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ABSTRACT A physically motivated model of kinesin’s motor function is developed within the framework of rectified Brownian
motion. The model explains how the amplification of neck linker zippering arises naturally through well-known formulae for
overdamped dynamics, thereby providing a means to understand how weakly-favorable zippering leads to strongly favorable
plus-directed binding of a free kinesin head to microtubule. Additional aspects of kinesin’s motion, such as head coordination
and rate-limiting steps, are directly related to the force-dependent inhibition of ATP binding to a microtubule bound head. The
model of rectified Brownian motion is presented as an alternative to power stroke models and provides an alternative inter-
pretation for the significance of ATP hydrolysis in the kinesin stepping cycle.

INTRODUCTION

Conventional dimeric kinesin (or just kinesin, see Figs. 1 and

2 for a basic overview) is a microtubule-based molecular

motor, which, despite extensive study, has left several unan-

swered questions regarding its fundamental mechanism of

forward motion. Noteworthy in these is the bias problem:

that a small neck linker zippering free energy of a couple of

kBT generates a thousand-fold favorability (i.e., bias) to step

forward rather than backward (1). A reduced but still sub-

stantial forward bias persists at loads of several picoNewtons

(2), and at these loads, neck linker zippering moderates

mechanical work many times larger than the zippering free

energy. This amplification of zippering is not consistent with

a power stroke model for kinesin. Indeed, zippering as a

power stroke would necessarily imply large zippering ener-

gies that no longer require amplification.

Kinesin’s behavior emerges instead from an altogether

different approach, built on the framework of rectified

Brownian motion (RBM) (3–5). Central to RBM is that a

microscopic cycle may harness large thermally driven dis-

placements that are in turn made irreversible by the expen-

diture of free energy at the boundaries of this diffusional

process (e.g., at binding sites). The boundaries thus irrevers-

ibly drive an otherwise reversible system (6). This shift in

emphasis from the direct forcing of an active element to the

harnessing of diffusion embodies an appreciation for the

overwhelming friction and thermal noise characteristic of

kinesin’s very low Reynolds-number environment (7–9).

Very low Reynolds number practically necessitates the uti-

lization of diffusional motion when kinesin’s geometry is

considered. Such considerations were incorporated early in

the investigations by Peskin and Oster (10), though their

modeling, which was done before the revelation of neck

linker zippering, concluded that diffusion was secondary to

power stroke contributions.

Our RBM model supposes that the diffusional displace-

ments of a tethered head are rectified by the irreversible

binding of this head to microtubule, reminiscent of Huxley’s

diffuse-and-latch scheme for muscle contraction (11). Me-

chanical work against an external load is then a result of the

ATP free energy expenditure associated with binding, rather

than zippering. The bias problem is neatly dispatched by this

shift in emphasis. Using small zippering free energies and

physically motivated components, our model establishes a

fast biasing mechanism that determines the stepping bias at a

given load. This biasing mechanism amplifies neck linker

zippering through surprisingly little else than the naturally

existing internal strain between kinesin heads.

Complementary to the biasing discussion of the article,

kinesin’s rate of stepping along the microtubule is briefly

addressed. Emphasis is placed on a recently discovered force-

dependent gate (labeled ‘‘T-gate’’ here) that controls ATP

binding to a microtubule-bound head (12–14). The role of

T-gate originally arose in the chemical coordination between

the two heads of a kinesin dimer, but T-gate, taken loosely as

the entire mechanism for ATP uptake, also subsumes respon-

sibility for the rate-limiting behavior that arises at both low

[ATP] and high external loads. The effect of T-gate is to

ultimately establish a ‘‘waiting mechanism’’ that controls

dwell times (the time between measured displacements of

kinesin along a microtubule).

The article is organized as follows. Structural and Chem-

ical Functional Elements, through several subsections, out-

lines key physical components of the kinesin dimer and their

respective modeling. With these components, a simplified

discussion that exemplifies the origin of bias is presented in

Basic Biasing Mechanism and the Heuristic Model of Bias,

including both a general argument and a specific numerical

example. Key principles in this section are then extended to a

detailed model of kinesin’s bias in Biasing Mechanism

(Appendix A contains the actual model development). Dis-

cussion of kinesin’s cycle is completed inWaitingMechanism,
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with the development of a waiting mechanism that generates

dwell times. Concluding remarks occupy Conclusion.

STRUCTURAL AND CHEMICAL
FUNCTIONAL ELEMENTS

Experiments have isolated several components that partic-

ipate in kinesin’s forward cycle. Our model incorporates a

number of these components through simplified representa-

tions that are appropriate for our level of detail. Here, the

more involved discussion of our model is preceded with sev-

eral brief treatments of the elements in kinesin’s modeling.

Neck linkers and the coiled-coil neck

Of central importance to the understanding of kinesin’s cycle

are the elements that connect the two kinesin heads, namely,

the two nonrigid neck linkers that together merge into a fairly

stable coiled-coil neck (4). The coiled-coil was originally

supposed to provide, through its unwinding, an essential

ingredient for the existence of kinesin’s forward motion, but

experiments do not support such a theory (15). Neck linkers

are then assumed to provide the leading functional contri-

butions, in part by forming entropic springs that generate a

force by virtue of thermal fluctuations alone. These entropic

springs supply an ‘‘internal strain’’ that guides kinesin’s

functioning (14), e.g., by coordinating chemical states

through activation of T-gate (see the subsection T-Gate,

below).

For the neck linker entropic force, a model from the study

of polymers will be called upon to approximate our;12–15

amino-acid neck-linker chain. Though the length of a neck

linker is far removed from the length of most polymers, the

12–15 neck linker units may already be sufficient for com-

mon polymer statistical mechanical chains models to apply

when fluctuations are included (e.g., the variance of exten-

sion for a forced, diffusing neck linker is allowed to be com-

parable to themean extension). Themost appropriate standard

model for a peptide backbone is the freely-rotating chain

(16), due to the axial nature of peptide bonds (if the bond

angle is very small, then results are known as the wormlike

chain, i.e., WLC (17,18)). Instead, an effective freely-jointed

chain (FJC) model is used for the sake of simplicity (16,19).

The reduction of a chain force to an effective FJC or WLC is

not uncommon, e.g., for DNA (20).

