with and without TranSyn hybrid algorithms 

 
About 60% terms that were not mapped by the latest 
version (Version 2) were drug brand names, which 
were not included in the CS-1 Knowledgebase or the 
UMLS Specialist Lexicon. Other terms were 
misspellings, or ‘not elsewhere classified’ terms, 
which were not captured by the CS-1 
Knowledgebase. These accounted for more than 15% 
of the unmatched terms.  
 
Overall, HyperSearch in its current form shows 
62.8% accuracy in returning a correct match among 
the top 10 results, and 70% among the top 30%. 
 
DISCUSSION 
 
The combination of algorithms described in this 
paper performs well to interpret and disambiguate 
terms in a highly variable and inconsistent 
vocabulary, find the synonyms and their matches in 
the target vocabulary. The accuracy of this tool can 
be improved by enriching the knowledgebase further.   
 
The modules in HyperSearch are also readily 
generalizable to other vocabularies. The CS-1 

translator and knowledgebase are the only vocabulary 
specific components. We deactivated the CS-1 
Translator component and built a version that is 
currently used for mapping SNOMED CT to the 3M 
HDD. This version shows much higher accuracy than 
our experience with CS-1, due to the standardized 
representations in SNOMED CT. Accuracy 
measurements for this version are not available at the 
time of this writing. 
 
Thus, in addition to mapping a non-standardized 
local vocabulary, the study also shows the 
generalizability of these methods to map any given 
biomedical vocabulary. Furthermore, this project also 
emphasizes need for good vocabulary design, 
including the need for standardized representations. 
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