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Abstract 

An iterative computational scientific discovery approach is proposed and applied to gene expression data for 
resectable lung adenocarcinoma patients1. We use genes learned from the C5.0 rule induction algorithm2,3, clinical 
features and prior knowledge derived from a network of interacting genes as represented in a database obtained with 
PathwayAssist™4 to discover markers for prognosis in the gene expression data1. This is done in an iterative fashion 
with machine learning techniques seeding the prior knowledge. This research illustrates the utility of combining 
signaling networks and machine learning techniques to produce simple prognostic classifiers.  
 

Introduction 

An iterative computational scientific discovery 
approach is proposed and applied to the problem of 
discovering simple prognostic classifiers for lung 
adenocarcinoma using gene expression data, clinical 
features and prior knowledge. Computational 
scientific discovery involves the development of 
computational models that describe, explain and 
predict system behavior. This approach is 
multidisciplinary, incorporating knowledge of 
computational methods and scientific disciplines5.  

In this paper, computations scientific discovery 
is viewed as an iterative model generation process 
(see Figure 1). Machine learning techniques are 
combined with prior knowledge to overcome limits 
of small sample size, large feature sets and noisy 
data. Machine learning techniques are applied to the 
data set to develop a concept representation. The 
concept representation can be used by an expert for 
model revision/extension.  

Iterative computational scientific discovery is 
intended to narrow the gap between model 
development and experimental validation. If the 
hypothesis assessment is positive the techniques and 
model development can move to more 
computationally complex and data demanding 
methods. This paper focuses on the computational 
investigation component. This process is described in 
relation to developing a concept representation for 
lung cancer prognosis through a series of iterative 
steps using the C5.0 decision tree classifier, clinical 
features, gene expression microarray data and 
PathwayAssist™4 generated networks of genes.  

 
Figure 1. Iterative Computational Scientific 
Discovery. 

Prior Knowledge: PathwayAssist™4 

For the purposes of this investigation, prior 
knowledge is any information about lung cancer that 
can be used in machine learning techniques to 
enhance the concept representation. Here we use 
signaling networks as our prior knowledge. The prior 
knowledge is obtained from PathwayAssist™4, which 
automatically extracts this knowledge from Medline 
by using natural language processing procedures6. 
This generates the protein function information 
which is used to generate graphs of links between 
genes. The links between genes are based on 
scientific articles supporting the relationships. The 
resulting network is viewed as prior knowledge 
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because edges are machine curated links between 
genes with articles supporting the links. 

Prior knowledge is viewed here as a means of 
directing the classifier using known relationships 
between genes. Using prior knowledge in conjunction 
with classifiers has been shown to improve 
classification in generated data sets7. Combined prior 
knowledge and machine learning techniques have 
been applied to knowledge discovery in ontologies 
and integrated into transcriptome analysis8. These 
approaches suggest ways in which prior knowledge 
can be used to explore the area in the feature space 
covered by pre-existing knowledge. It also provides a 
way to overcome the limitations of microarray data 
where the size of the sample tends to be small 
relative to the number of features. This is done with 
filtering, a machine learning technique by which a 
subset of the features in the data set is selected by a 
predetermined criterion. Filtering has been used 
effectively as a means of learning concepts from data 
sets with many irrelevant features9. The goal of 
filtering is to eliminate irrelevant and weakly relevant 
features leaving only strongly relevant features for 
generating models10. This is particularly important 
when the number of features is large. Different types 
of tests and algorithms are used for filtering such as 
exhaustive subset searches11, feature weighting12 and 
decision trees13, 14.  

Concept Representation 

The concept representation is a data structure 
that conveys knowledge about the system and often 
has typical forms in machine learning (i.e., rules, 
clusters, hyperplanes, etc.). The concept 
representations that are derived by the machine 
learning techniques need to be well motivated and 
useful. The assessment of usefulness is if the 
representation can be used to revise current models 
used in the field. The revised model is in turn judged 
on the hypotheses it generates. The discovery process 
iterates until a useful concept representation is 
generated or the computational investigation is 
stopped. 

Hypothesis Generation 

The validity of the modeling approach depends 
upon its ability to generate hypotheses that an expert 
judges as useful. Quantifying model usefulness and 
validity are areas of future research. If the concept 
representation can be used to revise/extend an 
existing model, then the concept representation is 
useful. If it cannot, then the computational 
investigation iterates using more data or different 
techniques until a representation is found that can 
revise/extend an existing model.  

The revised model is then used for hypothesis 
generation. An expert through a hypothesis 
assessment step evaluates these hypotheses. The 
revised model is used to motivate new experiments, 
which generate new data. This in turn is fed to 
machine learning algorithms and the computational 
investigation starts anew with more data. 