A computationally friendly form of the FJC force model

utilizes a rational polynomial approximation that gives the

correct asymptotic results for large and small extensions of

length x (21),

f ðxÞ ¼ h
kBT

a
Kðx=NaÞ; KðaÞ[að3� a

2Þ
ð1� a

2Þ
; (1)

where a is the relative extension x/Na, a is a link length for

one amino acid, N is the number of amino acids in a neck

linker, and h is a fitting parameter to set the correct linear

regime dependence. The linear regime force constant,

FIGURE 2 Key aspects of kinesin’s forward (plus-end) cycle have been

elucidated through a varied multitude of experiments, including cryo-EM,

x-ray structural, force bead, and others (4,12,23,44–48). This process is briefly

reviewed, where T labels the ATP nucleotide state, D the ADP nucleotide

state, * the no-nucleotide state, and P the phosphate after ATP hydrolysis.

The free head is shaded to clarify motion between frames. Frames 1,2: the

free head weakly binds to the plus-end binding site, leading to strong binding

once ADP is released. ATP binding to the plus-end head is inhibited by a

coordinating mechanism (labeled T-gate; see subsection T-Gate) that is

activated by the internal strain. Frames 3–5: hydrolysis of ATP in the minus-

end head leads to an intermediate ADP-phosphate state, D.P, and phosphate
release alters the binding of the minus-end head into weak binding, which

allows rapid release of the minus-end head from tubulin (14). Frame 5 is to

be identified with the parked state in Carter and Cross (2). Frame 6: the free
head tends not to strongly bind until ATP binds to the microtubule-bound

head (34). ATP binding initiates zippering of the microtubule-bound head’s

neck linker, coinciding with a large acceleration of the rate for the free head

to bind onto microtubule. This entire forward cycle consumes one ATP and

moves the center of mass of the system ;8 nm.

FIGURE 1 A doubly-bound kinesin dimer oriented with the microtubule

plus-end to the right. The N-terminal kinesin heads can bind to tubulin

(36,41–43). The kinesin heads are connected by two neck linkers,

;15 amino acids each (4), and these neck linkers end in a coiled-coil

‘‘stalk’’ that can connect cargo through light chains and mediate tension,

indicated by F (the load force). Entropic considerations for the neck linkers

suggest a thermal force, Fth, which resists neck linker extension. A

microtubule-bound head in an ATP or hydrolyzed ATP (ADP.P) state will

initiate immobilization (zippering) of its neck linker onto itself through a

series of hydrogen bonds, schematically indicated by hatched lines. This

figure outlines structures found in Protein Data Bank file: 1IA0 (43).
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3h kBT/Na
2, can readily scale to several picoNewtons per

nanometer for parameters describing peptide bonds. The

x-integral of this force function provides a free energy

potential that defines the single-chain Boltzmann probability

density, rN,

rNðxÞ ¼ Z
�1

N e
�hNGðx=NaÞ

GðaÞ[ 1

2
a

2 � lnð1� a
2Þ;

(2)

where ZN is a normalization constant. Expected values for

the model parameters are h of order unity and the virtual

peptide bond length a � 0.38 nm (compare to a ¼ 0.35 nm

for the axial distance per amino acid in a b-sheet).

Though coiled-coil unwinding was not found essential for

the forward motion of kinesin (15), steric aspects of the

coiled-coil and its unwinding contribute substantially to bias

calculations. Our modeling assumes that the width of the

coiled-coil (possibly partially unwound) provides a given

length Dd to the head-to-head extension in addition to the

neck linkers. Acting upon the one-dimensional representa-

tion to be used for kinesin’s diffusive step (akin to a reaction

coordinate; see Basic Biasing Mechanism and the Heuristic

Model of Bias, and also Appendix A), the coiled-coil prompts

modeling of the tethered head’s diffusion within an effective

reduced interval, [�d, d] ¼ [�d0 1 Dd, d0 � Dd], where
d0 ; 8.2 nm is the original binding distance. This reduced

interval minimally accounts for the extra reach due to the

width of the coiled-coil. Notice that though the coiled-coil

extension in the real system will dynamically change in

response to entropic neck linker forces, this time-dependent

effect is ignored in our model. Our model similarly ignores

the restoring force due to coiled-coil unwinding (a static

element that produces no intrinsic force).

Neck linker zippering

Estimated only to possess a free energy difference of;2 kBT
(1,22), neck linker zippering is surprisingly essential for

kinesin’s processive motor function (4,23,24). Our modeling

of neck linker zippering borrows from work done in protein

folding, specifically the formation of b-hairpins. From

statistical-mechanical investigations, b-hairpins exhibit bi-

stable cooperative behavior due to competition between

hydrogen-bond formation and the configurational entropy of

a solvated chain (25–27). This bistability inspires a finite

two-state zippering model (the kinematics are made more

precise in Appendix A), where the state with several formed

hydrogen bonds is labeled the ‘‘zippered’’ state, and the

absence of zippered bonds is labeled the ‘‘unzippered’’ state.

The basic purpose of zippering is to immobilize neck

linker links in the microtubule plus direction, thus shifting

the anchoring point (point of emanation) for the microtubule-

bound head’s neck linker toward the forward binding site.

Supposing that Nz is the number of immobilized links in the

zippered state, the act of zippering is modeled by a change

that simultaneously shifts this anchoring point a plus-directed

distance Dx ¼ Nza and reduces the number of solvated neck

linker links for the microtubule-bound head by Nz.

Since the external load will tend to place a strain on the

neck linker, a Bell form (28) is taken for the Boltzmann

probability of being in the zippered state (probability Pz)

versus the unzippered state (probability Pu),

Pz=Pu ¼ e
�Dmzu=kBT

Dmzu ¼ Dm0 1Fdzu;
(3)

with Dmzu the free energy of zippering, Dm0 the free energy

at zero load, F the external load, and dzu the characteristic

distance for zippering. Our model takes dzu ¼ gNza, with
Nz the number of zippered links, a the link length, and g as a

pure number. For g ¼ 1, dzu is then the length of the zippered

segment.

At biological temperatures, Fzu ¼ kBT/dzu defines a char-
acteristic force of Fzu ; 2 picoNewtons if dzu ; 2 nm

(approximately five zippered neck-linker links). Zippering

then remains forwardly biased for loads up to ;4 pN for

zippering energies of magnitude 2 kBT. Reaching this force

does not necessarily imply that kinesin has stalled, since a

small probability to be in a zippered state can be sufficient for

an overall forward bias (see Basic Biasing Mechanism and

the Heuristic Model of Bias for an explanation of this, as a

result of the amplification of bias).

