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The MeSH® indexing done in MEDLINE® is engi-
neered by humans. Humans define the MeSH con-
cepts and human indexers assign MeSH terms to 
MEDLINE records.  Methods have been designed in 
an attempt to assign MeSH terms to MEDLINE 
documents automatically with some success. Meth-
ods have also been designed to locate useful phrases 
as potential concepts for indexing. However, little 
work has been done on the problem of how one 
might automatically index with the concepts repre-
sented by such phrases. Here we examine this issue 
and present a method for such indexing. 

INTRODUCTION 

A good deal of work has been done in an attempt to 
automatically assign MeSH terms to documents1-7. 
The methods developed generally take advantage of 
having already a set of documents where indexing 
has been done and learning from this prior indexing. 
Work has also been directed towards automatically 
identifying good phrases that may represent impor-
tant concepts for indexing in biomedicine8-10.  Given 
that one has collected a group of phrases that might 
serve as the basis of concepts by which to index 
literature, there is a second problem, identifying 
phrases which are synonyms that require grouping 
under the same concept. In this area also there has 
been useful work5, 8, 11. Our interest here is in a third, 
but equally important, step. This step deals with 
automatically assigning the concepts, that would 
result from the first two steps, to documents. This is 
particularly challenging as this scenario cannot 
make use of a repository of training documents 
where the concepts have already been humanly ap-
plied (that would not be a truly automatic method).  
We examine several methods and show that the best 
of these falls only a little behind a method of training 
on data with previously assigned MeSH terms.  

METHODOLOGY 

Our approach is to examine ten randomly chosen 
MeSH terms and the phrases representing their un-
derlying concepts. For each MeSH term we attempt 
to reconstruct the MeSH assignments of that term in 
MEDLINE making use of nothing more than the 

group of synonymous phrases which represent the 
underlying concept in the UMLS® Metathesaurus. 
The ten MeSH terms are chosen from the leaf nodes 
in the MeSH trees in order to avoid some of the 
complexity that arises from higher level nodes. 
Higher level nodes will be considered subsequently 
in our discussion. Among the leaf nodes there are a 
few cases where the MeSH concept seems to have 
little 

Table 1. Ten MeSH terms chosen for study and 
the Dice coefficients between the MeSH and their 
corresponding English concept phrases.  

 
 

MeSH Term 
x  

 

cxM
 

 

xM  

 Dice 
Coef 

Anorexia 
Nervosa 

5847 7082 4818 .75 

Autistic 
Disorder 

7129 7144 5693 .80 

Blepharophi-
mosis 

306 142 116 .52 

Cardiomyop-
thy 
Congestive 

8008 7824 5038 .65 

Dermatitis 
Herpetiformis 

1467 1728 1059 .66 

Maleic Hy-
drazide 

190 94 85 .60 

Rinderpest 700 452 348 .60 
Scrapie 2594 1955 1568 .69 
Substantia  
Nigra 

11030 9455 5793 .57 

Thiosulfate 
Sulfur-
tranferase 

580 496 407 .76 

 
correlation with the occurrence of the phrases repre-
senting the concept. We have also chosen to avoid 
such cases. We do this by insisting on an overlap or 
Dice coefficient of at least 0.5 between the MeSH 
assignments and the documents that contain one of 

the concept phrases. If x is a MeSH term let xM  

stand for the documents in all of MEDLINE where 

cx xM M∩
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this term is assigned and cxM  stand for the docu-

ments in all of MEDLINE where one of the phrases 
representing x  appears in either the title or the 
abstract.  Then the Dice coefficient is 

 ( )2 /x cx x cxM M M M∩ +  (1) 

where X denotes the number of elements in the set 

X . The MeSH terms we chose are listed in Table 1. 

Boolean Prediction. Here the set cxM represents 

our prediction. This set is the result set of a Boolean 
‘OR’ of all the phrases representing the concept cx 
corresponding to the MeSH term x . For purposes of 
evaluation we assign a score of 1 to each document 

in cxM  and 0 to all other documents.  

