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Within a large-scale neuronal network model of macaque primary
visual cortex, we examined how intrinsic dynamic fluctuations in
synaptic currents modify the effect of strong recurrent excitation
on orientation selectivity. Previously, we showed that, using a
strong network inhibition countered by feedforward and recurrent
excitation, the cortical model reproduced many observed proper-
ties of simple and complex cells. However, that network’s complex
cells were poorly selective for orientation, and increasing cortical
self-excitation led to network instabilities and unrealistically high
firing rates. Here, we show that a sparsity of connections in the
network produces large, intrinsic fluctuations in the cortico-cortical
conductances that can stabilize the network and that there is a
critical level of fluctuations (controllable by sparsity) that allows
strong cortical gain and the emergence of orientation-selective
complex cells. The resultant sparse network also shows near
contrast invariance in its selectivity and, in agreement with recent
experiments, has extracellular tuning properties that are similar in
pinwheel center and iso-orientation regions, whereas intracellular
conductances show positional dependencies. Varying the strength
of synaptic fluctuations by adjusting the sparsity of network
connectivity, we identified a transition between the dynamics of
bistability and without bistability. In a network with strong recur-
rent excitation, this transition is characterized by a near hysteretic
behavior and a rapid rise of network firing rates as the synaptic
drive or stimulus input is increased. We discuss the connection
between this transition and orientation selectivity in our model of
primary visual cortex.

hypercolumns � numerical simulation � V1 � circular variance

Orientation selectivity and spatial summation (1) are two fun-
damental attributes of visual processing performed by the

mammalian primary visual cortex (V1). V1 is the first cortical area
along the visual pathway where neurons are strongly selective for
stimulus orientation. Moreover, measurements of orientation se-
lectivity for individual neurons, such as the tuning curve bandwidth
(half-width at half maximum), circular variance (CV),¶ and orien-
tation selectivity index, often show near independence of stimulus
contrast. V1 neurons are also classified as either ‘‘simple’’ or
‘‘complex’’ based on their spatial summation properties. Simple
cells respond to visual stimulation in an approximately linear
fashion, whereas complex cells respond more nonlinearly. For
example, when driven by drifting sinusoidal gratings, a simple cell
follows the temporal modulation of the drifting grating as the
grating moves across the receptive field of the neuron, whereas
complex cells show an elevated but unmodulated response. Quan-
titatively, simple and complex cellular responses are often differ-
entiated by the modulation ratio F1�F0 (at preferred stimulus
orientation, the ratio of the first Fourier component and the mean)
of the cycle-averaged firing rate (2): cells with F1�F0 � 1�2 are
simple and cells with F1�F0 � 1�2 are complex.

How orientation selectivity arises in V1 has not been fully
elucidated (3, 4). According to the classical Hubel and Wiesel
picture (5), orientation selectivity arises directly from the conver-
gence of lateral geniculate nucleus (LGN) afferents. However,
modeling based on the Hubel and Wiesel, or ‘‘feedforward,’’ picture

shows that the degree of selectivity provided by the convergent
LGN inputs alone is insufficient to explain extant data (3). Some
form of cortical processing seems necessary.

V1 responses have been investigated through a variety of
models of differing architectures and coupling schemes. Modi-
fications of the feedforward scheme have used Hebbian ideas to
posit cortical circuitry with highly specific cortical inhibition.
The push–pull model (6) is an example of such a modification:
intracortical inhibition is anticorrelated with the excitatory
synaptic drive. Other models without highly feature-specific
coupling demonstrate that selectivity can arise from the sharp-
ening of weakly tuned feedforward excitation by broadly tuned
intracortical inhibition (see, e.g., refs. 7–9). The so-called mar-
ginal phase, which can evince contrast invariance, arises when
cortical excitation is sufficiently strong to allow symmetry-
breaking states (10).

Previously, we studied how simple and complex cell responses
arise in a large-scale neuronal network model of an input layer
4C� of macaque V1 (11–13). The model represents a 1-mm2

local patch with four orientation hypercolumns containing
O(104) conductance-based, integrate-and-fire (I&F) neurons:
75% excitatory and 25% inhibitory. The cortical architecture,
the LGN drive, and the cortico-cortical synaptic couplings are
constrained whenever possible by anatomical and physiological
measurements. In this large-scale model, a continuum of simple
and complex cellular responses arises from the varying trade-offs
between cortico-cortical and geniculate excitation: the most
simple of the model neurons are driven strongly by the LGN and
are ‘‘linearized’’ by strong cortical inhibition (12). In its pub-
lished form, this model operated in a regime where its membrane
conductances and potential had large fluctuations over its mean
(see figures 4 and 5 of ref. 13). Indeed, it was these fluctuations
that drove the network activity because the trial-averaged mem-
brane potential was below the firing threshold,� as has also been
observed experimentally (14). The origin of these fluctuations,
which helped stabilize the network responses, was in large part
external through the inclusion of membrane conductances (in
addition to the cortico-cortical ones) driven by stimulus-
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¶Orientation selectivity for drifting grating stimuli is measured by CV. Let m(�) denote the
time-averaged firing rate as a function of stimulus angle �; m(�) is �-periodic. CV is defined
as CV[m] � 1 � ��0