Weak binding

When a kinesin head is in the ADP nucleotide state, the

bonding strength of the head with tubulin is observed to be

markedly lower than in other states, and consequently, the

microtubule-bound ADP state has been labeled weak bind-

ing (strong binding has higher bonding strength and is

associated with the ATP and no-nucleotide states). Mea-

surements were done by Uemura et al. (29,30) to determine

weak state unbinding rates when a weakly bound head is

under external forcing, finding that a natural forward bias

exists in weak state unbinding. Our model uses a more sym-

metric form of weak state unbinding rates that is direction-

ally independent,

k
WðFÞ ¼ ð1 s�1Þ eF330 nm=kBT; (4)

with F the applied force magnitude. Equation 4 approaches

the rates of other internal processes, e.g., 150 s�1, when

F ; 7 pN. Such forces are attainable with entropic neck

linker tensions.

T-gate

Chemical coordination between the heads of a doubly-bound

kinesin dimer has been linked to internal strain activating

a gate (T-gate) that prevents the binding of ATP to the
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plus-end head (12–14). This coordinating mechanism allows

the forward head to remain in the no-nucleotide state until

the rearward head releases phosphate and detaches, thereby

relieving the rearward force on the forward head and allow-

ing ATP to bind. Without this coordination, kinesin would

be unable to take more than a few steps before dissociation.

T-gate thus establishes an important link between mechan-

ical forces and chemical rates.

Further effects of T-gate are discussed in Waiting Mech-

anism, within the context of the waiting mechanism.

BASIC BIASING MECHANISM AND THE
HEURISTIC MODEL OF BIAS

Kinesin’s stepping bias is derived from the probability for

the tethered kinesin head to strongly bind either forward or

backward once ATP has bound to the microtubule-bound

head. Appeals to stochastic simulations of the full kinesin

system, involving the diffusion and interaction between

kinesin’s elements (such as those in Structural and Chemical

Functional Elements), could then provide this stepping bias.

However, the underlying principles that drive kinesin may be

lost in such an approach. A more analytical treatment is

instead taken in this article, proceeding from a general argu-

ment for the origin of kinesin’s bias to the justification of this

argument through two specific models of increasing detail.

The general argument behind the theory of kinesin’s step-

ping bias supposes only the basic aspects of kinesin’s struc-

ture and neck linker zippering. Foremost and most intuitive

in the argument is that the likelihood of a tethered kinesin

head to bind either forward or backward is directly related to

the frequency (probability) for this head to visit each respec-

tive binding site. This visitation probability may be predicted

by the free energy Boltzmann factor that corresponds to sys-

tem configurations with a kinesin head near a given binding

site (this approach is similar to that in transition-state theory).

Assuming a large internal strain between the kinesin heads

when they are separated, e.g., by the entropic neck linker

force, the configurational free energy Boltzmann factor de-

pends exponentially strongly on head-to-head separation.

Accordingly, visitation probabilities are also exponentially

sensitive to head-to-head separation.

Exponential dependence of the visitation probabilities

near binding sites becomes relevant with the consideration of

neck linker zippering effects. Suppose, as described in Neck

Linker Zippering, that a small shift in the tethered-head prob-

ability density toward the microtubule plus-direction results

when the neck linker is in the zippered state. The required

energy to ensure this shift against an applied external load is

accordingly small up to a limiting load value, such that

zippering itself remains a weak effect. In combining expo-

nentially sensitive visitation probabilities with neck linker

zippering, exponentially large changes in stepping bias are

the result (a mathematical version of this statement appears

later in this section as Eq. 9). In short, the main result of this

article is that internal strain sensitizes kinesin to the small

changes due to zippering.

A critical, though often ignored, feature of the above bias-

ing argument is the implicit assumption that binding and

unbinding are essentially irreversible (involving the large

free energy expenditure associated with strong binding tran-

sitions and ATP hydrolysis). This free energy ensures a

strongly forward arrow of time in kinesin’s stepping cycle

(31), i.e., free energy ensures that the time-reversed version

of kinesin’s cycle rarely occurs. The opposite assumption of

totally reversible binding transitions would invalidate our

argument for the origin of kinesin’s bias, since free energy-

work principles would require that zippering energy be the

sole source of work against an external load. For exam-

ple, premature unbinding of a forward head may become

problematic if binding is reversible. Thus, kinesin’s strong

forward bias, and also any associated mechanical work, is

energetically a bound-state effect more than a zippering

effect. This observation is what qualifies kinesin as an RBM

mechanism. A note of caution may be warranted at this time:

irreversibility is measured at the level of an entire cycle,

rather than any single step (32). The statement that irre-

versibility arises primarily through binding is in the context

of the cycle as a whole.

Explicit justification of the above argument is here made

for a simple kinesin-like heuristic model, as a prelude to a

more complete description. The role of neck linker zippering

in the amplification of stepping bias arises analytically as an

exponentially catalyzed forward stepping rate associated

with the zippered neck linker state. This catalysis of forward

binding leads to the clear identification of a bias amplifica-

tion factor that multiplies the naive bias estimate (the

Boltzmann factor of the zippering energy) to produce the

actual stepping bias.

Before construction of the heuristic model, the reader is

reminded of the results of Kramer’s escape rate theory as a

means to determine binding rates. Kramer’s theory supplies

the rate, k, for the transition across some abstract boundary,

providing that the value of the free-energy barrier DU
required to reach that boundary is known. That is,

k ¼ k0 e
�DU=kBT; (5)

where k0 depends on the system parameters subexponen-

tially. Assume that there exist forward and backward points

of escape (i.e., binding), at which the free energy barriers

Uf and Ub, respectively, are known. Using Eq. 5, the ratio j

of forward to backward rates is

j ¼ kf
kb

¼ x0 e
�ðUf�UbÞ=kBT; (6)

where the subexponential dependence has been factored into

x0. Equation 6 reflects the previously mentioned correspon-

dence between stepping bias and visitation probabilities (i.e.,

configurational free energy Boltzmann factors) for forward

and backward binding sites.
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The structure of this heuristic model reduces to a knowl-

edge of the free energy profile and the location of binding

sites. A function U(x) is identified with the free energy for

kinesin in the unzippered state to have a given head-to-head

extension x along the microtubule, where the one-dimensional

signed coordinate x is positive for extensions toward the

microtubule plus-end. The value U(x) is assumed to be an

even function in x, where evenness is motivated by the ex-

pectation to find approximately neutral intrinsic stepping

bias for an unzippered state (neck linker zippering would not

be needed otherwise). In relation to the unzippered state, the

zippered state free-energy function is given through a trans-

lation of the neck linker origin and the addition of the energy

difference Dm0 corresponding to the zippering energy, i.e.,

U(x) / U(x � Dx) 1 Dm0. Translations are sufficient to

introduce asymmetric favorability of the forward binding

site, such that exponentially large biasing changes will ap-

pear. A translation only approximates the effect of zippering,

since physically, zippering also alters the shape of U(x) by
reducing the number of solvated chain links (see Neck