Vector Retrieval Prediction. We are dealing with 
natural language text and we prepare it all in the 
same manner. Stop words are removed, but no stem-
ming is done. In addition to single words, we also 
include two word phrases without punctuation or 
stop words.  No MeSH terms are included. In this 
way each MEDLINE document is given a bag-of-
words representation based on its title and abstract. 
The same preparation is applied to the natural lan-
guage phrases representing a MeSH term x  to pro-
duce a bag-of-words document which we will repre-

sent by xq . We then apply TF× IDF weighting to do 

vector retrieval with each xq  as query and against 

all of MEDLINE. If ftd denotes the frequency of term 
t within document d and dlen denotes the length of d 
(sum of all t df ′ for all t ′ in d) then we define the 

local weight or TF factor by 

 ( )( )11 1 tdf
tdtf / exp dlenα λ −= + ⋅ ⋅  (2) 

where 0 0044.α =  and 0 7.λ = 12. The global weight 
or IDF factor is given by the relatively standard13, 14 

 ( )log /t tIDF N n=  (3) 

where tn  is the number of documents in MEDLINE 

containing the term t  and N  represents the size of 
MEDLINE ( ≅ 15 million).  The scores resulting 

from a query xq  rank all the documents in 

MEDLINE according to their likelihood of having 
the MeSH term x  assigned.  
Naïve Bayesian Prediction. Here we use naïve 
Bayesian machine learning in an attempt to predict 
when a MeSH term is assigned. However our ap-
proach will be nonstandard because we do not allow 
ourselves a training set where the MeSH term has 
already been assigned. Rather we have the set 

cxM from which we can try to learn how the MeSH 

term is assigned.  We choose the Baysian approach 
for two reasons. First,  because it is efficient to use 
on the very large MEDLINE collection where few 
other methods can even be applied and none is effi-
cient. Second, because naïve Bayes is robust under 
errors in the training set. A small fraction of the 
training set can be mislabeled and the Bayesian 
weights will change but little, while if a few support 
vectors for a Support Vector Machine are mislabeled 
it can have a profound effect.  
With the use of the Bayesian method there comes the 
opportunity to do feature selection. Work by Yang 
and Pedersen15 suggests that up to 90% of features 
are not necessary. Other research suggests that a 
threshold on the Bayesian weights may be the most 
effective way to prune away useless features16, 17 
We have implemented four different methods of 
feature selection.  We apply them to the single word  
and two word phrase features described under Vector 
Retrieval Prediction. For any set of documents X  

let X  denote the complement of X  in MEDLINE.  

For an arbitrary term t  let tM  denote the set of 

documents in MEDLINE that contain the term t  in 
their title or abstract. Then we need certain docu-
ment counts to define feature selection measures. 
Define 

ˆˆ,  ,  ,  x cx t t x cx ttn M n M n M n M= = = =  (4) 

and in a similar manner 

 
ˆ

ˆ ˆ̂

,  ,

,  .

tx t x tx t x

t x t xtx tx

n M M n M M

n M M n M M

= ∩ = ∩

= ∩ = ∩
 (5) 

Then the different measures are given by 
1) Bayesian weight 
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ˆˆ

log tx tx
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n n

 
=     (6) 

2) Log of Chi Square 

( )2
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3) Mutual Information 
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In this study, Bayesian learning with these four fea-
ture selection strategies is applied to learn the differ-

ence between the sets cxM  and cxM  with the aim 

to predict the members of xM . Learning the concept 

here is manifested by an estimate for the optimal 
threshold for a particular feature selection strategy as 
well as the Bayesian term weights for the terms that 
satisfy that threshold.  
Evaluation.   Because we use methods that rank all 
the documents in MEDLINE and attempt to rank 

documents from xM  above documents from xM , it 

is convenient to score the results as an average pre-
cision at seen relevant documents. An average pre-
cision at seen relevant documents is the average of 
precisions obtained at the points where each relevant 

document (member of xM ) is observed in the rank-

ing. 

RESULTS 

Baseline results.  We here give the results of apply-
ing Boolean and vector retrieval based on the con-
cept phrases representing the concept cx corre-
sponding to a MeSH term x .  

Table 2 Baseline results for Boolean and Vector 
Retrieval. 

