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Abstract
We hypothesize that a representation of drug-drug in-
teractions (DDIs) based on physiologic, pharmacoki-
netic (PK), and pharmacodynamic (PD) mechanisms
will provide more accurate and useful information to
clinicians than current approaches that simply tabu-
late and index pairwise interactions of drugs. This pa-
per explores the strengths, weaknesses, and difficulties
of modeling drug mechanisms and reports on our ini-
tial work designing and implementing a drug Knowl-
edge Base (KB) based on qualitative pharmacokinetic
mechanisms.

COMPUTATIONAL MODELING OF
DRUG INTERACTION KNOWLEDGE

Evaluating the potential for Adverse Drug Interaction
(ADIs) requires a detailed understanding by the clin-
ician of clinical pharmacology. A patient’s genetics
and physiology interact with the clinical pharmacol-
ogy to affect drug response. For example, a patient’s
renal clearance can affect the serum level of a drug that
is primarily eliminated by renal excretion. This phar-
macokinetic outcome can lead to a pharmacodynamic
effect; a change in drug concentration that alters the
biological effect of the drug.

The prescribing clinician’s knowledge of the mech-
anisms by which drugs interact is invaluable to eval-
uating the risk of drug-drug interactions. Information
which is useful for inferring the potential risk of ADI
includes:1

• known pharmacodynamic (PD) and pharmacoki-
netic (PK) interactions between each drug pair and
the mechanisms by which they interact

• the number and importance of pathways by which a
drug is cleared

• degree to which a drug is absorbed if orally admin-
istered

• the relationship between drug dose and plasma con-
centration

• the ratio between the effective dose and the toxic
dose (therapeutic index)

• the time it takes a drug to reach steady-state plasma
concentration

Constructing a computational model of the mecha-
nisms for drug-drug interactions (DDIs) may lead to
better clinical decision tools that:

1. provide sufficient information on the mechanisms of
interaction to support DDI management

2. support reasoning about the potential effects of re-
moving a drug from a patient’s regimen

3. support reasoning about the potential for interac-
tions in patients taking multiple prescriptions (e.g.
does a specific combination of drugs result in mul-
tiple pathway inhibition of a narrow-therapeutic in-
dex drug?)

4. avoid alerting clinicians to DDIs that are not feasible
based on mechanisms

A HYPOTHETICAL EXAMPLE
In theory, at least a portion of drug pharmacokinetic
and pharmacodynamic knowledge can be modeled as a
set of rules expressing the effect of a precipitanta drug
on the absorption, distribution, and clearance of an ob-
ject drug.

For example, the following First Order Logic
(FOL)b predicates describe metabolic drug-drug inter-
actions whereby a drug,x, modulates (inhibits or in-
duces) the primary clearance enzyme,z, of another
drug,y, leading to a change (increase or decrease) in
drugy’s clearance:

aFor a given DDI, a drug causing some pharmacologic
change on another drug is called theprecipitant while the
affected drug is called theobject.

bThroughout this paper we use ’∧’ to represent conjunc-
tion (e.g.X andY ), ’∨’ to represent disjunction (e.g.X or
Y ), ’⇒’ to represent implication (e.g.X impliesY ), and¬
to imply negation.
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∀(x, y, z) :

Drug(x) ∧ Drug(y) ∧

¬Same(x, y) ∧

InhibitsEnzyme(x, z)∧

PrimaryClearanceEnzyme(z, y) ⇒

ReducesClearance(x, y)

∀(x, y, z) :

Drug(x) ∧ Drug(y) ∧

¬Same(x, y) ∧

InducesEnzyme(x, z)∧

PrimaryClearanceEnzyme(z, y) ⇒

IncreasesClearance(x, y)

Other rules may describe DDIs occurring due to a
change in pH or gastro-intestinal (GI) motility. For
example, if a drug,y, inhibits the hydrolyzation of an
acid-hydrolyzable prodrug,x, then a reduction iny’s
absorption follows.

∀(x, y) :

Prodrug(x) ∧

OrallyAdministered(x) ∧

AcidHydrolyzable(x) ∧

InhibitHydrolyzation(y) ⇒

ReducesGIAbsorbtion(y, x)

Rules such as these can be referred to by other rules
to construct a simple theory to predict harmful DDIs.
For example, the following rules refer to the previous
rules to define sufficient conditions for a potentially
harmful DDI.

• If a drug,y, causes an increase in the clearance of
another drug,x, theny decreases the bio-availability
(the amount of drug in a patient’s bloodstream) ofx.

