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Abstract

This paper describes the designs of six
publicly available biomedical corpora. We
then present usage data for the six cor-
pora. We show that corpora that are care-
fully annotated with respect to structural
and linguistic characteristics and that are
distributed in standard formats are more
widely used than corpora that are not.
These findings have implications for the
design of the next generation of biomedi-
cal corpora.

1 Introduction

A small number of data sets for evaluating the per-
formance of biomedical language processing sys-
tems on a small number of task types have been
made publicly available by their creators1 . From a
biological perspective, a number of these corpora
(PDG, GENIA, Medstract, Yapex) are exception-
ally well curated. From the perspective of system
evaluation, a number of these corpora (Wisconsin,
GENETAG) are very well designed, with large num-
bers of both positive and negative examples for sys-
tem training and testing. Despite the positive at-
tributes of all of these corpora, they vary widely in

1These are the corpora described in Blaschke et al. 1999,
which we refer to as the Protein Design Group (PDG) corpus;
Craven and Kumlein 1999, which we refer to as the University
of Wisconsin corpus; Collier et al. 1999, the GENIA corpus;
Pustejovsky et al. 2002, the Medstract corpus; Franzén et al.
2002, the Yapex corpus; and Tanabe et al. 2005, originally the
BioCreative Task 1A data set, now known as the GENETAG
corpus.

their external usage rates: some of them have been
found very useful in the natural language process-
ing community outside of the labs that created them,
as evinced by their high rates of usage in system
construction and evaluation in the years since they
have been released. In contrast, others have seen lit-
tle or no use in the community at large. These data
sets provide us with an opportunity to evaluate the
consequences of a variety of approaches to biomed-
ical corpus construction. We examine these corpora
with respect to a number of design features and other
characteristics, and look for features that character-
ize widely used—and infrequently used—corpora.

1.1 Overview of corpus designs

The unusual formats of two of the corpora proba-
bly contribute to their low external usage rates, and
therefore they merit special discussion. The PDG
corpus was built at the very beginning of the in-
volvement of the computational biology community
in text data mining efforts. Its eventual public dis-
tribution was not anticipated at the time of its con-
struction, and it is the least annotated of the six
corpora. The data is made available as an HTML
file, which necessitates stripping formatting tags be-
fore use. The data is in two sections within the
single document. The two sections represent two
Drosophila signalling systems.

The example below shows a representative datum.
Proteins that are involved in the relation are indi-
cated on the Proteins line. Proteins that are not (e.g.
cdk4 in the example) are not annotated. All text is
normalized to lower-case. Unless an entry contains
more than one sentence, the sentence-final punctu-
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ation is normalized away. Protein names are also
normalized to some extent; for example, cyclin d2
appears in the annotation as cyclin D. Linguistically,
the data is unannotated. However, it should be noted
that from a biological perspective, the data is highly
relevant and of exceptionally high quality.

MED 97322239:
actions: activates;
Proteins: cdk2; cyclin D;
cyclin d2 activates cdk2 in
preference to cdk4 in human breast
epithelial cells

Although the bulk of the data in the file is in this
format, another format is used elsewhere in the file,
requiring considerable data manipulation.

The Wisconsin data is especially notable for its
large size—at over a million and a half words, it
is the largest of the corpora. The data was assem-
bled from literature references in publicly available
databases. The explicit philosophy of the construc-
tion process is to make use of “lightly annotated”
freely available data. The semantic annotation is
automatic and is based on metadata from the orig-
inal data sources. The linguistic annotation, which
consists of tokenization, part-of-speech tagging, and
shallow parsing, is automatic and is not manually
curated2 .

The following example shows a representa-
tive positive datum3. The first line (”PIGA(-)
cells. . . hemoglobinuria.. ”) ) contains the text. The
second line contains the entities involved in the rela-
tion (in this example, [PIGA,Paroxysmal nocturnal
hemoglobinuria] (a gene/disease association from
OMIM)). Note that their forms are normalized, mak-
ing it awkward to map from this annotation to the
raw text. The next line ([0,12])contains the indices
of the base phrases that contain those entities per the
shallow parser output that follows it. Note that punc-
tuation has been normalized away completely from
this representation, including the crucial (-) which
indicates that this is a knocked-out gene.

"PIGA(-) cells had no growth
advantage, suggesting that other
factors are needed for their
clonal dominance in patients with

2It is due to this lack of curation that we do not indicate this
data as being applicable to the sentence segmentation, tokeniza-
tion, or POS-tagging tasks in Table 2.

3We truncated the shallow parser output due to space con-
siderations.

Table 1: Name, date, genre, and size for the six cor-
pora. Size is in words.