 
Vector retrieval proves superior to the Boolean ‘OR’ 
over the phrases representing the concept in six of 
ten cases and the overall average favors vector re-
trieval.  

Bayesian learning with feature selection. MeSH 
terms are assigned by human experts and we hope to 
approximate how a human expert may assign the 
MeSH terms to MEDLINE documents. We argue 
that when a human expert is given the task whether 
a MeSH terms should be assigned to a MEDLINE 
document, he or she makes the judgment based upon 
relatively few features or terms that are relevant to 
the MeSH concept in the given document. We con-
sidered four different feature selection strategies to 
extract the salient features relevant to the concept. 
For each selection strategy and each MeSH term, we 
apply naïve Bayes to learn the full set of weights and 
then the selection strategy to determine the optimal 
threshold for that MeSH term using that strategy. 
We then average the optimal thresholds from the 
other nine MeSH terms for the given strategy and 
apply the result to the term under investigation. This 
form of cross validation allows us to make predic-
tions for the assignment of a MeSH term x  that do 

not depend in any way on knowledge of xM . Re-

sults for the four different strategies of feature selec-
tion are given in Table 3. 

Table 3 Bayesian learning with the four different 
feature selection strategies. 

 
We see that the results are for all four methods 
markedly better than the results of the baseline cal-

 Average Precision 
 

MeSH Term x  Boolean 
cx  

Vector Re-
trieval 

Anorexia 
Nervosa 

.562 .665 

Autistic 
Disorder 

.637 .501 

Blepharophimosis .319 .460 
Cardiomyopthy 
Congestive 

.406 .525 

Dermatitis Herpeti-
formis 

.443 .500 

Maleic Hydrazide .417 .305 
Rinderpest .386 .297 
Scrapie .486 .630 
Substantia  
Nigra 

.323 .501 

Thiosulfate 
Sulfur-transferase 

.578 .353 

Average .456 .474 

 Average Precision 
 

MeSH Term 
x  tMI  tDC  2

tLχ  tBW  

Anorexia 
Nervosa 

.706 .666 .670 .668 

Autistic  
Disorder 

.734 .752 .742 .746 

Blepharophi-
mosis 

.630 .463 .585 .615 

Cardiomyopa-
thy 
Congestive 

.485 .610 .601 .606 

Dermatitis 
Herpetiformis 

.521 .480 .501 .499 

Maleic Hy-
drazide 

.385 .414 .414 .575 

Rinderpest .356 .356 .382 .400 
Scrapie .378 .355 .381 .460 
Substan-
tia_Nigra 

.505 .514 .543 .518 

Thiosulfate 
Sulfurtrans- 
ferase 

.664 .701 .708 .727 

Average .537 .531 .553 .581 
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culations given in Table 2. Further, feature selection 
based on Bayesian weights gives the best overall 
performance. Table 4 gives the average number of 
terms used by the different feature selection methods 
in learning a concept. It is evident that there are 
substantial differences between the methods in the 
number of terms they select. Table 5 gives the aver-
age threshold used by each of the methods where the 
average is taken over all ten concepts.  The results in 
Table 3 are based on cross validation where the 
threshold used for a particular concept is obtained as 
an average of the optimal thresholds for the other 
nine concepts. Based on that data we can expect a 
similar performance from any of the feature selection 
methods if we use the corresponding threshold in 
Table 5 for some new concept not involved in this 
study. Of course that will need to be a concept that 
has a reasonable overlap (a Dice coefficient  of at 
least 0.5) with the Boolean query result based on the 
phrases which represent that concept.  

Table 4 Average number of features selected by 
each of the four different strategies in learning to 
recognize a concept. 

 

Table 5  Average threshold used by the four dif-
ferent strategies in learning to recognize a con-
cept.   