Linker Zippering). Forward and backward binding are

defined to occur at x ¼ d and x ¼ �d, respectively. The
values Uf and Ub in Eq. 6 then correspond to evaluation of

the potential energy at x ¼ d and x ¼ �d, respectively.
Application of Eq. 6 to this heuristic model construction

follows. The rate to bind either forward or backward may be

written as the sum of zippered (z) and unzippered (u) state
contributions,

kf ¼ k
z

f 1 k
u

f

kb ¼ k
z

b 1 k
u

b; (7)

where each rate in the sum is related to the evaluation of the

probability density of either a zippered or unzippered state at

x ¼ 6 d. Explicitly,

kzf ¼ kzf;0 e
�Uðd�DxÞ=kBT e�Dm0=kBT

k
u

f ¼ k
u

f;0 e
�UðdÞ=kBT

k
z

b ¼ k
z

b;0 e
�Uð�d�DxÞ=kBT e

�Dm0=kBT

k
u

b ¼ k
u

b;0 e
�Uð�dÞ=kBT;

(8)

where factors such as kzf;0 differ from each other only sub-

exponentially. Assuming that a Taylor expansion to first-order

is valid in the exponential, i.e., U(d � Dx) � U(d) � lDx,
the stepping bias may be written:

j ¼ k
z

f 1 k
u

f

k
z

b 1 k
u

b

¼
k
z

f;0 e
lDx=kBT e

�Dm0=kBT 1 k
u

f;0

k
z

b;0 e
�lDx=kBT e

�Dm0=kBT 1 k
u

b;0

: (9)

Implicit in writing Eq. 9 are the simplifications involving

evenness of U(x), oddness of @U
@xðxÞ, and the cancellation of

terms e�UðdÞ=kBT in the numerator and denominator. Equation

9 includes the usual zippering energy Boltzmann factor

e�Dm0=kBT and additionally includes the factor elDx=kBT as-

sociated with asymmetry of the binding site visitation

probabilities for the zippered state. If the asymmetry factor

is sufficiently large, Eq. 9 simplifies: j;e�Dm0=kBT elDx=kBT,
up to subexponential terms (the exponential factor in the

denominator becomes vanishingly small while the exponen-

tial factor in the numerator becomes dominant). Thus,

elDx=kBTmay be interpreted as the amplification factor of the

naive zippering energy Boltzmann term. The presence of bias

amplification in Eq. 9 indicates that the stepping bias is not

necessarily equivalent to the zippering energy Boltzmann

factor.

Numerical values of the amplification factor can be readily

estimated. The choice Dx ¼ 2 nm is made for the zippering

distance, corresponding to approximately five zippered neck

linker links. The expression l ¼ @U
@xðdÞis related to an effec-

tive internal strain of the system near the boundary. By

consideration of entropic neck linker forces (Eq. 1), l ¼ 10

pN is chosen as an example of effective force. These values

lead to an amplification factor of 130 at biological temper-

atures (j � 1000 if Dm0 ¼ 2 kBT), which can substantially

change predictions from the zippering energy Boltzmann

factor alone.

The strength of the heuristic model is its simple presentation

of the origin of bias. However, certain relevant elements of

kinesin’s cycle (e.g., weak state binding and unbinding) are

ignored for the purpose of conceptual clarity. Biasing Mech-

anism and also Appendix A resolve these shortcomings with a

more detailed consideration of kinesin’s functional elements.

BIASING MECHANISM

The heuristic model of biasing in Basic Biasing Mechanism

and the Heuristic Model of Bias can be expanded into a

detailed model that considers carefully the roles of weak

binding, zippering, and entropic neck linker forces. Elabo-

ration on the structural and mathematical details of this

biasing mechanism are found in Appendix A. Conclusions of

this detailed model are similar to earlier assertions: that the

rate for the diffusing head to weakly bind during the biasing

mechanism is proportional to the stationary probability

density ps for this head in the vicinity of the binding site (see
Eqs. 5, 11, and 19), and that the stepping bias j(F) at load
F generally also depends on weak state unbinding rates (see

Eqs. 4 and 20). A convenient numerical observation, that the

biases j(F) for physically relevant parameters satisfy an ap-

proximate Bell form (as in experiment (2,33)), allows a param-

eterization of j(F) in terms of the zero-load bias and stall

force. In this manner, all provided examples of this section

are selected to match the ‘‘measured’’ bias Bell form with a

zero load bias of 1000 (i.e., 99.9% forward) and a stall force

of 7.0 pN.

Two useful cases arise for the parameters of the biasing

mechanism: those lacking and those retaining weak state

unbinding. Elimination of weak binding effects in the former

case emphasizes the diffusional origins of bias utilized by the

heuristic model. To demonstrate specific solutions of the
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modeling parameters for both of these cases, example pa-

rameter sets that match the measured bias are presented

below.

Both of these examples share the parameters T ¼ 300 K,

N ¼ 13 (13 total neck linker links), a ¼ 0.38 nm (virtual link

length), d0 ¼ 8.2 nm (distance to the next binding site),

Dm0¼�2 kBT (zippering energy), and k
S¼ 300 s�1 (the strong

binding rate constant used in Eq. 20). The remaining pa-

rameters were made variable and matched to the ‘‘mea-

sured’’ bias Bell form with the construction in Appendix A:

h (neck linker force constant in Eq. 1), Nz (number of

zippered links in the zippered state), Dd (static extension of

the coiled-coil in Neck Linkers and the Coiled-Coil Neck),

and g (a scaling parameter for dzu, the Bell length of zipper-

ing in Eq. 3). For the case lacking weak state unbinding,

these are h¼ 1.4, Nz¼ 4, Dd¼ 4.6 nm, and g ¼ 1.0. For the

case with weak state unbinding, these are h ¼ 0.86, Nz ¼ 5,

Dd¼ 5.0 nm, and g ¼ 0.5. Other example parameter sets that

match the measured bias certainly exist, but they are not

explored here. Further details for the example lacking weak

state unbinding are given in Fig. 3.