Name date genre size

PDG 1999 Sentences 10,291
Wisconsin 1999 Sentences 1,529,731
GENIA 1999 Abstracts 432,560
Medstract 2001 Abstracts 49,138
Yapex 2002 Abstracts 45,143
GENETAG 2004 Sentences 342,574

paroxysmal nocturnal
hemoglobinuria.. "
[PIGA,Paroxysmal nocturnal hemoglobinuria]
[0,12]

0 NP_SEGMENT:GENE piga{UNK:GENE} cells{N}
1 VP_SEGMENT had{V}
2 NP_SEGMENT no{ADJ} growth{UNK} advantage{N}

In addition to removing punctuation, the to-
kenization process also joins together the ele-
ments of multi-word terms, e.g. amino acid, nu-
clear membrane, and because of. This strategy ad-
dresses some problems, but also makes it difficult
to relate annotation to the raw text. Note that from
a system evaluation perspective, this corpus is very
well designed.

The formats of the other corpora are relatively
standard and require little discussion. Three of them
(GENIA, Medstract, and Yapex) are in XML, and
one (GENETAG) is in the familiar Brill tagger for-
mat.

2 Materials and methods

Table 1 lists the biomedical corpora available as of
Spring 20054.

For each one, it gives its release date (or the year
of the corresponding publication), the genre of the
contents of the corpus, and the size of the corpus5 .

The left-hand side of Table 2 lists the data sets
and, for each one, indicates the lower-level language
processing problems that it could be applied to, ei-
ther as a source of training data or for evaluating sys-

4We omit text collections from our discussion. By text col-
lection we mean textual data sets that may include metadata
about documents, but do not contain mark-up of the document
contents.

5Published descriptions of the corpora don’t generally give
size in words, so this data is based on our own counts.
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Table 2: Low- and high-level tasks to which the six
corpora are applicable. SS is sentence segmentation,
T is tokenization, and POS is part-of-speech tagging.
EI is entity identification, IE is information extrac-
tion, and C is coreference resolution.

Name SS T POS EI IE C

PDG � �

Wisconsin � �

GENIA � � � �

Medstract � �

Yapex �

GENETAG �

tems that perform these tasks. We considered here
sentence segmentation, word tokenization, and part-
of-speech (POS) tagging.

The right-hand side of Table 2 shows the higher-
level tasks to which the various corpora can be
applied. We considered here entity identification,
information extraction, and coreference resolution.
These tasks are directly related to the types of se-
mantic annotation present in each corpus. The three
EI-only corpora (GENIA, Yapex, GENETAG) are
annotated with semantic classes of relevance to the
molecular biology domain. In the case of the Yapex
and GENETAG corpora, this annotation uses a sin-
gle semantic class, roughly equivalent to the gene
or gene product. In the case of the GENIA cor-
pus, the annotation reflects a more sophisticated
ontology. The Medstract corpus uses multiple se-
mantic classes, including gene, protein, cell type,
and molecular process. In all three cases, the se-
mantic annotation was carefully curated, and in one
(GENETAG) it includes alternative analyses.

Two of the corpora (PDG, Wisconsin) are indi-
cated in Table 2 as being applicable both to EI and
to IE tasks. From a biological perspective, the PDG
corpus has exceptionally well-curated positive ex-
amples. From a language processing perspective, it
is unannotated. For each sentence, the entities are
listed, but their locations in the text are not indi-
cated, making them applicable to some definitions
of the entity identification task but not others. The
Wisconsin corpus contains both positive and nega-
tive examples. For each example, entities are listed
in a normalized form, but without clear pointers to

their locations in the text, making this corpus simi-
larly difficult to apply to many definitions of the en-
tity identification task.

The Medstract corpus is unique at this time in be-
ing annotated with coreferential equivalence sets.

All six corpora draw on the same subject matter
domain—biomedicine—but they vary widely with
respect to their level of semantic restriction within
that relatively broad category. One (GENIA) is re-
stricted to the subdomain of human blood cell tran-
scription factors. Another (Yapex) combines data
from this domain with abstracts on protein binding
in humans. The GENETAG corpus is considerably
broader in topic, with all of PubMed/MEDLINE
serving as a potential data source. The Med-
stract corpus contains biomedical material not ap-
parently related to molecular biology. The PDG
corpus is drawn from a very narrow subdomain on
protein-protein interactions. The Wisconsin corpus
is composed of data from three separate narrow sub-
domains: protein-protein interactions, subcellular
localization of proteins, and gene/disease associa-
tions.

Table 3 shows the number of systems built out-
side of the lab that created the corpus that used each
of the data sets described in Tables 1 and 2. The
counts in this table reflect work that actually used
the datasets, versus work that cites the publication
that describes the corpus but doesn’t actually use it.
We assembled the data for these counts by consult-
ing with the creators of the data sets and by doing
literature searches. If a system is described in multi-
ple publications, we count it only once, so the num-
ber of systems is slightly smaller than the number of
publications.

3 Results

Even without examining the external usage data, two
points are immediately evident from Tables 1 and 2:

� Only one of the currently publicly available
corpora is suitable for evaluating performance
on basic preprocessing tasks.

� The currently publicly available corpora in-
clude a very limited range of genres: only ab-
stracts and roughly sentence-sized inputs are
represented.
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Table 3: External usage rates. The systems column
gives the count of the number of systems that actu-
ally used the dataset, as opposed to publications that
cited the paper but did not use the data itself. Age is
in years as of 2005.