 

DISCUSSION 

First, it is important to note that, even though our 
data set is small, we have significant results from our 
study. A comparison of the results in Table 2 and 
Table 3 show that the naïve Bayesian learning with 

feature selection based on a threshold for Bayesian 
weights is superior to the results obtained by vector 
retrieval based on the phrases belonging to the 
UMLS concept in nine out of ten cases. By the sign 
test18 this result is significant with a p-value of 0.02. 
From this we conclude that there is definite value in 
the naïve Bayesian approach with feature selection to 
predict the assignment of a concept to MEDLINE 
records. Based on the limited data reported here 
there is not sufficient evidence to conclude that one 
of these feature selection methods is superior to the 
others. In order to elucidate this issue we selected an 
additional twenty MeSH terms and corresponding 
concepts and performed the same analysis that is 
reported here. We found among the aggregate total 
of thirty cases that the Bayesian weight approach 
was superior to the mutual information approach in 
26 of 30 cases, to the Dice coefficient method in 20 
of 30 cases, and superior to the Chi square method in 
23 of 30 cases. The sign test applied to each of these 
cases shows the Bayesian weight method to be supe-
rior to the other method at the five percent signifi-
cance level. In all of the additional twenty cases we 
used the thresholds determined to be optimal from 
the first ten cases and which are reported in Table 5. 
This significantly reduced the amount of calculation 
necessary for these additional tests.  Due to space 
limitations we are unable to show the details of the 
additional twenty cases.  
An important question is how well are we doing in 
predicting the MeSH assignments. One guage is how 
well we can predict the MeSH assignments if we use 
the same naïve Bayesian learning method with fea-

ture selection based on tBW  and apply it to learn to 

distinguish xM  and xM , i.e., the standard machine 

learning approach. We did this for the ten MeSH 
terms studied here and found an overall average 
precision of 0.650.  This is 12% better than the re-

sults of learning on cxM  and cxM  (last column of 

Table 3). Part of this difference is due to the fact that 
different concepts have different optimal thresholds 
for selecting features. Thus when we learn from nine 
and extrapolate to the tenth term we are generally 
not able to give an optimal threshold. In order to 
illustrate this point we averaged the nine cases and 
used the result as the threshold for the tenth case for 
standard machine learning and our overall average 
precision dropped from 0.650 to 0.627 or a drop of 
4%.  Thus we could likely improve our performance 
if we could find a better way to predict the optimal 
threshold for a given concept.  
Finally, there is the question of how broadly we may 
apply the method described here. Not all MeSH 
terms are leaf nodes in the MeSH trees. However,  

 
tMI  tDC  2

tLχ  tBW  

Total 
terms 

29.7 8.7 37.0 1046.6 

Single 
Title 
Terms 

3.4 1.7 2.7 14 

Single 
Abs  
Terms 

16.6 2.7 7.2 54.2 

Phrase 
Title 
Terms 

1.9 1.1 5.6 146.1 

Phrase 
Abs 
Terms 

7.8 3.2 21.5 832.3 

tMI  tDC  2
tLχ  tBW  

23349 0.268 6.887 9.64 
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nodes that are not leaf nodes may be considered the 
sum of all their leaves and if we can make useful 
assignments for the leaves this defines the assign-
ments of the higher level nodes.  But here we have 
not actually shown how to deal with all the leaves.  
We have required a leaf node as a MeSH concept to 
have a Dice coefficient with the set of documents 
that contain one of the phrases defining the concept 
of at least 0.5. Roughly we are saying that if about 
half the documents in the training set would have the 
MeSH term assigned and about half of the docu-
ments that would have the MeSH term assigned are 
in the training set, then we can learn at a reasonable 
level how to assign the MeSH term based on that set 
of documents. In this study we have used the phrases 
belonging to the MeSH concept to define such a set. 
But for some MeSH concepts this strategy will not 
give such a set.  And in general for a new concept 
not already a part of UMLS one obviously must 
resort to other means to find the initial set of docu-
ments which are a rough approximation to what one 
wishes to learn.  

CONCLUSION 

We have presented a method to predict the assign-
ment of a new concept to MEDLINE documents. 
The method is based on naïve Bayesian learning on a 
set that is a rough approximation of the target as-
signments which one seeks. Thus it is a form of 
bootstrapping.  We show that it is superior to a base-
line vector retrieval method and only about 12% less 
accurate than the standard machine learning ap-
proach with naïve Bayes’ which one can apply when 
one has a training set where the concept is already 
assigned. In future work we plan to refine the 
method and find effective methods of assembling 
synonymous phrases to use in approximating new 
concepts that might be candidates for new MeSH 
terms. 
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