Evident in these numerical examples are the large pre-

dicted coiled-coil extensions. However, this observation may

not translate well into the corresponding physical statement

that large coiled-coil unwinding exists during the biasing

mechanism. This problem arises due to the ignored restoring

forces that are generated by unwinding of the coiled-coil,

where these forces will alter bias calculations, e.g., via Eq. 9.

Introduction of a force-extension model for the coiled-coil

(not an entirely trivial task) would better address suscepti-

bility of the coiled-coil to large extensions. Regardless

of these technicalities, a 10-fold reduction in kinesin’s

processivity has been attributed to experimental stabilization

of the coiled-coil (to prevent unwinding) (15), which indi-

cates that some coiled-coil unwinding is natural in kinesin’s

normal forward cycle and should appear in modeling. Large

Dd values may then be reasonable.

Results of our model also indicate that the biasing mech-

anism remains a fast step within kinesin’s cycle as the ex-

ternal load is increased. Relevant to this is the rate for a

diffusing head to weakly bind, with forward and backward

binding rates kD1 and kD�, respectively. The most rapid rate of

these at a given external load, i.e., max(kD1, k
D
�), approxi-

mates the rate of the biasing mechanism’s diffusional step.

Numerical examples (e.g., the above examples) indicate that

this maximum rate tends to not decrease by more than a

factor of 20 at increasing loads—a factor small enough to

leave the diffusional step relatively fast. In contrast, the dif-

fusional bias kD1=k
D
� undergoes larger changes through the

combined effect of kD1 decreasing and kD� increasing.

Numerical examples further suggest that these observations

are not drastically altered with the inclusion of weak state

unbinding events.

The combination of entropic neck linker forces and weak

binding states in this biasing mechanism provides an avenue

for the exploration of the ADP gate discovered by Hackney

(34). Hackney observed that in the combined absence of ATP

(i.e., without zippering) and external load, the free head of a

singly-bound kinesin dimer binds tomicrotubule only slowly,

if at all. This situation is a ‘‘parked’’ state (2). Judging from

similarities between the unzippered state in the biasing

mechanism and this parked state, e.g., that each lacks neck

linker zippering, Hackney’s gate should be a consequence of

long lifetimes for an unzippered-like state (compare to the

unzippered zero-load state in Fig. 3). Long parked lifetimes in

Hackney’s experiment may then occur, for instance, if weak

state unbinding becomes much faster than the strong binding

rate kS. The analysis of this approach is not done here, but this
path to Hackney’s gate remains attractive.

WAITING MECHANISM

The biasing mechanism of Biasing Mechanism is primarily

suitable for describing the direction of stepping. Since

biasing remains relatively fast, the dwell times for kinesin’s

cycle are rather taken to arise from the chemical steps that

occur outside of biasing—collectively labeled the ‘‘waiting

mechanism.’’ Some important technicalities in the logical

separation of biasing and waiting are presented in Fig. 4.

T-gate’s mechano-chemical coupling is invoked as the princi-

pal contributor to the waiting mechanism at rate-limiting

conditions, directly coupling the stress of an external load (in

a geometry similar to frame 5 of Fig. 2) to the rate at which

kinesin binds ambient ATP. Rate-limiting aspects of kine-

sin’s cycle, at either high load or low [ATP], are then

determined by ATP binding rates.

FIGURE 3 Plots of zippered and unzippered stationary probability

densities (in arbitrary units) versus the reduced interval [�d, d] (see Neck

Linkers and the Coiled-Coil Neck and Eq. 11), for the case example in

Biasing Mechanism that ignores the effects of weak state unbinding. The use

of the reduced interval, which subtracts the coiled-coil extension, hides the

fact that zippering is a small change (;2 nm) compared to the distance

traveled by one head (;16 nm). Zippering probabilities, e.g., Eq. 3, are not

represented in these plots. As discussed in Basic Biasing Mechanism and the

Heuristic Model of Bias, the small and decreasing tails of the distribution are

responsible for the generation of large biases. Apparent in these plots are the

competing influences of zippering, which shifts the density toward the plus-

end, and of loads, which shifts the density toward the minus-end. Stall

occurs when all these effects balance one another. The inclusion of weak

state unbinding in the model preserves many of the features presented here.
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A common element in the numerous models for dwell

times is a Bell length of magnitude 2–3 nm that is respon-

sible for rate-limiting behavior at external loads of several

picoNewtons (2,33). Supposing that T-gate indeed manages

dwell times, then this Bell exponent characterizes the load

dependence of T-gate. This identification is consistent in

magnitude with the fact that T-gate’s coordinating mecha-

nism is activated by internal strain on order of several

picoNewtons. A rate model, presented in Fig. 5, is based on

the ansatz chosen for a natural lifetime within T-gate,

tðFÞ ¼ t0
R0

R0 1 1

� �
e
�FdT=kBT 1

1

R0 1 1

� �� ��1

; (10)

with t0, R0, and dT constants to be determined. Equation 10

is intentionally similar to Eq. 3 used by Nishiyama et al. (33),

though Eq. 10 is an ad hoc way to implement a ceiling in

T-gate’s ability to inhibit ATP (e.g., due to higher loads

altering the accessibility of the nucleotide pocket differ-

ently). The placement of t(F) within our rate model is similar

to Fig. 2 of Block et al. (35), with their k�2 set to zero.

Additional details are in Fig. 5.

Further development of the waiting mechanism would

inappropriately shift emphasis away from the central topics

of this article, i.e., the origin of bias and the role of T-gate.

No doubt a more detailed rate model could be developed to

describe dwell times, but this has been done many times

previously.

CONCLUSION

Unlike macroscopic motors at the human scale, microscopic

low Reynolds-number environments exclude the possibility

of a significant inertial component within a molecular motor.