�m(�)e2i�d����0
�m(�)d�. CV lies between 0 and 1. Poorly tuned cells have

CVs near 1, whereas well tuned cells have CVs near 0.

�We note that Eq. 1 of the integrate-and-fire dynamics can be cast in the form v̇j � �GT
j (t)[v j

� VS
j (t)] (see Methods). The effective reversal potential, VS

j , is necessarily greater than the
voltage threshold VT whenever the neuron fires. We say the dynamics are mean-driven
whenever the trial averaged �VS

j (t)� � VT; i.e., the mean of the synaptic input is sufficient
to drive the neuron to fire. The time-average V̄S

j � T�1�t0

t0 � TVS
j (t)dt can also be used if the

rate of the input is time-homogeneous. For �VS� � VT; we say the dynamics are fluctuation-
driven, because temporal fluctuations in the drive are needed for spiking.

© 2006 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0605415103 PNAS � August 22, 2006 � vol. 103 � no. 34 � 12911–12916

N
EU

RO
SC

IE
N

CE



independent Poisson spike trains. This particular model, while
reproducing many aspects of simple and complex cell behavior,
has complex cells that are only weakly selective for orientation.
The strong cortical amplification that is apparently necessary to
improve the orientation selectivity of complex cells causes
bistability: complex cells tend to either not fire at all or to be
mean-driven, with firing rates that are much too high (limited
only by the absolute refractory period). This bistability occurs
despite the presence of noisy external conductances.

In ref. 15, we suggested that strong, intrinsically generated
cortical f luctuations can stabilize network dynamics and allow
complex cell selectivity. Here, we demonstrate how a critical
level of strong synaptic f luctuations induced by sparsity in
network connectivity can transform potentially destabilizing
recurrent network amplification to stable and rapid gain

through a near-bistability to produce orientation-selective
complex cells. In all cells, the strong dynamic synaptic f luc-
tuations provide the intrinsic ‘‘noise’’ to yield near contrast
invariance. We examine the role of V1 architecture on orien-
tation selectivity and show that, although extracellular selec-
tivity for orientation is roughly independent of cortical loca-
tion, intracellular measures are not, differing between neurons
in iso-orientation regions and those near pinwheel centers,
consistent with recent experiments (16). Finally, the role of
synaptic f luctuations is elucidated in detail by studying the
bifurcation structure of network activity in an idealized net-
work model with statistically homogeneous coupling.

Results
Orientation Selectivity in a Large-Scale Model of V1. In this work, we
concentrate on responses of our V1 model (see Methods) to
drifting grating stimuli. Although typically used to measure
orientation selectivity, drifting grating stimuli are often used to
assay linearity in cellular responses. Fig. 1a shows the histogram
of modulation ratio F1�F0 (from cycle-averaged time traces of
extracellular spiking) for excitatory cells in the model. In qual-
itative agreement with experimental observation and with our
previous model (13), we find a broad but bimodal distribution of
modulation ratio, with many cells sitting astride the simple�
complex divide, and with a characteristic depression around
F1�F0 � 1�2 (17, 18). Fig. 1b shows an intracellular antecedent,
the F1�F0 distribution of the intracellular effective reversal
potential VS. Again, in agreement with experimental observation
(19) and our previous model (13), this distribution is plainly
unimodal, which in the model reflects the egalitarian nature of
the basic connectivity (see also ref. 20).

Orientation selectivity is typically measured by using time-
averaged firing rates as a function of stimulus orientation, that is,
from orientation tuning curves. In the large-scale model here, both
simple and complex cells show a range of orientation selective
responses, as does V1 cortex (17). Fig. 2 a–d shows the tuning
properties of four sample excitatory neurons near pinwheel cen-
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Fig. 1. Histograms of the modulation ratio, F1�F0, for excitatory cells in the
model network; only cells with firing rate at peak angle above 5 spikes per sec
are included. (a) Modulation ratio for the firing rate. (b) Modulation ratio for
the intracellular voltage as measured by the effective reversal potential VS.
The modulation ratio is measured from each cell’s cycle-averaged response to
a drifting grating stimulus at high contrast and at preferred orientation. The
synaptic coupling parameters are SEE � 0.25, SIE � 6.0 for the simple cells; SEE �
4.0, SIE � 7.0 for the complex cells; and SEI � SII � 2.0 for all cells. The effective
network size is Neff � 96 (with NE � 72 and NI � 24), and the NMDA percentage
	 � 0.25.

