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The development of large mammography databases 
provides an opportunity for knowledge discovery 
and data mining techniques to recognize patterns 
not previously appreciated. Using a database from a 
breast imaging practice containing patient risk 
factors, imaging findings, and biopsy results, we 
tested whether inductive logic programming (ILP) 
could discover interesting hypotheses that could 
subsequently be tested and validated.  The ILP 
algorithm discovered two hypotheses from the data 
that were 1) judged as interesting by a subspecialty-
trained mammographer and 2) validated by analysis 
of the data itself.  
 
INTRODUCTION 
 
Knowledge discovery and data mining techniques 
aim to extract useful knowledge from large 
databases.  The rapid growth of biomedical data has 
created an opportunity to use these methodologies to 
discover important hypothesis in a given domain 
that would be difficult to otherwise unearth.  Large 
data repositories are being constructed in the 
radiology community that can be used to discover 
new relationships between imaging findings and 
diagnoses using these machine learning techniques.  
For example, millions of mammograms are reported 
each year, many of which are collected as large 
repositories of imaging findings and gold standard 
outcomes well-suited to this type of knowledge 
discovery.  In this project, we use a large collection 
of mammography reports to test the feasibility of 
using specific knowledge discovery techniques to 
discover interesting correlations between patient risk 
factors, imaging findings, and diseases of the breast 
that may warrant further investigation. 

 
Inductive logic programming (ILP) provides 
algorithms to learn hypotheses, expressed as logical 
rules. ILP assumes (a) background knowledge B, 
e.g., the database; (b) a language specification L 
telling  how to construct hypotheses; (c) an optional 
set of constraints I on acceptable hypotheses; and 

(d) a finite set of examples E.1 E is the union of a 
nonempty set of ``positive'' examples E+, and a set 
of ``negative'' examples, E-. The aim of an ILP 
system is to find a set of rules (H), in the form of a 
logic program, that cover all of the positive 
examples and none of the negative examples.  ILP 
has distinct advantages to other data mining 
techniques because it can facilitate the interaction 
between humans and computers by using 
background knowledge to narrow the search space 
and return human-comprehensible results, thereby 
taking advantage of both the computer's speed and 
the human's knowledge and skills. 
 
Breast cancer screening with mammography is an 
excellent area in medicine to apply ILP techniques 
for knowledge discovery.  First, a standardized 
lexicon called the Breast Imaging Reporting and 
Data System (BI-RADS) has been established for 
the reporting of mammographic abnormalities.2 BI-
RADS provides descriptors for findings on 
mammograms as well as categories to summarize 
the recommendations of the interpreting physician.  
The BI-RADS lexicon consists of 43 descriptors 
organized in a hierarchy. (Figure 1)  There are six 
BI-RADS categories (Table 1) that summarize the 
radiologist’s opinion of the entire study.  Second, 
because mammography practice is heavily 
regulated; structured reporting is used to support 
required audits. Structured data, in contrast to the 
free text found in other areas of radiology, facilitates 
the use of ILP techniques.  Third, the breast imaging 
community has developed a database format, the 
National Mammography Database (NMD), which 
standardizes data collection. Participation in the 
NMD initiative has motivated all mammography 
structured reporting vendors to develop export 
methods for this format. The availability of a 
structured lexicon, structured reporting, and a 
uniform database output format provides an 
opportunity for applying ILP techniques in the 
domain of mammography that would be difficult in 
other clinical areas. 
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Category Meaning 

BI-RADS 0 Needs additional imaging 

BI-RADS 1 Negative 

BI-RADS 2 Benign 

BI-RADS 3 Probably Benign 

BI-RADS 4 Suspicious 

BI-RADS 5 Highly suggestive of malignancy 
 
MATERIALS AND METHODS 
 
We collected data for all screening and diagnostic 
mammography examinations that were performed at 
the Froedtert and Medical College of Wisconsin 
Breast Imaging Center between April 5, 1999 and 
February 9, 2004.  The database consisted of 47,669 
mammography examinations on 18,270 patients.  
All of the mammographic findings, a total of 
65,892, were described and recorded individually 
using BI-RADS. Each record in the database 
represented an abnormality on a patient’s 
mammogram recorded in the database when the 
radiologist generated the final report.  The 
mammography examinations were reported in the 

