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ABSTRACT Molecular dynamics simulations were performed to unfold a homologous pair of thermophilic and mesophilic cold
shock proteins at high temperatures. The two proteins differ in just 11 of 66 residues and have very similar structures with a closed
five-stranded antiparallel b-barrel. A long flexible loop connects the N-terminal side of the barrel, formed by three strands (b1–b3),
with theC-terminal side, formedby twostrands (b4–b5). The twoproteinswere found to follow thesameunfoldingpathway, butwith
the thermophilic protein showing much slower unfolding. Unfolding started with the melting of C-terminal strands, leading to
exposure of the hydrophobic core. Subsequent melting of b3 and the b-hairpin formed by the first two strands then resulted in
unfolding of thewhole protein. The slower unfolding of the thermophilic protein could be attributed to ion pair formation of Arg-3with
Glu-46,Glu-21, and theC-terminal. These ionpairswere also found to be important for thedifference in folding stability between the
pair of proteins. Thus electrostatic interactions appear to play similar roles in the difference in folding stability and kinetics between
the pair of proteins.

INTRODUCTION

Understanding the mechanisms of protein folding and

unfolding, and the structural determinants of protein stability

has been the subject of intensive experimental and theoretical

studies over the past several decades (1–6). Cold shock

proteins have served as a good model system for such studies

(7–35). The protein from the thermophile Bacillus caldoly-
ticus (Bc-Csp) and cold shock protein B from the mesophile

Bacillus subtilis (Bs-CspB) were both found to undergo

reversible two-state folding, with an energetically polarized

transition state according to F-value measurements (9,10,

12,22,23,31). These two proteins differ in only 11 of 66

residues, and their three-dimensional structures show high

similarity with a closed five-stranded antiparallel b-barrel

capped by a long flexible loop (7,8,15,21) (Fig. 1). Yet, the

thermophilic protein unfolds 20 times more slowly (10,22).

There is also a significant difference in folding stability be-

tween the two proteins, with melting temperatures at 77�C
and 54�C, respectively (20). Mutational studies led to the

conclusion that surface charges, especially around residue 3

(occupied by Arg in Bc-Csp but Glu in Bs-CspB), play major

roles in the stability difference (20). Using electrostatic cal-

culations, we have provided quantitative rationalizations for

the effects of individual and multiple substitutions and salts

on the stability of the two proteins (29,34). This study aims

to explain the similarity and difference in the unfolding ki-

netics of the two proteins, through molecular dynamics (MD)

simulations at high temperatures.

MD simulations can provide a realistic view of the folding

and unfolding process (36–41). High-temperature simula-

tions have been shown to be a robust denaturing protocol for

sampling conformational changes in the unfolding process

(5,36,42–50). In this study, we have followed the unfolding

of Bc-Csp and Bs-CspB at 500, 550, and 600 K. All three

simulations showed the same sequence in the melting of the

five b-strands: the two C-terminal strands (b4–b5) followed

by b3 and then by the b-hairpin formed by b1 and b2.

However, the unfolding of the thermophilic protein Bc-Csp

was much slower. The main features of the simulations thus

well reproduced the experimental results of Schmid and co-

workers (22,31).

The simulations suggest that the tight turn between b1 and

b2 helps stabilize these two strands and contributes to their

resistance to melting. The slower unfolding of the thermo-

philic protein could be attributed to ion pair formation of

Arg-3 with Glu-46, Glu-21, and the C-terminal, echoing the

role of the ion pairs in the elevated folding stability of Bc-

Csp over its mesophilic counterpart. Turn structure and

tertiary contacts have been found to play prominent roles in

the folding/unfolding of many b-proteins (51–60). Here the

parallel study of a pair of homologous proteins provides

further insight on the interplay of native architecture, turn

stability, and tertiary contacts in the folding of b-proteins.