∀(x, y) :

Drug(x) ∧ Drug(y) ∧

IncreasesClearance(x, y) ⇒

DecreasesBioavailibility(x, y)

• If a drug, y, causes a decrease in the clearance
of another drug,x, then y increases the the bio-

availability (the amount of drug in a patient’s blood-
stream) ofx.

∀(x) :

Drug(x) ∧

ReducesClearance(x) ⇒

IncreasesBioavailibility(x, y)

• If a drug, y, reduces the gastro-intestinal absorp-
tion of another drug,x, then y reduces the bio-
availability of drugx.

∀(x, y) :

Drug(x) ∧ Drug(y) ∧

ReducesGIAbsorbtion(x, y) ⇒

DecreasesBioavailibility(x, y)

• If the ratio of the dose at which a drug,x, is toxic
over the dose at which it is therapeutic is small, and
another drug,y, causes an increase or decrease in
the bio-availability ofx then a potentially harmful
DDI is implied:

∀(x, y) :

Drug(x) ∧ Drug(y) ∧

NarrowTherapeuticIndex(x) ∧

(IncreasesBioavailibility(x, y)∨

DecreasesBioavailibility(x, y)) ⇒

PotentialHarmfulDDI(x, y)

Our hypothetical model can be extended to include
reasoning on the effects of three or more drugs pre-
scribed simultaneously. Take the hypothetical case of
an elderly patient who has had a stroke and suffers
from ulcers. Such a patient may require medication
to treat the ulcers as well as the underlying cardiovas-
cular etiology of the stroke. The prescribing clinician
must evaluate the risk of potential DDIs in the context
of the combined effect of all drugs.

Assume the patient is on warfarin to treat the car-
diovascular condition and cimetidine for ulcer treat-
ment. Warfarin is a substrate of the enzymes CYP3A4,
CYP2C19, CYP1A2, and CYP2C9 while cimetidine
inhibits CYP2C19. If this patient requires treatment
for an infection clarythromycin may be considered.
However, clarythromycin is an inhibitor of CYP3A4,
CYP1A2, and CYP2D6. The clinician may note that
this drug would inhibit two of the three remaining
metabolic clearance pathways for Warfarin, and avoid
prescribing it.
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To our knowledge, no DDI software is capable of
predicting this sort of interaction, although it is theo-
retically possible to encode the reasoning. The follow-
ing rule defines a state where three of the metabolic
pathways of a drug,x, are inhibited by two other
drugs;y, which inhibits two pathways, andz, which
inhibits one.

∀(x, y, z, a, b, c) :

Drug(x) ∧ Drug(y) ∧ Drug(z)

¬Same(x, y, z) ∧

Enzyme(a) ∧ Enzyme(b) ∧ Enzyme(c)

¬(Same(a, b, c))) ∧

Substrate(x, a) ∧ Substrate(x, b) ∧

Substrate(x, c) ∧

InhibitsEnzyme(y, a)∧ InhibitsEnzyme(y, b)∧

InhibitsEnzyme(z, c) ⇒

MultiPathwayInhibition(x, y, z)

CONSTRUCTING A TEST DRUG
KNOWLEDGE BASE

To better understand the issues of formally repre-
senting DDI knowledge, we constructed a simple
model involving rules on metabolic mechanisms. A
large number of DDIs can be explained by metabolic
mechanisms, especially for drugs metabolized by
the Cytochrome-P450 enzymes (CYP450) enzymes.
Furthermore, for many drugs, data exists on their
metabolic mechanisms. FDA guidelines encourage de-
tailed investigations into the metabolic mechanisms of
a drug and its potential for drug interactions during
that drug’s early development.2 These investigations
are often followed by clinical trials to determine the
significance of potential drug interactions.2, 3

We first created a FOL representation of metabolic
mechanisms of drug-drug interaction from the lec-
tures and class notes of a graduate class on drug-
interactions. Figure 1 shows the rules pertaining to
inhibition of clearance; a similar set of rules was im-
plemented for metabolic induction.

We then constructed a small drug knowledge-base
(KB) containing the necessary drug facts for infer-
ence with the selected rules. Facts on the important
metabolic enzymes for 249 currently prescribed drugs
were input into the KB from a widely used pocket
reference on clinically significant drug interactions.4

This reference (Reference A) also included facts on
each drug’s potential for inhibition or induction of
CYP450 enzymes.