Induction Method: C5.02,3 

C5.02,3 is a top down induction algorithm that is 
used to generate a decision tree model to classify 
data. C5.0 builds a decision tree choosing an attribute 
that best separates the classes in the data. This is 
recursively performed on the partitions until 
partitions only have a single class in them or the 
partition becomes too small. This results in a decision 
tree with the features with higher partitioning ability 
being toward the root and classification occurring at 
the leaves.  

The iterative submission of the data to C5.0 and 
the prior knowledge network is used as a filtering 
method. For each iteration, the data are fed into a 
filtering method, which reduces the number of 
features. 

Methods 

Data 

Beer et al. 1 published a set of gene expression 
profiles for 86 patients with resectable lung 
adenocarcinoma. We used the data as filtered and 
normalized by the authors. It consisted of 4996 
Affymetrix HuGeneFL Chip gene expression 
attributes and eleven clinical attributes. The clinical 
attributes were age, gender, tumor size (T) and lymph 
node involvement (N) status, stage of disease as per 
the current American Joint Commission on Cancer 
specified algorithm based on T, N, and metastasis 
(M) status, and histopathological subtype of 
adenocarcinoma, histopathological grade of the 
tumor, smoking history, survival, p53 mutation status 
and K-ras mutation status15. The last two are tests that 
confirm if there are mutations in the p53 or K-ras 
genes respectively. The vast majority of attributes are 
continuous with very few nominal attributes. 

Sixty-one of the 86 lung adenocarcinoma 
patients that were profiled by Beer et al. 1 were 
divided into high and low risk groups based on 
survival. We selected 30.1 months as breakpoint for 
the analysis based upon a minimum in prediction 
error for that survival time. The median survival time 
is 29.5 months. High-risk patients were dead of 
disease at or before 30.1 months; low risk patients 
survived beyond this time interval. This resulted in 
19 high risk and 42 low risk patients with 25 patients 
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removed due to insufficient follow-up. Forty-eight 
(78%) patients had Stage I disease and thirteen (22%) 
patients had Stage III disease at diagnosis. There are 
no Stage II patients in the data set. 

Iterations 

C5.0 is run in an iterative fashion to improve the 
concept representation generated by combining 
induction and prior knowledge.  � First C5.0 is run using only genes to predict risk. 

This is to establish a comparative baseline (Genes 
Only run). � Second, clinical information features, as discussed 
earlier, are included in a second run. (Clinical & 
Genes run). � Next, genes that are implicated in the second run 
are used to seed a prior knowledge network 
obtained with PathwayAssist™4. Genes that are 
directly linked in the network to the genes from the 
second run are selected for the third run of C5.0. 
This is to assess if prior knowledge contributes 
useful information (Clinical & Prior Knowledge 
Genes run). � The final run uses features that are implicated in 
the third run. (Clinical & Pathway Prior 
Knowledge Genes run). 

Results 

As expected, submitting the Beer et al.1 data to 
C5.0 using only genes causes the classifier to over fit 
the data resulting in 10-fold cross-validation mean 

error of 39.3% with standard error of 7.9%. The 
second run using clinical features and genes improves 
upon the genes only run with a 10-fold mean error of 
11.4% and a standard error of 4.3%. 

The following Clinical & Genes classifier occurs 
5 out 10 times for the 10-fold cross-validation. The 
decision tree representation has STAGE at the root 
with the genes TMSB4X and WINT5A as leaf nodes. 
The tree shows for STAGE equal to 1 and TMSB4X 
less than 10145.5 there are six (the number in 
parenthesis) HIGH risk patients. When TMSB4X is 
below 10145.5 the classifier predicts that 37 patients 
are LOW risk, one of the patients was incorrectly 
classified (the number after the slash in the 
parenthesis gives the number of incorrectly classified 
patients). 

Clinical & Genes Classifier: 
STAGE = 1: 
:...TMSB4X <= 10145.5: High (6) 
:   TMSB4X > 10145.5: Low (37/1) 
STAGE = 3: 
:...WNT5A <= 262.4: High (10) 
    WNT5A > 262.4: Low (2) 

Next, prior knowledge in PathwayAssist™4 is 
used to generate a graph of connections through 
proteins between TMSB4X and WNT5A (Figure 2). 

As illustrated in Figure 2, PathwayAssist™4 
representation can be quite complex. Each edge 
represents a relationship between genes, which is 
supported by published papers. This can be viewed as 
a concept representation in the iterative 
computational scientific discovery process. 

 

 

One of the goals of concept 
representation is to motivate 
experiments. The complexity of the 
concept representation expressed in 
Figure 2 can be reduced by running 
another iteration. 