0 90 180
0

10

20

0 90 180
-0. 5

0
0.5

1

0 90 180
0

0.5

   1

0 90 180
0

   1

   2

0 90 180
0

   3

   6

Orientation (deg)

0 90 180
0

10

20

0 90 180
-0. 5

0
0.5

1

0 90 180
0

0.5

   1

0 90 180
0

   1

   2

0 90 180
0

   3

   6

Orientation (deg)

0 90 180
0

10

20

0 90 180
-0. 5

0
0.5

1

0 90 180
0

0.5

   1

0 90 180
0

   1

   2

0 90 180
0

   3

   6

Orientation (deg)

0 90 180
0

10

20

0 90 180
-0. 5

0
0.5

1

0 90 180
0

0 5

   1

0 90 180
0

   1

   2

0 90 180
0

   3

   6

Orientation (deg)

a b c

g 
(x

10
  )

I
m

v

0 90 180
0

10

20

0 90 180
-0. 5

0
0.5

1

0 90 180
0

0.5

    1

0 90 180
0

    1

    2

0 90 180
0

    3

    6

0 90 180
0

10

20

0 90 180
-0. 5

0
0.5

1

0 90 180
0

0.5

    1

0 90 180
0

    1

    2

0 90 180
0

    3

    6

Orientation (deg) Orientation (deg)

2
g 

(x
10

  )
E

2
g 

  (
x1

0 
 )

lg
n

2

d e f

Fig. 2. Tuning properties for cells (a–d) near the pinwheel center vs. cells (e–f ) from iso-orientation domains. For six sample excitatory cells from the V1 model,
plotted as functions of stimulus orientation within the five panels for each cell are (from Top to Bottom): firing rates (spikes per second) for medium contrast
(solid lines) and low contrast (dot-dashed lines) stimuli; membrane potential; excitatory conductances from geniculate inputs; cortico-cortical excitatory
conductances; and cortico-cortical inhibitory conductances. (Conductances are measured in units of inverse seconds.) All quantities are time-averaged, with the
dashed curves showing the mean 
 1 SD. For the geniculate excitation, this standard deviation illustrates the tuning of its F1 component. With the exception
of the topmost panels, all are at medium contrast. (a, b, and e) Simple. (c, d, and f ) Complex.
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ters**: two excitatory simple (ES) cells (Fig. 2 a and b) and two
excitatory complex (EC) cells (Fig. 2 c and d). Fig. 2 e and f shows
tuning properties for an ES (Fig. 2e) and an EC cell (Fig. 2f) in an
iso-orientation domain (far from the pinwheel center). The simple
cells are strongly driven by the LGN, whereas the complex cells are
not. These cells have tuning curves that are roughly contrast
invariant: their CVs are nearly equal at medium and low contrasts
(Top, solid and dot-dashed lines, respectively). The remainder of
the panels show intracellular potentials and synaptic conductances
for a medium contrast stimulus as a function of the stimulus angle
[temporal mean 
 1 SD; the temporal mean of the LGN input is
untuned for orientation (3, 6)].

Near pinwheel centers, the cortical conductances come from
a population of cells with broadly distributed preferred orien-
tations. In our previous models (11, 13), which were densely
coupled, this scheme led to cortical conductances that were very
nearly independent of stimulus orientation. One consequence
was that simple cells were especially selective near pinwheel
centers because of the interaction of excitatory conductances
dominated by tuned geniculate input (that is, tuned in its
non-mean components) with a cortical inhibition that was
independent of orientation. The inputs to complex cells there, on
the other hand, were dominated by untuned cortico-cortical
conductances, both excitatory and inhibitory, leaving the com-
plex cells themselves untuned. As Fig. 2 shows, sparsity of
coupling much reduces these effects, and the cortical conduc-
tances near pinwheel centers now show mostly broad modulation
with stimulus angle. The nature of this modulation can be highly
variable. One simple cell (Fig. 2a) has cortical conductances that
are mostly f lat with orientation, whereas the other (Fig. 2b) has
a broadly modulated cortical excitation that is in phase with the
F1 component of the LGN drive (and the tuning curve), while
the cortical inhibition is out of phase. For both complex cells, the
inhibition has a complicated modulation, especially as inhibitory
conductances sample over relatively fewer input cells than
excitation. For the cell in Fig. 2d, there is a strong misalignment
between the peaks of the total conductance (dominated by
inhibition) and the peak of the tuning curve. Recent intracellular
measurements of cells near pinwheel centers have also shown
misalignments (16) of firing and conductance peaks. In general,
the effect of the haphazard, sparser coupling in our model is to
improve the tuning of complex cells near pinwheel centers (13)
while reducing the relatively better tuning of simple cells near
pinwheel centers seen in ref. 11.