In place of inertial transport, the ability to rectify thermal

fluctuations to do work against an external load becomes a

simple but powerful principle in cellular processes (3). Power

stroke-type models violate this idea with the insistence that

configurations change by virtue of a generalized force that

exists to overcome fluctuations, which consequently leads to

large free energies to sustain a large forward bias. Rectified

Brownian motion (RBM) schemes only require that the free

energy of ATP is expended to make the boundaries of a

process essentially irreversible—diffusional dynamics gen-

erate the displacements spontaneously through fluctuations.

Kinesin’s biasing mechanism harnesses RBM principles

to amplify neck linker zippering by effectively altering

boundary conditions, that is, by altering the exponentially

sensitive probabilities to visit forward and backward binding

FIGURE 4 Much of the biasing mechanism is assumed to occur in the

parked geometry of frame 5 in Fig. 2, where the external load acting on the

microtubule-bound head leads to long dwell times (see Waiting Mecha-

nism). However, the free head could have, in the time before ATP uptake, an

opportunity to bind rearward during a period when forward binding is

virtually excluded (due to no zippering). Thus, bias would then be [ATP]

dependent due to [ATP] dependence of the waiting mechanism. In panel a, a

fast step is outlined that corrects this undesired backward stepping. Since the

forward head experiences strain due to the rearward-bound head, ATP

uptake is greatly inhibited in the forward head, and thus, there exists a much

larger probability that the rearward head detaches first (at the expense of one

ATP hydrolysis). In contrast, panel b outlines how a ‘‘real’’ backward step

may occur once the waiting mechanism has ended, i.e., once ATP has bound

to the microtubule-bound head. Notice that if the rearward head binds as in

panel b, the forward head is at least one chemical step ahead of the rearward

head. With a few assumptions, the forward head in panel b may then be

expected to release first on average. Events in panel b where instead the

rearward head unbinds will alter the simple relation between binding and

stepping direction, but these (potentially uncommon) events are ignored at

the level of detail in this article.

FIGURE 5 Panel a illustrates a rate model to minimally describe T-gate’s

effect on dwell times (actually, the steady-state natural lifetime). Such a

simple model would doubtfully predict detailed measurements, e.g., the

randomness (49). The dashed region that contains abstract states s1 and s2
describes the overall ATP uptake mechanism, which includes T-gate within

a Michaelis-Menten structure. The state s3 represents the remainder of

kinesin’s chemical cycle. A particular form of the force-dependent rate, k(F)¼
1/t(F), is taken from Eq. 10. Panel b provides a plot of dwell times from the

rate model in panel a with parameters deduced by fitting to the model of

Nishiyama et al. (33), fitting with better than visual accuracy. That the

agreement with Nishiyama et al. is excellent is likely a result of the choice in

Eq. 10, but this is not to state that our rate model is identical with theirs (e.g.,

in the manner [ATP] dependence is included). Used in panel b: d¼ 3.10 nm,

R0¼ 193, k̃1 ¼ 5:08 s�1mM�1, k� ¼ 137 s�1, k(0)¼ 857 s�1, k3¼ 137 s�1,

and T ¼ 300 K.
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sites. At low loads, kinesin’s step then is a process that is

biased by virtual absorbing and reflecting boundaries (such

boundary conditions were taken ad hoc in a previous work

(5)), though at high loads and particularly at stall, absorbing

and reflecting boundaries are a poor approximation. The

remainder of kinesin’s stepping is largely orchestrated by

T-gate, including the coordination of chemical steps and the

appearance of large dwell times at rate-limiting conditions.

Throughout this article, external loads were assumed to be

directed toward the traditional microtubule minus-end direc-

tion, so as to simulate a cargo. One remaining topic that may

assist future efforts is then an understanding of the oppositely-

directed forward loading. In particular, large forward loads

may be linked to a loss of coordination (by opposing the

internal strain that activates T-gate) and strong state unbind-

ing (29), both of which would enhance the rate of kinesin’s

dissociation from microtubule. Predictions related to this

problematic behavior should be attainable within the context

of our model.

A larger molecular motor, the actin-based myosin V,

could well share an RBM framework in analogy to that

found in kinesin. Myosin V is composed of two alternately-

stepping heads that are joined together by a pair of semi-

flexible ‘‘legs’’ (36,37). To draw parallels, the semiflexible

legs of myosin should provide the free energy landscape

(38), i.e., internal strain, while a small, state-dependent tor-

sional angle should exist in the molecule to cock the system

forward and strongly favor forward binding. The large step-

ping distances of myosin V could then be traversed almost

entirely by virtue of thermal fluctuations, while irreversibil-

ity is ensured by free energy expenditure related to changes

in nucleotide states. Future work will hopefully uncover just

how deeply these similarities hold for myosin V and other

molecular motors in general.

APPENDIX A: EXTENDED MODEL OF BIASING

This section develops a model to explain kinesin’s bias in a manner more

complete than the heuristic model. The roles of weak binding, diffusion, and

internal strain in these dynamics are incorporated through the considerations

discussed in Structural and Chemical Functional Elements. Key results are

congruent with those from transition state theory.

The framework of the present model, as with the heuristic model, utilizes

a coordinate x along the microtubule that represents the position of an

unbound kinesin head relative to the microtubule-bound head. The value x is

restricted to exist on the reduced interval x 2 [�d, d] (see Neck Linkers and

the Coiled-Coil Neck), and the boundaries x ¼ 6d of this reduced interval

represent binding sites that can induce transitions to and from weak binding

states. Connecting the two heads are the neck linkers, which join at a neck

linker junction (i.e., an effective coiled-coil) that is located at some point y in
the reduced interval. Load is exerted at this junction by the coiled-coil stalk,

such that a factor e�Fy=kBT weights neck linker contributions in the

probability density calculations (see Eq. 11 below).

The combined influence of neck linkers and external load supplies a

free energy landscape for the variable x, as partitioned into the stationary

Boltzmann distributions pz, s(x) and pu, s(x) for the zippered and unzip-

pered states, respectively. These distributions are obtained through the

convolution,

pz;sðxÞ ¼ Z
�1

z

Z N

�N

rN�Nz
ðy� NzaÞrNðx � yÞe�Fy=kBTdy

pu;sðxÞ ¼ Z�1

u

Z N

�N

rNðyÞrNðx � yÞe�Fy=kBTdy;

(11)

with N the number of peptide units per neck linker, rN the neck linker

density (see Eq. 2), F the load force at the junction of the neck linkers, and a

the link length. The values Zz and Zu are constants at a given load, with their

ratio determined by the free energy of zippering Dmzu (see Eq. 3):

Pz=Pu ¼
R
pz;sðxÞdxR
pu;sðxÞdx

¼ e
�Dmzu=kBT: (12)

Once Zz and Zu are determined by normalization of the total probability Pz1

Pu, the stationary probability distribution for the unbound state is known.