COMPUTATIONAL METHODS

All the MD simulations were performed on an IBM SP4 supercomputer by

using the SANDER module of AMBER 7.0 (61). The water model was

TIP3P (62,63). The lengths of bonds involving hydrogen atoms were

constrained with the SHAKE program (64). The particle mesh Ewald

method (65–68) was used to treat long-range electrostatic interactions. A

9-Å cutoff for nonbonded interactions was used. The nonbonded list was

updated whenever any atom moved more than 1 Å (half of the default width
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of the nonbonded ‘‘skin’’ parameter) since the last list update. The weak-

coupling method (69,70) was used to couple the system to a thermal bath of

different temperatures (300, 500, 550, or 600 K). The system center of mass

motion was repositioned at every picosecond. Simulations at 300 K were

performed at constant temperature and pressure, with a time step of 2 fs. The

constant temperature and pressure protocol is not feasible for the high

temperatures, so simulations at 500, 550, and 600 K were carried out at

constant temperature and volume, and the time step was reduced to 1 fs.

The procedures for the MD simulations were as follows. The initial

structures for Bc-Csp and Bs-CspB were from Protein Data Bank (PDB)

entries 1c9o (chain A) (7) and 1csp (15), respectively. Water molecules and

counterions were added; the resulting system sizes are listed in Table 1. Each

system was prepared by four to five cycles of energy minimization and

equilibration; the minimizations were subject to successively lower

constraints on the protein molecule. In the last equilibration step, the whole

system targeting 300 K was gradually heated at constant temperature and

pressure and equilibrated for 10 ps. The systems targeting 500, 550, or 600 K

were heated at constant temperature and volume and equilibrated for 15–30

ps. Finally the MD simulations were carried out to the total times listed in

Table 1. Conformations were sampled at every picosecond for later analysis.

The average density in the simulation box at 300 K was 1.0 g/cm3; in

comparison the average density was 0.81 and 0.83 g/cm3, respectively, for

Bc-Csp and Bs-CspB in the high temperature simulations.

For each trajectory, root mean-square deviations (RMSD) of Ca atoms

from the x-ray structure were tracked. For the two 300-K trajectories,

residue-based root mean-square fluctuations (RMSF) around the averaged

structures and order parameters were calculated. The average structure was

calculated by first removing translation and rotation through superimposing

all atoms of each sampled conformation to the first conformation and then

averaging the positions of the atoms. The average structure was used as the

reference, and all conformations were superimposed to it. The RMSF was

calculated as

RMSF ¼
�

1

NARes

+
NARes

j¼1

ðrj � Ær jæÞ2

�1=2

;

where Æ. . .æ represents time average, rj is the position vector of atom j at

different times, and NARes is the total number of atoms in a given residue.

The order parameter was calculated as (71)

S
2 ¼ 3

2
½Æx2æ2

1 Æy2æ2
1 Æz2æ2

1 2ðÆxyæ2

1 Æxzæ2
1 Æyzæ2Þ� � 1

2
;

where x, y, and z are Cartesian components of the unit vector along the

backbone N-H bond of a residue. Again, all conformations were

superimposed to the average structure, but here only the backbone atoms

(N, Ca, and C) were used for superposition.

For the high-temperature trajectories, the secondary structures were

tracked to monitor unfolding. Secondary structures were calculated using the

DSSP program (72). In the native structures of Bc-Csp and Bs-CspB, the

five b-strands consist of residues 2–10, 15–19, 26–29, 46–54, and 47–65.

These were labeled as b1–b5 in this work. In addition, the four residues

between b1 and b2 form a tight turn. In the output of DDSP, b-structure is

indicated by the letter ‘‘E’’, and turn is indicated by ‘‘T’’. For each sampled

conformation, the unmelted fractions of the segments corresponding to the

five native b-strands and the tight turn were calculated.

RESULTS

Overall conformational fluctuations
and transitions

Four parallel simulations were carried out for the pair of

thermophilic and mesophilic proteins at temperatures of 300,

500, 550, and 600 K in explicit water. The Ca RMSD of the

two proteins along six trajectories are shown in Fig. 2. At

room temperature, the two proteins showed small deviations

(;2 Å) from their x-ray structures. In contrast, the RMSD at

the high temperatures reached 16 Å, indicating complete

FIGURE 1 Comparison of sequence and structure between B. caldolyti-
cus cold shock protein (Bc-Csp) and B. subtilis cold shock protein B (Bs-

CspB). PDB entries for the two proteins were 1c9o (15) and 1csp (7),

respectively.