Moving from pinwheel centers into iso-orientation domains, the
synaptic coupling is increasingly between cells of nearly the same
preferred orientation. If the cells there are highly selective to
orientation, then necessarily the cortical conductances will also be
highly selective, and complex cells will become selective as their
tuned excitatory conductances overcome tuned inhibitory conduc-
tances. As Fig. 2 e and f illustrates, the cortical conductances are
well tuned, most certainly in comparison with near pinwheel
neurons. This network is well tuned in iso-orientation domains
because of a reciprocal feedback loop between the simple cells,
which receive geniculate excitation (tuned in its F1 component),
and the complex cells, which are operating in a network state of
near-criticality. This state of near-criticality will be illustrated
shortly in a reduced model but is marked by a steep but stable gain
curve for the complex cells made possible by the sparse coupling of
the network, and is the basis for their good selectivity. The
selectivity in the complex cell network also feeds back to the simple
cells, thereby further improving their selectivity with respect to the
feedforward case.

Note that, in each sample neuron, the time-averaged intracellular
potential is well below threshold (i.e., the neurons are fluctuation-
driven). This behavior is generally true of neurons in the model
network. Therefore, it is the intrinsically produced, temporal fluc-
tuations,†† here induced by the sparse network coupling, that drive
neuronal firing and network activity. In contrast to external noisy
synaptic input, where the fluctuation strength is independent of the
network dynamics, sparsity-induced intrinsic fluctuations can dy-
namically adjust their strength in response to the overall network
dynamics. In particular, these sparsity-induced fluctuations remove
a bistability that is otherwise present in a densely coupled network
and allow the network to operate in a stable high gain regime to
produce well tuned complex cells.

Fig. 3 summarizes the tuning properties of the excitatory neurons

**Note that convergent feedforward input from many LGN neurons sets up an orientation
preference, laid out as pinwheel patterns, each with an orientation preference singu-
larity at its center (11).

††In our model, the sparsity-induced, intrinsic cortico-cortical conductance fluctuations are
10–20 times larger than the fluctuations in the LGN input as measured by the standard
deviation. Our notion of fluctuation-driven dynamics is distinct from the dynamics of a
‘‘balanced network’’ where the overall excitatory and inhibitory currents nearly cancel
(21). (Network models in Results are fluctuation-driven, with the mean synaptic currents
being strongly inhibitory and the Vs usually being far below threshold.) In our large V1
model, a typical selective ES(EC) has VS � 0.045(0.075) 
 0.362(0.373), pS � 0.0042(0.0066)
in the background (where pS is the probability of VS � VT) and has VS � 0.192(0.333) 


0.432(0.501), pS � 0.031(0.092) under a medium contrast stimulus. If the fluctuation had
remained the same under driving, i.e., �VS � 0.362(0.373) but the mean changed from
�VS � 0.045(0.075) to 0.192(0.333), then the evoked pS is estimated to be p1 �

0.0129(0.037) by approximating the distribution of VS with a normal distribution. On the
other hand, if the mean had remained the same, i.e., �VS � 0.045(0.075) but �VS changed
from �VS � 0.362(0.373) to 0.432(0.501), then the evoked pS is estimated to be p2 �

0.0135(0.033). Clearly, the fact that neither p1 nor p2 is close to the true pS � 0.031(0.092),
which is a factor of 2–3 larger than p1,2, suggests that both the mean and fluctuations in
the network are equally important in controlling the tuning dynamics.
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Fig. 3. Orientation selectivity of excitatory cells in V1 model. (a) Histogram of CV for ES cells (Upper) and EC cells (Lower). (b) CV of excitatory cells at medium
and low contrasts. (c) CV of excitatory population as a function of distance to nearest pinwheel center. Solid, ES; dashed, EC.
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in this model. Fig. 3a shows the distribution of CV for the ES and
the EC populations separately. Both populations are broadly dis-
tributed in CV, having ES cells somewhat better tuned than EC
cells, in qualitative agreement with experimental data (17). Fig. 3b
indicates that the orientation selectivity of the populations is
approximately contrast invariant: the CV at medium stimulus
contrast is on average equal to the CV at low stimulus contrast, with
the data showing a large scatter (consistent with the experimental
measurements‡‡). As already discussed, a distinct feature of previ-
ous versions (13) of this large-scale model was the clear differences
in orientation selectivity relative to cortical location. As seen in Fig.
3c, there are differences in selectivity near and far from pinwheel
centers, but they are slight. This roughly invariant selectivity in
extracellular spiking across the cortical surface is in agreement with
experimental measurements (16, 22, 23), as are the differences in
tuning of cortical conductances near (broadly tuned) and far (more
narrowly tuned) in cortical conductances (16, 23).