Penrad® system (Plymouth, Minnesota) which 
recorded patient demographic risk factors, 
mammography findings, pathology results and 
biopsy results in structured format.  This data was 
consolidated in the NMD format and de-identified 
prior to our experiment.  The institutional review 
board determined that this retrospective study was 
exempt from requiring informed consent.     
 
Masses and microcalcifications are the most 
common concerning findings on mammography.   
Table 2 provides an overview of the most important 
fields in the database that were used by the ILP 
algorithms to generate rules.  Because there was 
often more than one finding per mammographic 
study, the patient information was repeated for each 
abnormality recorded for a given patient.  Since very 
few findings were explicitly labeled as negative, we 
inferred negative findings based on missing values. 
 
We use Srinivasan’s “A Learning Engine for 
Proposing Hypotheses” (Aleph) ILP System.3 Aleph 
was set to use Muggleton’s Progol algorithm that 
learns rules from examples.4 In order to use Aleph, 
the NMD data were converted into Prolog facts.

 Table 1. BI-RADS Categories 
 

Figure 1: BI-RADS lexicon 
(general categories are in bold) 
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Table 2.  Important fields in NMD 

 
Patient information Abnormality location Mass descriptors Calcification descriptors     
Age Side            Shape         Shape 
Hormone therapy Depth           Density    Distribution 
Family medical history Clock location  Margins Stability 
Personal medical history Quadrant location  Stability  

 
The conversion was straightforward and automatic: 
each row in the database was translated into a number 
of Prolog facts, one per column. We further added 
two predicates. One connects two findings on the 
same mammogram, and the other connects a finding 
with previous findings in the patient’s history. 
 
Aleph tries to find one set of rules, that we call the 
hypothesis H. H must be constructed using the 
language L, such that:  1) H respects the constraints I; 
2) the positive examples, E+, are explainable from 
the background knowledge B and the hypothesis H, 
and 3) the negative examples, E-, cannot be 
explained from  B and H. In our context, B 
corresponds to the features taken from the 
mammography database. Positive examples are 
represented by cases labeled as malignant while 
negative examples are represented by cases labeled as 
benign. By default, Aleph constructs the hypothesis 
by starting from an empty set and then greedily 
searching for the best rule that explains an 
unexplained positive example. The example we try to 
cover next is called the seed example. To find a rule 
explaining the seed, Aleph first saturates this 
example, and then performs an admissible search 
over the space of rules that subsume this saturation, 
subject to a user-specified clause length bound.  The 
saturation step works as follows: starting from the 
seed example, Aleph searches the database for the 
facts known to be true about that specific example. 
Muggleton’s insight is that a combination of thesis 
facts should explain this example, and that it should 
be possible to generalize that combination so that it 
will also explain other examples.4 The search step 
thus executes by generating combinations of the 
generalized facts. Search usually starts from the 
combinations that lead to smallest rules, and is 
constricted by providing maximum bound on rule 
length and on the number of rules that can be tested. 
Throughout, we search for rules with best 
performance. Performance of a rule depends on how 
well the rule covers (explains) positive examples and 
does not cover negative examples.  We quantify 
performance using the m-estimate, a smoothed ratio 
between the number of positive examples covered 
and the total number of examples covered. 

 Once the ILP algorithms generated rules, a 
subspecialty-trained breast imaging radiologist 
reviewed the ILP rules and judged whether they 
revealed interesting patterns.  
 