TABLE 1 Setup of the MD simulations on B. caldolyticus cold shock protein (Bc-Csp) and B. subtilis cold shock protein B (Bs-CspB)

Proteins Bc-Csp Bs-CspB

PDB 1c9oA 1csp

Temperature 300 K 500 K 600 K 300 K 500 K 600 K

Protein atoms 1,020 1,020 1,020 1,014 1,014 1,014

Counterions (Na1) 2 2 2 6 6 6

Water 4,375 10,350 10,350 4,722 11,095 11,095

Total atoms 14,147 32,072 32,072 15,186 34,305 34,305

Box size (Å3) 55 3 50 3 51 77 3 71 3 72 77 3 71 3 72 55 3 50 3 55 76 3 71 3 76 76 3 71 3 76

Ensemble NTP NTV NTV NTP NTV NTV

Total time (ns) 12.000 50.699 6.00 12.00 20.043 6.00
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unfolding of the structures. The transition from small to large

RMSD occurred much earlier at 600 K than at 500 K.

Moreover, at each high temperature, the unfolding transi-

tions of the thermophilic protein (Bc-Csp) occurred much

later than the mesophilic counterpart (Bs-CspB).

Interestingly, the RMSD of Bs-CspB showed greater

fluctuations than Bc-Csp even in the 300-K simulations. In

both proteins, the five b-strands were composed of residues

2–10, 15–19, 26–29, 46–54, and 57–65, respectively. RMSF

revealed that the larger fluctuations of Bs-CspB occurred

mostly in the loops between b2 and b3, b3 and b4, b4 and

b5, and the C-terminal segment after b5 (Fig. 3). In both

proteins, these regions were much more flexible than the five

b-strands. The tight turn between b1 and b2 was also quite

stable in both proteins, exhibiting RMSF just slightly larger

than those of the b-strands. These findings are also apparent

from the order parameters (S2) of individual residues cal-

culated at 300 K (Fig. 3). A general trend of higher con-

formational rigidity has been observed for thermophilic

proteins relative to their mesophilic counterparts (73).

Melting of secondary structural elements

Further details of the unfolding process of the two proteins

were provided by tracking the melting of the five b-strands.

Fig. 4 shows the unmelted fractions of the five b-segments in

Bc-Csp and Bs-CspB as a function of time at 500 K.

Comparing the two proteins, the secondary structures of Bc-

Csp took ;35 ns to completely melt, whereas the secondary

structures of the mesophilic counterpart took a much shorter

period, ;13 ns, to melt. On the other hand, the melting of the

five b-strands occurred in the same order in the two proteins.

The first strands to melt were b4 and b5, occurring at ;12–

18 ns in Bc-Csp and between 3–8 ns in Bs-CspB. This

was followed by b3, with melting occurring at ;20 ns in
FIGURE 2 Ca RMSD Bc-Csp and Bs-CspB from their respective x-ray

structures during MD simulations at 300, 500, and 600 K. Each curve

represents one trajectory. In this and later figures, all time-dependent

quantities are smoothed by averaging over a 100-ps interval.

FIGURE 3 RMSF and order parameters (S2) for the residues of Bc-Csp

and Bs-CspB, calculated from the simulations at 300 K.

FIGURE 4 Fraction of native secondary structure for the five b-segments

and the turn between b1 and b2, as a function of simulation time at 500 K for

(A) Bc-Csp and (B) Bs-CspB. The F-values for folding of the two proteins

are shown in C, taken from Table 1 of Perl et al. (22) for Bc-Csp and Table 3

of Garcia-Mira et al. (31) for Bs-CspB. In the latter case, the reference for

calculating F-values was the GluE3Leu mutant, and the result at position 3

is for the mutation back to the wild-type (i.e., with Glu at position 3).
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Bc-Csp and ;9 ns in the mesophilic protein. Finally the two

N-terminal strands appeared to melt together.

That the two N-terminal strands b1 and b2 melted

together prompted us to examine the status of the tight turn

between them. As Fig. 4 shows, this turn was disrupted at the

same time as the two b-strands in both proteins. Thus the two

strands and the connecting turn existed as a cooperative unit.

Some turn population even persisted after the melting of the

two b-strands melted.

The melting of secondary structures at 600 K showed the

same sequence of events as for 500 K, but with a much faster

pace (Fig. 5). Again the melting of b4 and b5 (at ;1.5 ns in

Bc-Csp and ;1 ns in Bs-CspB) was followed by the melting

of b3 and b1-b2 (at ;4.5 ns in Bc-Csp and ;2 ns in Bs-

CspB). The same melting sequence was also observed in

parallel simulations at 550 K (data not shown). Taking all the

high-temperature simulations together, it appears that the

unfolding of the pair of proteins occurs in two distinct stages,

the first for the melting of the two C-terminal b-strands and

the second for the melting of the three N-terminal b-strands.