Name age systems

GENIA 6 21
GENETAG 1 8
Yapex 3 6
Medstract 4 3
Wisconsin 6 1
PDG 6 0

Examination of Table 3 makes another point im-
mediately clear. Some corpora see considerable ex-
ternal use, and others do not. We now consider a
number of design features and other characteristics
of these corpora that might explain these groupings.

3.1 Effect of age

We considered the possibility that the length of time
that a corpus has been available determines the num-
ber of external uses. Table 3 shows clearly that this
is not the case. The age of the PDG, Wisconsin,
and GENIA data is the same, but the usage rates are
considerably different—the GENIA corpus has been
much more widely used. The GENETAG corpus is
the newest, but has a relatively high usage rate. Us-
age of a corpus is determined by factors other than
the length of time that it has been available.

3.2 Effect of size

We considered the possibility that size might be the
determinant of the amount of external use—perhaps
smaller corpora simply do not provide enough data
to be helpful in the development and validation of
learning-based systems. We found that size does not
determine use. The Yapex corpus is one of the small-
est, but has achieved fairly wide usage. The Wiscon-
sin corpus is the largest, but has a very low usage
rate.

3.3 Effect of structural and linguistic
annotation

We expected that the corpus with the most structural
and linguistic annotation would have the highest us-

age rate6. The extent to which this is true is not
clear. The GENIA corpus is the only one with cu-
rated structural and POS annotation, and it has the
highest usage rate. This is consistent with our a
priori expectation. On the other hand, the Wiscon-
sin corpus could be considered the most “deeply”
linguistically annotated, since it has both POS an-
notation and—unique among the various corpora—
shallow parsing. It nevertheless has a very low usage
rate.

However, the comparison is not clearcut, since
both the POS tagging and the shallow parsing in the
Wisconsin corpus are fully automatic and not man-
ually corrected. (Additionally, the shallow parsing
and the tokenization on which it is based are some-
what idiosyncratic.) It is clear that the Yapex corpus
has relatively high usage despite the fact that it is,
from a structural and linguistic perspective, unanno-
tated (it is marked up for entities only, and nothing
else.) To our surprise, structural and linguistic an-
notation do not appear to uniquely determine usage
rate.

3.4 Effect of format

Annotation format has a large effect on usage. It
bears repeating that these six different corpora are
distributed in six different formats—even the pre-
sumably simple task of populating the Size column
in Table 1 required writing six separate scripts to
parse the various data files. The two low-usage cor-
pora are annotated in remarkably unique formats. In
contrast, the three more widely used corpora are dis-
tributed in relatively more common formats. Three
of them (GENIA, Medstract, and Yapex) are dis-
tributed in XML, and one of them (GENIA) offers
a choice for POS tagging information between two
well-known formats. The fourth (GENETAG) is dis-
tributed in the widely used Brill tagger format.

3.5 Effect of semantic annotation

The data in Tables 2 and 3 are consistent with the
hypothesis that semantic annotation predicts usage.
The claim would be that corpora that are built specif-
ically for entity identification purposes are more
widely used than corpora of other types, presumably

6By structural annotation we mean tokenization and sen-
tence segmentation, and by linguistic annotation we mean POS
tagging and shallow parsing.
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due to a combination of the importance of the EI
task as a prerequisite to a number of other important
applications and the fact that EI is still an unsolved
problem in the biomedical domain. However, there
are large differences in the usage rates of the three
EI corpora, suggesting that semantic annotation is
not the only relevant design feature. If semantic an-
notation determines usage, then one would predict a
reduction in the use of all three of the EI-only cor-
pora once the EI problem is solved, unless their se-
mantic annotations are extended in new directions.

3.6 Effect of semantic domain

We considered that the extent of restriction of the
semantic domain might determine usage. It does
not: both the low-use and high-use groups of cor-
pora contain at least one highly restricted domain
(GENIA in the high-use group, and PDG in the low-
use group) and one broader domain (GENETAG in
the high-use group, and Wisconsin in the lower-use
group).

4 Discussion

Corpus construction efforts can consume large
amounts of time and resources. Corpora that are
not widely used represent considerable losses of in-
tellectual, as well as literal, capital. Our data sug-
gests that future corpora can help ensure their usabil-
ity and usefulness by choosing standard formats for
annotation and distribution, and by including high-
quality annotation of structural and linguistic char-
acteristics of their contents. Furthermore, the invest-
ment in the extant low-usage corpora can be recov-
ered by curating their current annotations, adding
curated structural and linguistic annotation where
they are absent, and standardizing their annotation
formats. Three corpora that follow many of the
maxims of corpus construction with respect to for-
mat and annotation—the PennBioIE (Kulick et al.
2004), the MedTag (Smith et al. 2005), and SICS’s
FetchProt corpora—have recently or will soon be-
come publicly available, and we predict high usage
for them.
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