We augmented our KB with information from a
Continuing Education Module containing pharma-
cokinetic information on drugs commonly prescribed

Mechanism Drug KB Reference A4 Reference B1

Inhibition weak weak weak,
very weak

moderate n/a moderate
strong strong n/a

Induction weak n/a weak
moderate n/a moderate
strong strong n/a

Table 1: Mapping between strength of inhibition in
Reference A and Reference B and the Drug KB used to
test mechanism based drug-drug interaction prediction

to elderly epileptic patients.1 In addition to facts on po-
tential CYP450 modulation, this reference (Reference
B) listed the relative importance of each drug’s clear-
ance enzymes. Several drugs not found in Reference
A were also added. Since terms regarding the strength
of enzyme inhibition and induction varied between the
resources, we constructed the mapping shown in Ta-
ble 1. As of the time of this writing, our drug KB con-
tains facts useful for mechanism based inference for
267 currently prescribed drugs.

We implemented both the rules and the database in
Lisp. The implementation uses a simple pattern match-
ing and backward chaining program taken verbatim
from chapter 15 of Paul Graham’s popular Common
Lisp book.5 Graham’s code uses a Prolog-like syn-
tax, where the macro<- is analogous to the Prolog:-
connector, but as usual in Lisp, prefix notation is used.
So, the list expressions have<- followed by a head
expression and optionally a tail expression. Rules that
have multiple terms in the tail use combinations of the
operatorsand , or , andnot to combine them.

AN EXPERIMENT WITH PAIR-WISE
INTERACTIONS

We performed two simple queries (Figure 2) against
the drug KB for any drugs that inhibit or induce the pri-
mary clearance enzyme for another narrow-therapeutic
index drug whose clearance is primarily metabolism.
Results were returned in the form of “DRUG-A in-
hibits/inducesENZYME, a primary clearance enzyme
of drugDRUG-B”. For example:

PHENYTOIN induces CYP2C9, a
primary clearance enzyme, of
drug WARFARIN

The queries returned a total of 90 predicted DDIs.
These included 12 induction interactions involving
three precipitants (Carbamazepine, Phenobarbital, and
Phenytoin) and five object drugs (Valproate, Phenobar-
bital, Phenytoin, Warfarin) and 78 inhibition interac-
tions involving 35 precipitant and four object drugs.
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(<- (metabolic-inhibit-interact ?precip ?object ?enz)
(and (inhibits-primary-clearance-enzyme ?precip ?objec t ?enz)

(narrow-ther-index ?object yes)))

(<- (inhibits-primary-clearance-enzyme ?precip ?object ?enz)
(and (inhibits-partial-clearance ?precip ?object ?enz)

(major-pathway ?object ?enz)))

(<- (inhibits-partial-clearance ?precip ?object ?enz)
(and (inhibits-effectively ?precip ?enz)

(substrate-of ?object ?enz)
(primary-clearance-mechanism ?object metabolic)))

(<- (inhibits-effectively ?drug ?enz)
(and (inhibits ?drug ?enz)

(or (inhibit-strength ?drug ?enz strong)
(inhibit-strength ?drug ?enz moderate))))

Figure 1: Rules in mock Prolog implementing metabolic interactions between drugs.

(with-answer
(metabolic-induce-interact ?precip ?object ?enz)
(format t "Drug ˜A induces ˜A, a primary clearance enzyme, of drug ˜A˜%"

(generic-name ?precip) ?enz (generic-name ?object)))
(with-answer

(metabolic-inhibit-interact ?precip ?object ?enz)
(format t "Drug ˜A inhibits ˜A, a primary clearance enzyme, o f drug ˜A˜%"

(generic-name ?precip) ?enz (generic-name ?object)))

Figure 2: Queries for any drugs that inhibit or induce the primary clearance enzyme for another NTI drug whose
clearance is primarily metabolism

We checked the interactions predicted with four on-
line drug reference databasesc A predicted drug-drug
interaction was considered clinically viable if it was
reported in any of the four sources. Fourteen of the 90
(16%) predicted interactions could not be found in any
KB (see Table 2).

Close examination of the fourteen speculative in-
teractions revealed that some of the facts in the drug
database were weakly supported. For example, pheno-
barbitol has been shown to be metabolized by CYP2C9
in vitro but there is littlein vivo evidence to support
this assertion. Unfortunately,in vitro evidence on
drug interactions does not always map to predictions
of in vivo occurrences.2, 3 Also, the DDI KB listed
disulfiram as a CYP2C9 inhibitor based on Refer-
ence A. Incorporating information from other sources
may weaken this assertion because, while some human
studies indicate that disulfiram may be a CYP2C9 in-
hibitor, it has not been found to inhibit S-warfarin or
tolbutamide, both CYP2C9 substrates.

cFirst Data Bank’s Micromedex, WebMD’s Medscape,
Discovery health.discovery.com, and Cerner Multum’s
Drugs.com.