For example, the first stage covered 0–18 ns in Fig. 4 A and

0–8 ns in Fig. 4 B, and the second stage covered 18–35 ns

in Fig. 4 A and 8–13 ns in Fig. 4 B. That the N-terminal

b-strands remained largely intact for an extended period of

time after the melting of the two C-terminal strands suggests

a transition state for folding with a partially structured

N-terminal b-sheet and an unstructured C-terminal region.

Such a transition state is consistent with observations of

relatively high F-values for folding in the N-terminal

b-strands and low F-values in the C-terminal b-strands

(except for Glu-46 of Bc-Csp; Fig. 4 C) (22,31).

Ion pairs in the unfolding process

The unfolding of the two proteins is similar in that the same

sequence of events was observed but different in that the

mesophilic protein Bs-CspB showed a much higher speed of

unfolding. Experimentally Bs-CspB was found to have an

unfolding rate that is 20 times higher than Bc-Csp (10,22).

The difference in unfolding rate must ultimately arise from

the 11 substitutions between the two proteins. Since pre-

viously the difference in folding stability between the two

proteins was largely attributed to differences in electrostatic

interactions, especially ions pairs around Arg-3 in Bc-Csp

(20,29), we wondered whether ion pairs played any role in

the difference in unfolding speed observed in the simula-

tions.

Arg-3 of Bc-Csp can potentially form ion pairs with Glu-

21, Glu-46, and the C-terminal carboxyls. Fig. 6 shows the

shortest distances among the positively charged atoms (NE,

NH1, or NH2) on Arg-3 from negatively charged atoms on

Glu-21, Glu-46, and the C-terminal (OE1 or OE2 for Glu and

O and OXT for the C-terminal). In the 300-K simulation,

Arg-3 was within salt-bridge distance (;3 Å) from both Glu-

21 and Glu-46 most of the time. At 500 K, Arg-3 also formed

at least one salt bridge throughout most of the simulation.

From 0 to 12 ns, salt bridges were formed with both Glu-46

and the C-terminal; the one with Glu-46 persisted till ;22 ns.

Thereafter Glu-21 and the C-terminal formed a salt bridge

with Arg-3 intermittently. The separation of the C-terminal

from Arg-3 at 12 ns coincided with the melting of the

C-terminal b-sheet, at which point the C-terminal was no

longer constrained by the structure of the b-sheet and thus

free to move away. A similar situation of salt-bridge for-

mation around Arg-3 was also apparent in the 600-K sim-

ulation. It appears that these salt bridges serve as a clamp

which helps first the C-terminal b-sheet and then the

N-terminal b-sheet resist rupture. Consequently both stages

of the unfolding process for Bc-Csp took a substantially

longer time than for Bs-CspB.

There is some experimental evidence for the role of the

Arg-3-Glu-46 salt bridge in the unfolding process. At a high

temperature of 343 K, Perl et al. (22) reported a high F-value

(;1.5) for the Glu-46Ala mutation (Fig. 4 C), though the

effect of the mutation appears to diminish at room temper-

ature. The stronger effect of the mutation at the higher tem-

perature is consistent with the expected stronger electrostatic

interaction between Arg-3 and Glu-46 due to the decrease in

the dielectric constant of water. However, it is also possible

that electrostatic interactions are overestimated in the MD

simulations, which were carried out at temperatures much

higher than 343 K.

For comparison, the shortest distances in Bs-CspB

between charged atoms on Glu-3 and those on Glu-21 and

FIGURE 5 Fraction of native secondary structure for the five b-segments

and the turn between b1 and b2, as a function of simulation time at 600 K for

Bc-Csp and Bs-CspB.
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Glu-66 were also calculated (note that Glu-46 in Bc-Csp is

substituted to Ala in Bs-CspB) (Fig. 7). Contrary to the

situation in Bc-Csp, the like-charged Glu-3 and Glu-21

stayed far apart (9 Å or more) throughout the simulations,

and the distance between Glu-3 and Glu-66 increased

significantly as the simulations progressed. It thus appears

that the repulsion between the negative charges helps to drive

the structure of Bs-CspB apart during the unfolding process.