For the loads and parameter ranges considered, the distributions in Eqs.

11 and 12 have a single most probable zippering state in the neighborhood of

each binding site (zippered for plus-directed binding; unzippered for minus-

directed binding). An approximation used routinely below is then to assume

that only zippered states bind forward and only unzippered states bind

rearward, i.e., to neglect contributions of the less favorable zippering state.

Relaxation of this assumption is simple, but clutters the details of the model.

Kinetic aspects of our model are included to determine binding and

unbinding rates. This kinetic portion in the reduced interval obeys a pair of

coupled, one-dimensional Fokker-Planck equations that reproduce the

stationary densities in Eq. 11. Define Uz(x) and Uu(x) to be the respective

free energy functions that generate these densities at a given load:

pz;sðxÞ ¼ e
�UzðxÞ=kBT

pu;sðxÞ ¼ e
�UuðxÞ=kBT:

(13)

Using these definitions, the nonstationary zippered and unzippered densities

pz(x, t) and pu(x, t), respectively, are taken to satisfy

@pzðx; tÞ
@t

¼ �D
@

@x
� 1

kBT

@Uz

@x
pz �

@pz

@x

� �

1WuzðxÞpu �WzuðxÞpz

@puðx; tÞ
@t

¼ �D
@

@x
� 1

kBT

@Uu

@x
pu �

@pu

@x

� �

�WuzðxÞpu 1WzuðxÞpz;

WuzðxÞ=WzuðxÞ ¼ e
�DUzuðxÞ=kBT

(14)

with DUzu(x) ¼ Uz(x) � Uu(x), D the diffusion coefficient, and Wzu(x) and

Wuz(x) the transition rates between zippering states. Direct substitution

verifies that Eq. 13 is the stationary solution to Eq. 14.

Implicit in Eq. 14 is the peculiarity that the head-to-head separation x is

assumed to change on a timescale much slower than the position y of the

neck linker junction (y is integrated out). This assumption can be considered

merely a modeling simplification, consistent in spirit with the choice to use a

reduced interval in place of the coiled-coil (see Neck Linkers and the Coiled-

Coil Neck).

Weak binding states in our model may transform to and from diffusing

states via weak unbinding and binding, respectively, at the boundaries of the

reduced interval (x ¼ 6 d). Coupling relations are here given for the plus-

end binding site, while behavior for the minus-end site is supposed identical.

At a given time, there exists a probability PW to exist in the weakly bound

state. Coupling between the continuously diffusing system and the weak

binding state is achieved through the introduction of boundary conditions

that linearly relate PW to the values pz(x) and
@pz
@x ðxÞ at the plus-end boundary

(see Appendix B for an alternative, discrete approach). This linear relation is

established via two parameters, v1 and v̂�, such that
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dPw

dt
¼ �v1Pw1 v̂�pzðdÞ

dPw

dt
¼ JðdÞ; JðxÞ ¼ �D

1

kBT

@Uz

@x
ðxÞ1 @

@x

� �
pzðxÞ;

(15)

where J(x) is understood to be the probability current in the continuum.

Equation 15 implies both dPW
dt

¼ JðdÞ, which is the statement of probability

conservation, and�v1PW1v̂�pzðdÞ ¼ JðdÞ, which provides the aforemen-

tioned linear boundary condition. The value v̂� is interpreted as the affinity

to weakly bind when near a binding site, with binding rate v̂�pzðdÞ. The
value v1 is the rate for a weak state to unbind back into the reduced interval

at position x¼ d. In our model, v̂� is assumed to be a constant, while v1may

vary with internal strain according to Eq. 4 (thus requiring the calculation of

the entropic neck linker force on a weakly bound kinesin head at a given

load).

Binding and unbinding rates may now be calculated via approximations

similar to those in transition state theory, where, as a simplification, rates

most strongly depend on configurations near the binding site (39). The rate

formulae below are in this way explored with an uncoupled approach that

considers only the single most probable zippering state in the vicinity of each

binding site. For conciseness, only the plus-end boundary x ¼ d will be

considered. Analogous results apply to the minus-end boundary.

Transition rates between metastable states often reduce to a knowledge of

mean first passage times (MFPTs) (39,40), which, for our problem, are the

mean times for the system to either weakly bind or unbind. Letting t(x) be
the MFPT for a given process (either binding or unbinding) that at initial

time has the position x within the reduced interval, the function t(x) for a

one-dimensional, zippered state head in the potential Uz(x) satisfies (40)

� 1

kBT

@Uz

@x
ðxÞ@t

@x
ðxÞ1 @

2
t

@x
2ðxÞ ¼ �1

D
; (16)

such that a set of boundary conditions (related to weak binding) define a

unique solution for t(x). Equation 16 is solvable with straightforward

integrals.

Denote x0 as some typical point in the reduced interval away from the

boundaries (e.g., x0¼ 0), andW as the plus-end weak binding state (not to be

confused with the rates Wzu, Wuz). The MFPT for a given process starting at

this weak binding state is denoted tW. Weak state binding, i.e., the process

starting at x0 and ending atW, is denoted x0 /W, while unbinding, i.e., the

process starting at W and ending at x0, is denoted W / x0. The MFPT for

each of these may be calculated using Eq. 16 with the boundary conditions

x0/W : tW ¼ 0;
@t

@x
ðdÞ ¼ �v̂�

D
tðdÞ; @t

@x
ð�dÞ ¼ 0

W/x0 : tW ¼ tðdÞ1 1

v1

;
@t

@x
ðdÞ ¼ 1

D

v̂�
v1

; tðx0Þ ¼ 0;

(17)

as may be derived from consideration of the backwards equation (40).

A brief outline of the derivation that leads to Eq. 17 can be found in Ap-

pendix B.