DISCUSSION AND CONCLUSIONS

We have shown that it is possible to qualitatively
model DDIs based on pharmacokinetic (PK) and phar-
macodynamic (PD) mechanisms. A KB that uses such
a model could be used to infer both well-known in-
teractions and those that are feasible but have not yet
studied, including interactions resulting from the com-
bination of more than two drugs in a patient. It would
also be possible to infer of the effect of removing a
drug from a patient with the information in the KB.
A mechanisms-based KB could lead to improved tools
for reasoning about DDIs because mechanistic infor-
mation is useful to clinicians for reasoning about po-
tential interactions. Furthermore, better tools for pre-
dicting or detecting potential DDIs could be built by
applying automated inference techniques to the knowl-
edge in the KB.

The results of our experiments suggest that a
mechanism-based DDI KB will require more com-
plex knowledge representation than simply stated drug
facts to realize the potential benefits of this approach.
Progress in building a qualitative model of DDI theory
will require making concise definitions on the mean-
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Precipitant PCE Object
amiodarone CYP2C9 phenobarbitol
disulfiram CYP2C9 phenobarbitol
fluorouracil CYP2C9 phenobarbitol
fluconazole CYP2C9 phenobarbitol
gemfibrozil CYP3A4 carbamazepine
gemfibrozil CYP2C9 phenobarbitol
gemfibrozil CYP2C9 phenytoin
leflunomide CYP2C9 phenobarbitol
miconazole CYP3A4 carbamazepine
sulfamethizole CYP2C9 phenobarbitol
sulfamethoxazole CYP2C9 phenobarbitol
sulfinpyrazone CYP2C9 phenobarbitol
sulphaphenazole CYP2C9 phenobarbitol
zafirlukast CYP3A4 carbamazepine
zafirlukast CYP2C9 phenytoin
zafirlukast CYP2C9 phenobarbitol

Table 2: 14 speculative inhibition interactions not doc-
umented in any of the four online references. In each
row, the precipitant drug inhibits the primary clearance
enzyme (PCE) of the object drug based on information
in the drug KB.

ings of seemingly simple terms. For example, what
does it mean for a drug to have a narrow-therapeutic
index (NTI)? In constructing our drug KB we found
NTI drugs listed by the FDAd, which differ from those
in other publications discussing “critical dose” drugs.

Incorporating evidence for the assertions in the drug
KB may be necessary for sound inference. For exam-
ple, in vitro data from early drug development is less
useful for predicting interactions of clinical relevance
unless similar results have been found during clinical
trials in humans. Similarly, conflicting evidence about
an assertion weakens the inferences that can be made
it. Since there are many commonly prescribed drugs
for which little in vivo metabolic information can be
found, or the information is conflicting, the DDI KB
needs to handle missing information and uncertainty.

We have attempted to start off very simply and con-
struct only a small DDI KB involving a portion of DDI
knowledge. As such, we have chosen to not include
many important components of DDI theory. For exam-
ple, drug inhibition can be classified into competitive,
mechanistic, and irreversible. Both mechanistic or ir-
reversible enzyme inhibition have effects after the pre-
cipitant drug is removed. Reasoning on long-lasting
effects increases the complexity of the model as it re-
quires some conception of time.

Constructing qualitative rules requires making arti-
ficial distinctions between certain parameters. For ex-

dhttp://www.fda.gov/cder/guidance/cmc5.pdf

ample, our drug database models both induction and
inhibition as beingweak, moderate, and strong (see
Table 1). While the strength of inhibition can be quan-
tified for CYP3A4 inhibitors by based on the change
in AUC of Midazolam (a drug cleared primarily by
CYP3A4) in the presence of the inhibitor,6 not all en-
zymes have ideal probe substrates.

Since no standard meaning for strength classifica-
tion across drugs and enzymes exists, using such pa-
rameters in reasoning may yield false results. A sim-
ilar difficulty occurs in making qualitative statements
about the level of first-pass metabolism a drug under-
goes, or the amount an enzyme contributes to a drug’s
clearance.

In conclusion, these results suggest that a DDI the-
ory will require more complex logic and knowledge
representation than rules and supporting drug facts.
Also, it is important to agree on exact definitions of
the terms used to reason about DDIs. Our future work
will involve further research to exploring these issues
and proposing solutions.
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