RESULTS 
 
Aleph generated several million rules, from which 
the radiologist evaluated the best 130 rules.  The 
radiologist identified 2 potentially interesting 
hypotheses.  Those rules were: 

 
RULE 1: 
is_malignant(A) :- 
   'BIRADS_category'(A,b5), 'MassPAO'(A,present),    
   'Age'(A,age6570),   
   previous_finding(A,B,C),  'MassesShape'(B,none),  
   'Calc_Punctate'(B,notPresent),   
   previous_finding(A,C), 'BIRADS_category'(C,b3). 
 
This rule states that if finding (A) was: 
• classified as BI-RADS 5, 
• had a mass present 
in a patient who:  
• was between the ages of 65 and 70  
• had two prior mammograms (B, C) 
and prior mammogram (B):   
• had no mass shape described 
• had no punctate calcifications 
and prior mammogram (C):  
• was classified as BI-RADS 3 
then it is malignant.  This rule identified 7 malignant 
mammographic findings without misclassifying any 
benign findings as cancer.  This rule is interesting 
because it finds a relationship between a malignant 
finding in a patient that had a previous abnormality 
judged to be probably benign.  This may represent a 
delay in diagnosis if the abnormality interpreted as 
probably benign corresponds to the finding later 
diagnosed as cancer  
 
In order to investigate the true value of this rule, 
queries of the database were performed.  All cases 
that were labeled as BI-RADS 3 and subsequently 
diagnosed with cancer were analyzed to determine if 
the two abnormalities were in fact the same (Table 3). 
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BI-RADS 3 abnormality BI-RADS 5 abnormality 
abnormality side clock depth quad abnormality side clock depth quad match 

 Clustered calcifications L 12 M UO High density spiculated mass L C M *  possible 
 Ill-defined oval mass R 11 M UO High density spiculated mass R 11 M UO  yes 
 Oval circumscribed mass R 12 A UI Oval spiculated mass R 5 P UI  no 

* R 4 M * Round spiculated mass R 4 M LI  yes 
 Oval mass R 12 P UO Irregular spiculated mass R 12 P UO  yes 
 Ill-defined oval mass R 2 P  LI Irregular high density mass R 2 P  LI  yes 

* L 12 M UO Irregular spiculated mass L 1 M UO possible 

We concluded that abnormalities were the same if the 
location descriptors matched.  The position of 
abnormalities in the breast are designated by side 
(right or left), clock-position (1-12 or central), depth 
(anterior, middle, posterior), and quadrant (upper 
outer, lower inner, etc.)  Four of the seven cases 
exhibit virtually identical location descriptors for the 
BI-RADS 3 and the BI-RADS 5 abnormalities and 
are therefore likely the same findings.  Two cases are 
possible matches with slightly different location 
descriptors and one case did not match  
 
RULE 2: 
is_malignant(A) :- 
   'BIRADS_category'(A,b5),  
   'MassPAO'(A,present),      
   'MassesDensity'(A,high),   
   'HO_BreastCA'(A,hxDCorLC),    
   in_same_mammogram(A,B), 
   'Calc_Pleomorphic'(B,notPresent),  
   'Calc_Punctate'(B,notPresent). 
 
This rule states that if finding (A) was: 
• classified as BI-RADS 5, 
• had a mass present 
• had a mass with high density 
in a patient who:  
• had a prior history of breast cancer 
• had an extra finding on same mammogram (B) 
and extra finding (B):   
• had no pleomorphic microcalcifications 
• had no punctate calcifications 
then it is malignant.  This rule identified 42 
malignant mammographic findings while 
misclassifying 11 benign findings as cancer.  This 
rule is interesting because it finds a relationship 

between malignant and high density masses.  In 
general mass density has not been previously thought 
to be a highly predictive feature. 
 