Unfolding pathway

By examining representative conformations along the

unfolding trajectories, a more comprehensive picture of the

unfolding pathway was obtained. As shown in Fig. 8 for Bc-

Csp and Fig. 9 for Bs-CspB, the unfolding began with

the bulging of b5, thus partially exposing the hydrophobic

core. This was followed by the complete unfolding of the

C-terminal b-sheet, which fully exposed the hydrophobic

core and further weakened the N-terminal b-sheet. The b3

strand of the N-terminal sheet then melted away. The last

two N-terminal strands, stabilized by the tight turn between

them, were able to withstand unfolding for a period before

capitulation.

This common unfolding pathway of the pair of proteins

perhaps can be rationalized by the architecture of their

common structure (Fig. 1). Between the two b-sheets, the

FIGURE 6 Shortest distances between charged atoms of

ion pair residues in Bc-Csp, calculated from MD simula-

tions at 300, 500, and 600 K. Arrows indicate times when

b-strands melted.
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C-terminal sheet is probably weaker than the N-terminal one.

The latter has one additional strand and a very stable turn

(see Fig. 3) between b1 and b2. Within the C-terminal sheet,

b5 is probably weaker than b4, as the latter has better

packing interactions with the N-terminal sheet, in particular

backbone hydrogen bonds with b1. Within the N-terminal

strand, b3 is probably the weakest strand as the other two

strands are stabilized by the tight turn.

The unfolded state

The conformations of the proteins after all the secondary

structures were melted toward the end of the MD simulations

provided an opportunity to characterize the unfolded state. In

particular, residual charge-charge interactions in the un-

folded state have been found to be important for analyzing

electrostatic effects on folding stability (29,74,75). Two

extreme views of the unfolded state have been proposed. In

the native-like model (74), the unfolded state is a slightly

expanded version of the folded state and charged residues

inherit native interactions with reduced strengths. In the

Gaussian-chain model (75), charged residues lose all specific

interactions and their distances are dictated by chain

statistics, which results in shorter average distances for

residues close along the sequence than for residues far apart

along the sequence.

For illustration, in Fig. 10 we show the scatter plot of the

mean square Ca-Ca distance Ær2æ versus the sequence

FIGURE 7 Shortest distances between charged atoms of

Glu-3 and potential charge-charge repulsion partners in

Bs-CspB, calculated from MD simulations at 300, 500, and

600 K. Arrows indicate times when b-strands melted.
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separation l, calculated over the unfolded portion of the Bc-

Csp trajectory at 500 K. For an ideal Gaussian chain, a linear

relation Ær2æ ¼ b2l is expected. This scatter plot and

corresponding ones for the other high-temperature simula-

tions indeed exhibited the expected trend. The fitting

parameter b was 3.9 Å for Bc-Csp at 500 K. The value of

b estimated from fluorescence resonance energy transfer

efficiency of unfolded Thermotoga maritima cold shock

protein at room temperature was ;5.6 Å (27). The con-

formations right after the melting of all the secondary struc-

tures thus may still be too compact to be representative of the

fully unfolded state. Toward the highest l values, the scatter

of Ær2æ is below the linear fit (a result seen in all the unfolding

simulations). This may be a consequence of excluded

volume, which favors contacts between residues at the chain

ends over those between inner residues (76).

DISCUSSION

Our parallel study of a pair of homologous proteins has

identified both similarity and difference in the unfolding. The

two proteins were found to follow the same pathway of

unfolding, with the N-terminalb-hairpin showing the greatest

resistance to unfolding. On the other hand, the thermophilic

protein showed much slower unfolding than its mesophilic

counterpart. These major findings of this work agree well with

experimental observations (22,31). We have further sug-

gested a rationalization of the common unfolding pathway

based on the architecture of the folded structure and provided

an explanation for the slower unfolding of the thermophilic

protein based on ion pairs formed around Arg-3.