The problem is that good 
predictor genes, such as TMSB4X 
and WNT5A, if left in the feature 
set will tend to be selected as 
predictor genes. To explore the 
predictability of other related genes, 
these good predictor genes need to 
be removed from the feature set. In 
this next iteration, feature selection 
using prior knowledge is performed 
by using only genes that are one-
link away (i.e., one-off genes) from 
TMSB4X and WNT5A. 

Figure 2. PathwayAssist™4 graph for paths between TMSB4X and WNT5A filtered for proteins only. 
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Table 1 lists the genes that are prior knowledge 
one-off genes. These will be used to replace the 
TMSB4X and WNT5A.  

Table 1 presents the genes that are prior knowledge 
one-off genes for TMSB4X and WNT5A. 

TMSB4X 
One off genes whose gene 
names are in HuGeneFL: 
PTMA, JUN, SERPINE1, 
FOS 

WNT5A 
One off genes whose gene 
names are in HuGeneFL: 
MAPK8, HRAS, BMP4, 
IL6, IL8, IL15 

SERPINE1 and HRAS are leaves in the most 
common classifier occurring 5 out of 10 times in the 
10-fold cross-validation with a mean error of 21.2% 
and a standard error of 2.3%. The below classifier is 
one example. 

Clinical & Prior Knowledge one-off Genes 
Classifier: 

STAGE = 1: 
:...SERPINE1 > 1442.7: High (5/1) 
    SERPINE1 <= 1442.7: 
    :...HRAS <= 124.5: High (2) 
        HRAS > 124.5: Low (36/1) 
STAGE = 3: High (12/2) 

This classifier is of interest in that it is on a 
shortest path between TMSB4X and WNT5A on the 
PathwayAssist™4 graph (see Figure 3). This shortest 
path is linked by published papers16, 17, 18. 

Figure 3. Sub-section, from Figure 2, of relevant 
relationships from PathwayAssist™4 graph. 

With SERPINE1 and HRAS in the most 
common classifier, these two genes along with 
clinical values are submitted to C5.0. Not 
surprisingly the same classifier is the most common 
(i.e. 5 out of 10) in 10-fold cross-validation with an 
error of 21.4% and standard error of 3.6%  

Clinical SERPINE1 & HRAS Classifier: 
STAGE = 1: 
:...SERPINE1 > 1928: High (3) 
    SERPINE1 <= 1928: 
    :...HRAS <= 140.2: High (4/1) 
        HRAS > 140.2: 
        :...p53nuclAccum = -: Low (31) 
            p53nuclAccum = +: 
            :...Krasmutation = +: High (2) 
                Krasmutation = -: Low (3) 
STAGE = 3: High (11/2) 

Remarkably, a rare variant (occurring once) 
includes two new clinical factors in the classifier: p53 
nuclear accumulation and k-ras mutation. This relates 
the genes to clinically relevant features. Together 

they do a good job at predicting high and low risk 
cases for STAGE I cancers in this data set. 

For a comparison, the Mean Error percentages 
are plotted against each other in Figure 4. The prior 
knowledge classifiers did not perform as well as the 
clinical & genes classifier, but their features were 
selected on prior knowledge alone. 
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Figure 4. Mean Error comparison plotted against four 
iterative runs. PK-Genes corresponds to the genes 
selected using prior knowledge. The right most 
column uses only two prior knowledge genes, 
SERPINE1 and HRAS. 

Discussion 

The implication is that TMSB4X is good at 
predicting STAGE 1 risk because it correctly predicts 
many of the same patients that SERPINE1 and 
HRAS predict (data not shown). These in turn are 
related to the clinically relevant markers p53 nuclear 
accumulation and k-ras mutations for this data set. 
The conceptual representation in Figure 3 along with 
the decision tree classifiers start moving the original 
results closer to explanatory models. 

The Iterative Computational Scientific Discovery 
approach supplies a framework in which concept 
representations progress toward explanatory models. 
The Expert Investigation components of Hypothesis 
Generation and Assessment are not addressed in this 
paper which was primarily focused on the 
Computation Investigation component. Future work 
includes generalizing the prior knowledge approach 
and classifiers on other lung cancer data sets. 
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Conclusion 

Prior knowledge combined with models derived 
from data can be used to hypothesize new markers 
for known lung cancer related genes.  

In conclusion, this research demonstrates the 
utility of combining prior knowledge and machine 
learning techniques to produce a simple classifier for 
modeling prognosis of lung cancer. A process of 
iterative model building using computational 
scientific discovery is proposed in this paper. Further 
work is needed to validate the relevance of these 
genes and clinical markers to modeling lung cancer 
prognosis in the general case. 
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