In producing these model results, large regions of the synaptic
coupling strength parameter space were explored. We find that, to
have roughly contrast invariant, selective complex cells, there must
be strong recurrent excitation (13), with large intrinsic temporal
fluctuations (15). To understand the effect of intrinsic synaptic
fluctuations on network dynamics, we systematically varied the
network sparsity through varying the connection probability p, thus
varying Neff (see Methods).

We find that, without sufficient intrinsic synaptic fluctuation, the
complex cells tend to be bistable in the presence of the strong
recurrent excitation needed for amplification and orientation tun-
ing, with the bistability leading to network properties that are
biologically unrealistic, such as only a very few extremely well tuned
complex cells with absolute-refractory-limited high firing rate,
whereas the rest of the complex cells remain unresponsive. This
behavior is illustrated by comparing model networks with differing
Neff. Fixing the stimulus orientation, the stimulus contrast was
slowly increased from zero to 100% contrast and then decreased
back down to zero. For each cell, the number of spikes produced
during the period of contrast increase was recorded, as were the
number of spikes produced during contrast decrease. Let �Nspikes
denote the difference in the two, so that positive �Nspikes means that
the cell spiked more during contrast decrease than during contrast
increase. Fig. 4 shows, for two networks with different Neff, the
distributions of �Nspikes of the ES and the EC populations. For the
sparsely coupled, fluctuation-driven network [Fig. 4a; Neff � 96
with NE � 72 and NI � 24 (24, 25)], the distribution of �Nspike is
symmetric about 0, revealing no difference in the system response
to contrast increment or decrement. However, in the (mean-driven)
network with larger Neff (Fig. 4b; Neff � 768 with NE � 576 and NI �
192), the distribution of �Nspikes for the EC population is skewed;
that is, the EC cells are firing more during contrast decrement. This
behavior is symptomatic of a hysteretic system. Note that this
hysteresis increases as Neff is further increased (data not shown). To
isolate and understand the effect of intrinsic fluctuations, we turn
next to an idealized, statistically homogeneously coupled model and
examine how synaptic fluctuations transform the input–output
relation of strongly recurrent networks.

Fluctuation-Controlled Criticality. We now consider a reduced, very
idealized model network wherein 50% of the neurons receive
feedforward drive (mimicking simple cells), 50% receive strong
intracortical excitation (mimicking complex cells), and the cou-
pling is statistically homogeneous (see Methods). Both popula-
tions receive the same, strong, cortico-cortical inhibition, i.e.,
SEI � SII being relatively large. We focus on the effect of
fluctuations by ignoring detailed time dependencies of the visual
drive; all simple cells receive the same feedforward drive of mean

Ginput � ƒ�0. For networks with the same network synaptic
coupling strengths but of different Neff (i.e., the average coupling
strengths remain the same as Neff is varied), Fig. 5a displays the
complex cell population firing rate as a function of the mean
drive Ginput. These firing rate curves are obtained by first
increasing and then decreasing the feedforward input. In the
Neff � 200 network, hysteresis is observed as we ramp up and
then down the strength of the feedforward drive. This behavior
is well captured by the solution of our kinetic theory analysis
(data not shown) (15). The transition is a saddle-node bifurca-
tion in Ginput for the mean population firing rate. As Neff is
decreased (while strengthening individual synapses to keep the
effective network drive constant), the region of bistable behavior
in Ginput becomes smaller and smaller, until the bistability
disappears completely and a smooth firing rate curve is observed
(e.g., the curve for Neff � 50). In particular, at the critical point
at which the bistability disappears, the gain in the response curve
is the most rapid, as can be seen in Fig. 5a.