All together we made six unfolding simulations for the two

homologous proteins. Our focus was limited to the similarity

and difference between the two proteins. The similarity in

FIGURE 8 Representative conformations of

Bc-Csp during the unfolding simulations at (A)

500 K and (B) 600 K. The first step of the

unfolding pathway was the buckling of strand

b5. This was followed by the melting of the two

strands in the C-terminal b-sheet. Subsequently

b3 melted and finally the b-hairpin formed by

b1 and b2 was disrupted. The time of each

representative conformation and its Ca RMSD

from the x-ray structure are indicated. The b1-b2

turn and ion pairing residues are labeled.
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unfolding pathway and the difference in unfolding times were

seen in the simulations at all the three high temperatures.

High temperature was used as a means for speeding up the

unfolding so the simulations could be completed. However,

the high temperature may alter the folding/unfolding path-

way. As already noted, temperature affects the strength of

electrostatic interactions. Likewise it can affect hydrophobic

interactions (77). Nonetheless comparison against experi-

mental results and other theoretical approaches continues to

suggest that high temperature unfolding simulation is a

useful means for elucidating the unfolding process.

Native architecture as a determinant
of unfolding pathway

The two homologous cold shock proteins have very different

unfolding rates and yet appear to share a common unfolding

pathway in the MD simulations. A simplistic interpretation

of the common pathway is that unfolding appears to follow a

least-resistance path. The path is dictated by the energetics of

the native architecture, i.e., the arrangement of secondary

structural elements in the folded structure. The structure of

the cold shock proteins is a b-barrel with a long flexible loop

separating the N-terminal b-sheet from the C-terminal b-sheet.

The first question faced by the protein under unfolding

pressure is which b-sheet to melt first. Apparently the

C-terminal sheet, with one less b-strand, is the loser. Within

the C-terminal b-sheet, the next question is which of the two

strands is melted first. b4, likely helped by backbone

hydrogen bonds with b1, wins out. After the C-terminal

b-sheet is melted, the question faced by the still intact

N-terminal b-sheet is which of the three strands is melted

first. Here b3 loses out as the other two strands are stabilized

FIGURE 9 Representative conformations of

Bs-CspB during the unfolding simulations at

(A) 500 K and (B) 600 K.
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by a tight turn. In short, native interactions give rise to free-

energy barriers to melting. Each time the part of the re-

maining structure experiencing the least resistance, i.e., with

the lowest free-energy barrier, is melted first. Based on the

argument of microscopic reversibility, the last remaining

secondary structures can then be proposed to be part of the

transition state for folding.

This least-resistance path model, suggested by the MD

simulations of the two cold shock proteins and in apparent

agreement with experimental F-values, also appears to be

supported by the transition states of a number of other

b-proteins. Like the cold shock proteins, the SH3 domain

also consists of two orthogonally packed b-sheets, one with

two terminal strands (b1 and b5) and the other with the three

central strands (b2–b4). A tight turn (called the distal loop)

connects b3 and b4. a-spectrin SH3 and src SH3 have only

33% of sequence identity, but their transition states obtained

from F-values are remarkably similar: the two-stranded

b-sheet is unstructured, but the distal b-hairpin (strands b3

and b4 connected by the distal loop) is formed. This mirrors

the situation of the cold shock proteins, where the b-hairpin

within the three-strand b-sheet is formed by b1 and b2. The

transition state of SH3 domains has been largely reproduced

in high-temperature MD simulations (44,47,49).

The Sso7d protein also consists of two orthogonally packed

b-sheets, one with the first two strands (b1 and b2) and the

other with the last three strands (b3–b5), plus a C-terminal

a-helix. b3 and b4 are connected by a tight turn and packed

against thea-helix. To construct the least-resistance path, one

may argue that the two-stranded N-terminal b-sheet will be

melted before the three-stranded C-terminal b-sheet, and

within the C-terminal b-sheet, b5 will be melted before the

b-hairpin formed by b3 and b4, which are stabilized by

the tight turn between them as well as the packing against the

a-helix. The remaining secondary structures are then the

b-hairpin and the a-helix, which are indeed found to be

formed in the transition state (56).

In these illustrations of the least-resistance path model,

b-hairpins, specifically those stabilized by a tight turn, play a

prominent role. This role has also been highlighted in the

folding of other b-proteins (51,57–60). The least-resistance

path model is similar in spirit to the method of low entropy

loss routes proposed by Weikl and Dill (78), which is applied

to folding instead of unfolding (more on the Weikl-Dill

method later). Despite a multitude of potential routes for

folding or unfolding, the protein molecule may follow only a

few dominant routes with low free-energy barriers (78,79).