With a few assumptions, related to the free energy profile near the

boundary, these MFPTs can be expressed using

d� [D=v̂�; dth[

Z d

x0

psðdÞ
psðxÞ

dx (18)

to give

tðx0/WÞ � dth 1 d�

DpsðdÞ

tðW/x0Þ �
1

v1

11
dth

d�

� �
: (19)

Using Eq. 19, the low affinity (dth � d�) and high affinity (d� � dth) limits

are clearly expressed.

The low affinity limit is taken for our modeling, such that dth need not be

known. On physical grounds, this limit reflects that there exists an entropic

barrier before the onset of binding, e.g., due to the orientational specificity of

binding that is excluded from the one-dimensional model. As expected from

transition state theory, the low affinity limit predicts that the rates of weak

binding ðv̂�psð6dÞÞ and unbinding (v1) are equal to the quasi-equilibrium

rate of crossing the state boundaries x ¼ 6 d. In contrast, the high affinity

limit problematically hinders escape from the boundaries x ¼ 6 d, as

indicated by the reduction of the weak state unbinding rate from the desired

value v1.

Once binding and unbinding rates have been determined, calculation of

the total bias in our model follows from the rate diagram in Fig. 6, where the

rates kD1, k
W
1 , and kS1 are defined in the figure caption. In steady state, the bias

(i.e., the ratio of the probability currents J1 and J� for forward and backward

binding, respectively) is then

jtot [
J1

J�
¼ jDjW

jD [
kD
1

k
D

�
; jW [

11 ðkW� =k
S

�Þ
11 ðkW

1
=k

S

1
Þ
;

(20)

with jD representative of the bias due to diffusion leading to weak binding

and jW representative of transitions from weak binding states. As expected,

if weak binding states are long-lived compared to strong binding transitions

(not generally true), the overall bias is purely a diffusional/zippering effect.

Notice that the parameter v̂� disappears from Eq. 20, due to taking the ratio

kD1=k
D
� (this assumes v̂� is equal at each binding site).

Numerical calculation of the stationary distribution ps(x), needed in

Eq. 19, was done with the convolution in Eq. 11. Both Eq. 11 and its

normalization can be evaluated through direct numerical integration. For

estimates of weak state unbinding (from Eq. 4), the force on a weakly bound

head must be known. This may be done by finding the equilibrium position

y ¼ y* of the neck linker junction, such that the forces on this junction (due

to the load and the forces of the neck linkers) are balanced for kinesin’s doubly-

bound configuration. The entropic neck linker force in Eq. 1 was in this way

used to find y* with a simple root finding routine, which then provided the

needed force that determines the rate of weak state unbinding.

APPENDIX B: MEAN FIRST PASSAGE TIME
BOUNDARY CONDITIONS

The boundary conditions in Eq. 17, used for the calculation of mean first

passage times in Appendix A, are not all obvious at first glance. Their

FIGURE 6 A network diagram to describe the bias of kinesin’s step,

providing the rates necessary for Eq. 20. The value s0 represents the reduced

interval, the state where one kinesin head remains unbound. The values s1
and s� represent the plus- and minus-end weak binding states, respectively.

J is the steady-state probability current entering the process (due to kinesin

binding ATP to the microtubule-bound head), and J1, J� are the exiting

currents (due to strong binding transitions). The labels kD6 are given to the

rates of weak binding from a diffusing state, kW6 to the rates of weak state

unbinding (e.g., from Eq. 4), and kS6 to the rates of strong binding. As a

simplification, the strong binding rates equal a constant kS that is

independent of load. The essential irreversibility of the strong binding step

corresponds to a large free energy decrease for strong binding transitions

(consistent with the RBM principle).
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derivation is readily achieved through consideration of a discrete rate theory

in the limit of a small grid spacing. Basic steps of this reasoning are pre-

sented in the following text, though some well-known results are only cited.

A different treatment exists that avoids the limit of a discrete theory. How-

ever, such an approach is somewhat less straightforward than the discrete

approach.

Consider a series of states labeled with index i. A probabilistic process

with one-dimensional, nearest-neighbor transitions is taken to evolve as

@Pi

@t
¼ Pi�1w

1

i�1 1Pi1 1w
�
i1 1 � Piðw1

i 1w
�
i Þ; (21)

with t the time, Pi the probability to be in state i, and w6
i the transition rates

from state i to states i 6 1. Points of exit for this process may be created

through the creation of an absorbing state, such that Pj ¼ 0 is imposed for

some state j.

The MFPT problem for Eq. 21 is readily solved. In analogy to the con-

tinuous case, the mean first passage time function ti is the mean time for

a process that starts in state i to first exit via an absorbing state. The function

ti can be shown to satisfy the recurrence relation (40):

�1 ¼ w
1

i ðti1 1 � tiÞ1w
�
i ðti�1 � tiÞ: (22)

A unique solution to Eq. 22 follows from appropriate boundary conditions,

such as tj ¼ 0 when there exists an absorbing state at j.
A useful continuous limit exists for a choice of transition rates in Eq. 21.

Using the new variable xi ¼ id in the limit d / 0, the rates

w
1

i ¼ AðxiÞ
2d

1
D

d
2; w

�
i ¼ �AðxiÞ

2d
1

D

d
2 (23)

reproduce the distribution of the continuous stochastic process with velocity

field A(x) and diffusion constant D (40). Likewise with the above rates, the

continuous limit of Eq. 22 is Eq. 16 if AðxÞ ¼ � D
kBT

@U
@xðxÞ.

With the above developments, construction of a system with mixed

continuous and discrete parts may be analyzed with a discrete approach. For

the current demonstration of weak binding and unbinding, a weakly bound

state is identified with i ¼ �1, while the continuously diffusing states of an

unbound tethered head are identified with i$ 0. Transitions to and from the

weakly bound state are defined as

w�
�1 ¼ 0; w1

�1 ¼ v1 ; w�
0 ¼ v̂�

d
; w1

0 ¼ Aðx0Þ
2d

1
D

d
2;

(24)

with Eq. 23 defining the remaining transition rates for i . 0. It can be

demonstrated that with these definitions, the dynamical boundary conditions

of Eq. 15 in Appendix A are satisfied. Thus, the dynamics of this system are

as supposed. Additionally, Eq. 22 then straightforwardly leads to both the

boundary conditions, Eq. 17, and the continuous equation, Eq. 16, for the

MFPT problem, where the cases of weak binding and unbinding in Eq. 17

correspond to the presence or absence, respectively, of an absorbing state at

i ¼ �1.
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