The transition also occurs when we change the relative
contributions of fast and slow excitation. NMDA receptors act
on a longer time-scale, and each postsynaptic conductance (PSC)
has a smaller temporal variance than a PSC mediated by
�-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors. Therefore, by beginning with a sparse
system and very little NMDA excitation, there are large fluctu-
ations, but these fluctuations diminish and the system becomes
more mean-driven, with an increasing proportion of NMDA
excitation. Fig. 5b displays the complex cell population firing rate
as a function of Ginput in networks of fixed Neff � 25 but with
different NMDA�AMPA ratios. Again, the firing rate curves are
obtained by increasing and decreasing Ginput. In the case with no
AMPA, hysteresis is observed, and the dynamics is bistable. In
the case with no NMDA, there is no hysteresis, and the dynamics
is dominated by fluctuations and below the near-critical state.
We note that the results in Fig. 5 a and b also hold in densely
coupled networks where a probability of synaptic failure intro-
duces an effective sparsification to the network connectivity, and
so induces a similar bifurcation structure.§§

‡‡Shapley, R., Johnson, E., Hawken, M. & Kang, K. (2002) Soc. Neurosci. Abstr. 32, 720.8.

§§It is important to note that there can be important differences in network response
between the effective sparsification via synaptic failure and that via sparse connections
that are fixed and independent of time. For example, synaptic failure induces a much
more statistically homogeneous dynamic behavior in a network, whereas the sparse but
fixed connections can have clustered dynamics associated with specific causal links over
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Fig. 4. Hysteresis in the V1 model. Shown is the distribution in �Nspike (the
difference in the number of spikes during stimulus contrast decrement and
increment; see text) for the ES (dashed lines) and EC (solid lines) populations.
(a) Neff � 96 (p � 0.02344). (b) Neff � 768 (p � 0.1875). All other model
parameters are the same as in Fig. 1. The complex cells of the densely coupled,
Neff � 768 network show evidence of hysteresis in stimulus contrast. The
stimulus contrast was increased linearly in time from 0% (at t � 0) to 100% (t �
5 s) and then decreased linearly in time from 100% to 0% (ending at t � 10 s).
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As seen in Fig. 5, dynamics of bistability corresponds to mean-
driven dynamics, and strong fluctuations can modify the dynamics
such that the bistability is removed either by increase in sparsity or
decrease in percentage of NMDA. The synaptic fluctuations have
the effect of smoothing the relation between synaptic input and
neuronal output in the form of spikes. With sufficiently strong
recurrent excitation, as we increase the strength of synaptic fluc-
tuations, the region of bistability in neuronal output shrinks to
achieve near-hysteresis at a critical level of intrinsic fluctuations. We

call this region near-critical. As we increase fluctuations even
further, the network is no longer hysteretic, and the gain is further
decreased. Because this transition occurs as the amount of intrinsic
synaptic fluctuations is varied, we call this fluctuation-controlled
critical transition. The network dynamics at near-criticality is char-
acterized by near-bistability and rapidly changing firing rates as a
function of synaptic input. We note that it is the sparsity in network
couplings that allows the network to maintain sufficiently strong
intrinsic fluctuations in this near-critical region to achieve a stable
high gain; this near-criticality high gain, in turn, gives rise to
orientation selectivity for complex cells in the V1 model.

Discussion
The emerging picture of the functioning cortical network is
one operating in states controlled by f luctuations (14, 26, 27).
We studied here a large-scale cortical model of a V1 hyper-
column whose dynamics is dominated by intrinsic f luctuations
in a critical state. The critical level of these intrinsic f luctua-
tions is induced by sparse but efficacious circuitry. This model
reproduces many experimentally measured aspects of cortical
response. By building upon our previous V1 model, this
network produces a continuum of simple and complex cell
responses, with a bimodally distributed F1�F0 distribution for
extracellular spiking, and unimodally distributed F1�F0 for
intracellular potential, ref lecting the egalitarian nature of its
connectivity. Unlike our previous densely coupled model, in
which f luctuations were created by means of external noise, in
the current model, sparsity-induced intrinsic f luctuations pro-
vide a more general stability against the effects of self-
excitation, and the f luctuation-controlled criticality gives rise
to the emergence of well tuned complex cells. The population
also shows contrast invariant tuning. As has been reported
from experimental studies (16), we find a relative indepen-
dence of orientation selectivity of firing rates from cortical
location relative to the pinwheel center of the hypercolumn. As
has also been reported (16), we find systematic differences in
the selectivity of intracellular membrane conductances and
potential. In iso-orientation domains, conductances and po-
tential show like selectivity with extracellular spiking, whereas
near pinwheel centers, the cortical inputs are generally more
broadly tuned and variable, ref lecting the haphazard nature of
local connectivity to cells of different preferred orientation.
We remark that these network properties are achieved with a
circuit entirely local to the V1 hypercolumn, wherein sharp
tuning in iso-orientation domains is accomplished by a recip-
rocal amplifying circuit involving both simple and complex
cells. In particular, we need not postulate tuned inputs from
extra-hypercolumn areas (16).