Polarized transition state of the cold
shock proteins

There is no simple strategy for specifying the transition-state

ensemble along an unfolding trajectory. We have argued that

the earliest disrupted structural elements are absent in the

transition state whereas the latest intact structural elements

are a part of the transition state. For the cold shock proteins,

the former consists of the C-terminal strands b4 and b5 and

the latter consists of the N-terminal b-hairpin formed by

strands b1 and b2. The absence of the former and presence

of the latter result in a polarized transition state, just as shown

by F-values.

The unfolding pathway observed in the MD simulations of

the two cold shock proteins appears to be corroborated by

native state hydrogen exchange studies on the homologous

Escherichia coli cold shock protein A (Ec-CspA). Jaravine

et al. (18) found that b5 is the least protected from hydrogen

exchange among the five b-strands, suggesting that it en-

counters ‘‘a low free energy barrier to segmental unfolding’’.

In the MD simulations, melting indeed started from b5.

Rodriguez et al. (26) observed relatively lower opening rates

and relatively higher closing rates for residues located on b2

and b3 (but not b1), suggesting that these two strands fold

first (and unfold last). This conclusion is only in partial

agreement with the MD simulations. Correlation between

transition-state structure and protection from native-state

hydrogen exchange has been reported for other proteins, but

not without exception (80).

It is of interest to compare the transition state deduced

from the unfolding simulations of the cold shock proteins to

other theoretical predictions. The conservatism method of

Mirny et al. (81) identified V-6, I-18, V-47, and V-63, which

are located on b1, b2, b4, and b5, respectively. The first two

residues are thus consistent with our simulation results, but

the last two are contradictory.

Alm et al. (82) developed a simplified model for protein

configurations, in which each residue is either ordered or

disordered and at most two contiguous stretches of ordered

residues can exist. The free energy of each configuration is

based on native interactions, and the transition state is

identified as the highest energy state along the lowest energy

FIGURE 10 Mean square Ca-Ca distance versus the sequence separation,

calculated over the unfolded portion (35.000–50.699 ns) of the MD

trajectory of Bc-Csp at 500 K.
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path from the unfolded state to the folded state. This method

predicts high F-values for V-6–V-28 (located on b1-b2) for

Bs-CspB (their prediction is available at http://tools.bakerla-

b.org/;predictions/cgi-bin/test.cgi), which are in full agree-

ment with our simulation results. In this context we note that

other simple models have also been developed to predict

F-values (83–85).

The method of low entropy loss routes of Weikl and Dill

(78) predicted two parallel routes for folding Bs-CspB. One

leads to the formation of the b1-b4 contact cluster by first

forming the turn between b1 and b2, or the b1-b2 or b2-b3

contact. The other leads to the formation of the b3-b5

contact cluster by first forming the b1-b2 turn, or the b3-b4

loop, or the b4-b5 contact. In reverse order, the first folding

route bears resemblance to our unfolding simulations; our

simulations did not show evidence for their second folding

route. Their method is based on clustering native contacts

according to secondary structural elements, much like our

monitoring of the unfolding process by the fractions of intact

secondary structures. Weikl and Dill predicted similar

folding routes for Bs-CspB, Bc-Csp, and Ec-CspA.

Morra et al. (30), based on MD simulations biased toward

unfolding, concluded that the two-stranded C-terminal

b-sheet of Bc-Csp ‘‘forms the most stable substructure, which

decomposes very late in the unfolding process’’. This is just

the opposite of what was found in our unfolding simulations.

Possible reasons for the discrepancy include the biasing

potential, which could significantly distort the free-energy

landscape, and the use of implicit rather than explicit solvent

in their study. MD simulations of a number of proteins with

both implicit and explicit solvent have uncovered the lim-

itations of the implicit solvent model (86–88).

Karanicolas and Brooks (89) used both a simplified

model similar to that developed by Alm et al. (82) and a pro-

tein model consisting of a string of beads to study the folding

mechanism of Ec-CspA. Like Alm et al., the simplified

model predicted that the three-stranded N-terminal b-sheet

forms first, followed by the attachment of b4 and finally b5.

This is just the reverse order of our unfolding simulations.

On the other hand, the bead model predicted that the two

b-sheets form independently, and then coalesce to form the

folded structure.