In order to analyze the second rule, the proportion of 
masses diagnosed as cancer that were high density 
was compared with the proportion of benign masses 
that were high density.  We found statistically 
significant differences in the rate of malignancy when 
comparing based on mass density. We combined the 
fat density and low density descriptors for this 
analysis (there was no statistically significant 
difference of malignancy in these two groups).  
Fisher's exact test demonstrated significant 
differences in the rate of malignancy for high density 
versus fat- or low-density masses, high density versus 
equal density masses, and equal density versus fat- or 
low-density masses (p < .001 for all three 
comparisons). 

 
Mass 

Density 
Benign 

(%) 
Malignant 

(%) 
Total 

Fat-density 493      (100)   0          (0) 493 
Low 3406    (99.9)   2         (.1) 3408 
Equal 496      (96.7)  17       (3.3) 513 
High 221      (68.2) 103     (31.7) 324 
Total 4616    (97.4) 122      (2.6) 4738 

 
 
DISCUSSION 
 
In our experiment, we have discovered two 
interesting hypotheses using ILP techniques and a 
large structured mammography database.  The first 

Note— * signifies missing data 
Side:  L = left, R = right   
Clock:  C = central   
Depth:  A = anterior, M = middle, P = posterior 
Quad (quadrant): UO = upper outer, UI = upper inner, LO = lower outer, LI = lower inner 

Table 3.  Abnormalities corresponding to Rule 1 

Table 4.  Density of benign vs. malignant masses 
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hypothesis revealed at least 4 cases in which an 
abnormality was characterized as probably benign 
later discovered to be breast cancer.  To appreciate 
the significance of this rule, one must understand the 
characterization of a probably benign finding on 
mammography.  Category 3:  probably benign was 
developed based on a prospective study that showed 
that several mammographic scenarios have a small 
probability of malignancy.5  A circumscribed mass, 
round calcifications, or a focal asymmetric density 
under certain circumstances is likely to be benign and 
biopsy can safely be deferred. The standard 
management of a probably benign finding is short-
term follow-up (in 6 months) to reevaluate the 
finding. The available evidence supports the fact that 
the small number of cancers in this group would have 
an excellent prognosis when they were discovered at 
follow-up.   
 
Since the institution of the BI-RADS 3 category, it 
has engendered significant controversy primarily 
because radiologists demonstrate extreme variability 
in its application but little is known about the impact 
of this variability on the efficacy of screening.  
Abnormalities that do not fit the strict criteria set out 
by the evidence, if followed, may constitute an 
unnecessary delay in diagnosis.  Therefore, the 
recognition of such cases provides valuable quality 
assurance.  The discovery of a pattern of probably 
benign findings later diagnosed as malignant could 
help to improve mammography performance in the 
future.  Review of the films would be the next 
important step in order to teach radiologists how to 
avoid these delays in the future, mold appropriate use 
of the BI-RADS 3 category, and discover whether the 
possible matches discovered by our ILP experiment 
add 2 additional cases to this group. 
 
The second rule discovered by our experiment 
demonstrates that the density of a mass is highly 
predictive of malignancy.  This fact has not been 
documented before in the literature.  In fact, in our 
cases, 493 biopsies might have been avoided if fat-
containing masses had been considered benign.  The 
hypothesis discovered by our ILP algorithms 
warrants further investigation in order to determine 
whether it can be used to improve the predictive 
value of mammography to avoid unnecessary breast 
biopsy. 
 
In general, our experiment shows that data mining 
using ILP techniques can discover novel and 
interesting hypotheses. In fact, we accomplished this 
with a relatively small sample of mammograms from 

a single practice. Approximately 40 million 
mammograms will be performed in the United States 
in the next 1 to 2 years based on census data and 
breast cancer screening rates.6, 7  The massive amount 
of data generated by screening mammography 
provides a unique opportunity for the machine 
learning and breast imaging communities to work 
together to improve mammography. In the domain of 
breast cancer screening, ILP methods hold great 
promise to enable physicians to learn from data to 
improve early detection and characterization of breast 
cancer in imaging.   
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