Much work has focused on the smoothing effect of fluctuations
on the transfer of intracellular currents to extracellular spiking, and
their relation to contrast invariant orientation tuning (14, 28, 29).
Although our fluctuation-dominated network model of V1 shares
these properties, its operating point is one of near-criticality, at the
onset of a bifurcation of multistability and hysteresis, itself con-
trolled by the level of intrinsic fluctuations in the network. Near
criticality is typified by rapid and stable gain through self-excitation
and underlies the good selectivity of complex cells in our model. As
we show in a simple idealized model, a near-critical operating state
can be attained by adjusting the level of intrinsic fluctuation by
systematically varying the sparsity of connectivity, as well as by
adjusting frequency of synaptic failure, or in a sparsely coupled
network, by altering the relative strength of NMDA- to AMPA-
mediated excitation. We point out that, if the percentage 	 of
NMDA is sufficiently increased from our current V1 model with
other parameters fixed (in particular, the input contrast remains the
same), the complex cells move away from near-criticality and
become unresponsive. This result is consistent with the behavior of
the lower-branch response curve in the bistability region, as seen in

different clusters of a network. We have found (data not shown) that, using synaptic
failure to effectively sparsify our V1 network, that is, through the statistical randomiza-
tion of spiking, complex cells near pinwheel centers are less tuned than those in orien-
tation domains, i.e., bearing more resemblance to the results of our previous, densely
connected cortical model (13) than to the current model with haphazard connections, for
which the tuning of complex cells arises by means of clustered, local dynamics.
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Fig. 5. Bifurcation diagrams. Shown is the firing rate per neuron of the EC
population vs. Ginput. These curves were obtained by first increasing and then
decreasing the strength of the feedforward excitation Ginput for our idealized
networks with different Neff � 25, 50, 100, and 200 [the network synaptic
coupling strengths are SEE

(s) and SIE
(s) � 0.25 for the simple cell population; SEE

(c) and
SIE

(c) � 0.5 for the complex cell population; and SEI � SII � 0.9 for all cells; 	 �
0.0 for each of the models shown] (a) and for five idealized networks with
different 	 � 0%, 25%, 50%, 75%, and 100% (the network synaptic coupling
strengths are the same as in a, with Neff � 25 for each model shown) (b). The
dashed curves on the plane Neff � Ginput correspond to �VS(Neff,Ginput)� � VT for
EC cells, where �VS� � [GLVR � (SEE

(s)mE
s � SEE

(c)mE
c)VE � (SEImI

s � SEImI
c)VI]�[GL �

(SEE
(s)mE

s � SEE
(c)mE

c) � (SEImI
s � SEImI

c)], where mE
s , mE

c, mI
s, and mI

c are the firing rate
of the simple and the complex excitatory and inhibitory cells, respectively. In
the bistable region, there are two �VS� � VT curves, one corresponding to
ramping-up the input Ginput and the other corresponding to ramping-down
the input. The region of Ginput above the curves �VS� � VT corresponds to �VS�
� VT. In the mono-stable region, the black dots mark the firing rate at �VS� �
VT as indicated by the vertical projection (dotted line).
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Fig. 5b, if synaptic inputs are not sufficiently strong to drive the
complex cells up to the higher firing upper-branch.

Our analysis suggests that pharmacological manipulations of the
cortical network can change its operating point. For example, a
mean-driven, hysteretic state can be moved toward the critical state
by decreasing 	, the relative contributions of slow and fast excita-
tion. Similarly, we can move a nonselective network strongly
dominated by fluctuations toward the critical state by increasing 	.
Although the Neff and 	 of the V1 cortical network are not known,
our work suggests that the cortical network operates near a fluc-
tuation-controlled critical state.

Methods
We use systems of conductance-based integrate-and-fire neu-
rons, whose individual membrane potentials v P

j (t) follow

dv P
j

dt
	 �GLv P

j 
 VR� 
 G PE
j  t�v P

j 
 VE�


 G PI
j  t�v P

j 
 VI� , [1]

where P � E,I for the excitatory and inhibitory neurons, j � 1, . . . ,
NP. The mth spike time, tm

j , of the jth model neuron, is determined
by vP

j (tm
j�) � VT; vP

j (tm
j � �ref) � VR, where �ref is an absolute

refractory period. Here, the membrane potentials of the excitatory
(E) [inhibitory (I)] neurons are denoted by vE

j (v I
j), where the

superscript j indexes the spatial location of the neuron within the
network. GL, GPE, and GPI are the leak, excitatory, and inhibitory
conductances, respectively. We use normalized, dimensionless po-
tentials with VI � �2�3, VT � 1, VR � 0, and VE � 14�3 (11). We
take �ref � 3 ms (1 ms) for excitatory (inhibitory) neurons. Eq. 1 can
be rewritten as dvP

j �dt � �GP
j

T(t)[vP
j � VS

j (t)], where GP
j

T � GL �
GPE

j � GPI
j is the total membrane conductance and VS

j � (GLVR �
GPE

j VE � GPI
j VI)�GP

j
T is an effective reversal potential.