A number of simpler models as well as our explicit water

simulations are thus all able to correctly predict the polarized

transition state of cold shock proteins. It appears that there is

robustness in the transition state, which allows the methods

to transcend their limitations.

Ion pairs as modulators of unfolding rate

Despite the common unfolding pathway, the unfolding rates

of Bc-Csp and Bs-CspB differ by 20 times (10,22). In the

simulations Bc-Csp indeed unfolded more slowly, and we

suggest ion pairs around Arg-3 as a major factor. To uncover

the origin of the difference in folding stability between

Bc-Csp and Bs-CspB, Perl and Schmid (20) have examined

the effects of the 11 amino acid substitutions between the

two proteins individually and in combination and found that

the stability difference can largely be accounted for by

charge substitutions at three positions: 3, 46, and 66. The

effects of the substitutions were quantitatively explained by

electrostatic calculations (29). Perl et al. (22) have also

studied the effects of the 11 substitutions on the folding and

unfolding rates kf and ku, and here again the differences seem

to be concentrated on the three positions.

Our MD simulations of the two proteins elucidated the net

effects of the 11 substitutions together on the unfolding pro-

cess. As it is too costly to simulate all the 11 single mutants,

we will now try to use the simulation results for the two pro-

teins to rationalize experimental observations for the effects

of charge substitutions at positions 3, 46, and 66 on kf and ku.

Upon substitution a residue with native interactions in the

transition state will have much stronger effect on kf than on

ku (equivalent to a F; 1). Perl et al. (22) found Arg-3/Glu

to be such a substitution, decreasing kf of Bc-Csp by 18-fold

but increasing ku by just 2.6-fold. This result can be ex-

plained by the location of Arg-3 on the intact b1-b2 hairpin

in the transition state and the ion pairs formed by Arg-3 with,

e.g., Glu-21 and Glu-46. In the Arg-3/Glu mutant, the

Glu-3 residue will experience charge-charge repulsion with

Glu-21 and Glu-46 in the transition state, thus raising its free

energy and decreasing kf. In the folded state of the mutant,

the repulsion with Glu-21 and Glu-46 will likely be stronger,

and there is also additional repulsion with the C-terminal.

The Arg-3/Glu substitution thus raises the free energy of

the folded state more than that of the transition state, hence

increasing ku.

The substitution of a residue without native interactions in

the transition state will have a much stronger effect on ku

than on kf (equivalent to a F ; 0). Leu-66/Glu was found

by Perl et al. (22) to be such a substitution, increasing ku of

Bc-Csp by 4.3-fold but decreasing kf by just 1.4-fold. This

result can be explained by the location of Leu-66 on the

melted b5 strand in the transition state. In the Leu-66/Glu

mutant, the Glu-66 residue will experience charge-charge

repulsion with Glu-21 and Glu-46 in the folded state. Such

repulsion is much diminished in the transition state since

Glu-66 along with the C-terminal is free to move away. Con-

sequently the free-energy barrier for unfolding is lowered,

resulting in an increase in ku.

Perl et al. (22) found the Glu-46/Ala substitution to

decrease both kf and ku (by 43% and 17%, respectively),

leading to an ‘‘abnormal’’ F-value of 1.5. The decrease in kf

can be understood by the presence of the Arg-3-Glu-46 ion

pair in the transition state. The favorable interaction is

eliminated by the Glu-46/Ala substitution, raising the free-

energy barrier for folding and decreasing kf. In the folded

state, Glu-46 experiences repulsion with the C-terminal,

which is diminished in the transition state. The Glu-46/Ala
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substitution eliminates the repulsion in the folded state,

leading to a higher free-energy barrier for unfolding and a ku.

The dominant role of the substitutions at positions 3, 46,

and 66 in accounting for the difference in folding and

unfolding rates between Bc-Csp and Bs-CspB is demon-

strated by the experimental result that the triple substitution

Arg-3/Glu/Glu-46/Ala/Leu-66/Glu on Bc-Csp lowers

the folding rate by 24-fold and raises the unfolding rate by

15-fold, largely closing the gap between the two proteins.

Similarly, the double substitution Glu-3/Arg/Glu-66/Leu

on Bs-CspB leads to folding and unfolding rates very close

to those of Bc-Csp. As revealed in our MD simulations, long-

range electrostatic interactions among the charged residues

can significantly modulate the rate of unfolding.
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