The time-dependent conductances arise from the LGN input and
from the cortical network activity of the excitatory and inhibitory
populations, and have the general form

G PE
j  t� 	 FPE t� � �1 
 � j�SPE � SPE

0 �

��
k

aj,k pk
j �p� �

l

GE t 
 t l
k� , [2]

GPI
j  t� 	 FPI t� � SPI �

k

bj,k pk
j �p� �

l

GI t 
 t l
k� , [3]

where FPE(t) � �jG lgn
j (t) [the conductance G lgn

j (t) denotes the
feedforward forcing from the LGN (see the supporting text of ref.
13 for details)] and FPI(t) � cinh�iGI(t � s l

j) is a stimulus-
independent inhibition driven by homogeneous Poisson spike
trains. The PSCs have the form G(t) � �(t)[exp(�t��d) � exp(�t�
�r)]�(�d � �r), where � is the Heaviside function (G is normalized
to have unit time integral). The time constants are �r � 1, 2, and 1
ms and �d � 5, 80, and 10 ms for excitatory AMPA and NMDA and

inhibitory GABAA, respectively. (Note that orientation-tuning
properties in our model are similar for �d � 3 and 5 ms for AMPA
and GABAA, respectively.) For excitatory synapses, GE(t) � (1 �
	)GAMPA(t) � 	GNMDA(t), where 	 denotes the fractional con-
tribution of NMDA receptors, 	 � 25%.

The kernels aj,k and bj,k describe the spatial structure of the
cortical coupling and are normalized to have unit sum. The
parameter �j � [0, 1] in these equations indicates heuristically how
the distribution of simple and complex cells is set in our models and
characterizes the simple-complex nature of the jth neuron (with
�j � 0 the most complex, �j � 1 the most simple; SPE

0 models weak
cortical excitatory couplings for simple cells), by setting the strength
of LGN drive relative to the strength of the cortico-cortical
excitation. The parameter �j is distributed uniformly in [0, 1] for our
large-scale V1 model.

The factor pk
j �p controls the degree of sparsity in network

connectivity, while simultaneously scaling up the strength of indi-
vidual connections as connectivity is made more sparse. To wit, pk

j

is chosen to be 1 with probability p and zero otherwise, and is fixed
for individual realizations of the network. On average, each neuron
is coupled presynaptically to Neff � pN other neurons. By scaling the
strength of a single postsynaptic connection by p, sparser networks
have stronger PSCs, with the mean and the variance of a PSC
induced in a single cell scaling as 1�Neff. As the distributional
average of pk

j �p is one, the parameters SPE and SPI denote overall
network synaptic strengths. To examine the effects of synaptic
fluctuations, we study networks with the fixed network coupling
parameters SPP but differing levels of sparsity. We take SEI � SII so
that the cortical inhibition is the same for both excitatory and
inhibitory neurons.

The network architecture is a simplified version of the model of
ref. 13. The basic cortical architecture, LGN drive, and cortico-
cortical couplings are described in detail in refs. 11, 12, and 13.
However, unlike these previous works, here we do not model
feedback from other layers or extrastriate areas, which was modeled
as activity-dependent feedback in ref. 13. We set the synaptic
coupling parameters to be fixed constants instead of being Gaussian
distributed about a mean. Inhibitory effects are modeled as a sum
of local and global contributions: bj,k � (1�2) � (bj,k

0 � 1�Neff). The
first term is the local one with bj,k

0 a Gaussian in the distance
between neurons j and k and is normalized to unity, and the second
is global and scaled with Neff. Unlike our previous model, we do not
consider a second, long inhibitory synaptic time course.

For the idealized model, we have GPE
j (t) �  jGinput,PE(t) �

SPE
(�)�k(pk

j �pN)�lGE(t � tl
k), and GPI

j (t) � SPI�k(pk
j �pN)�lGI(t � tl

k),
with  j � 1, � � s for j � 1, 2, . . . , NP�2 and  j � 0, � � c, otherwise.
NE � 75%N, NI � 25%N, and N � 1600 is the total number of
neurons in the network. Neff � pN. Ginput,PE � ƒ�lGP(t � tk), where
{tk} is a Poisson spike train with constant rate �0.
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