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A newly identified 16S rRNA methyltransferase gene, rmtC, was accompanied by an ISEcp1 element at its 5�
end. This ISEcp1 element, which contained a transposase gene, tnpA, provided a promoter activity for expres-
sion of the adjacent rmtC; and this structure enabled the rmtC gene to be transposed onto another plasmid in
Escherichia coli.

Four types of plasmid-mediated 16S rRNA methyltrans-
ferase genes, rmtA, rmtB, rmtC, and armA, which confer high
levels of resistance to various aminoglycosides, have been
found worldwide among a number of pathogenic gram-nega-
tive rods (3, 4, 8, 14, 17–19). The distribution of these plasmid-
mediated 16S rRNA methyltransferase genes among patho-
genic bacteria seems attributable to the fact that these genes
are associated with some bacterium-specific DNA recombina-
tion systems, such as a transposon (3, 5, 7, 16). In fact, it was
recently reported that transposition of armA was mediated by
a composite transposon, Tn1548 (5). However, little is known
about the transposition system of the other three plasmid-
mediated 16S rRNA methyltransferase genes, rmtA, rmtB, and
rmtC. Therefore, in the present study we characterized in de-
tail the transposition system of rmtC, which was located on a
plasmid (pARS68) found in a clinical Proteus mirabilis strain,
ARS68 (14).

A SacI-digested 11-kb fragment carrying rmtC was cloned
from pARS68, and both strands were entirely sequenced. By
using the bacterial genetic code, ORF Finder (http://www.ncbi
.nlm.nih.gov/gorf/gorf.html) was used to search for open read-
ing frames (ORFs). A schematic representation of the cloned
fragment is shown in Fig. 1A. ISEcp1, which contained a trans-
posase gene, tnpA, was located just upstream of rmtC. Al-
though there were several ORFs (orf1 to orf8) around ISEcp1
and rmtC, their functions remained unknown, even though
their sequences were compared with the sequences in the pub-
lic databases of GenBank and EMBL by using the BLAST and
FASTA search tools.

It is well known that ISEcp1 is often located at the 5� ends of
several �-lactamase genes, such as blaCTX-M and blaCMY (1, 2,
6, 9, 11, 12, 15), and enables these genes to be transposed to
other DNA target sites (2, 10, 13). Moreover, ISEcp1 provides
promoter activity for expression of a downstream CTX-M-type
�-lactamase gene (2, 12). These findings strongly suggested

that the transposition and expression of rmtC, as seen in
pARS68, were also regulated by ISEcp1. ISEcp1 was bracketed
with two imperfect 14-bp inverted repeat (IR) sequences (the
left IR [IRL] and the right IR [IRR]) (Fig. 1A). A putative
5-bp target site (TTCAA) was located in the immediate vicinity
of IRL (Fig. 1A). This 5-bp target site might be duplicated,
most likely after the insertion of a DNA fragment mediated by
a transposon, and is subsequently located on both faces of a
transposed DNA fragment. The presence of duplicated 5-bp
target sites can be a trace that the insertion of a DNA fragment
by transposon occurred at that position. Considering the flank-
ing genetic organizations of rmtC, it is speculated that a DNA
fragment containing ISEcp1 and rmtC bracketed on one side
by IRL and on the other by a putative second IRR, IRR�,
constituting a potential transposon on pARS68. To determine
if rmtC could transpose with ISEcp1 and to determine the
structural limits of the transposable unit, we tried to identify a
potential transposon carrying ISEcp1 and rmtC bracketed with
IRL and putative IRR� by an in vitro transposition experiment.
For this purpose, the transposition of rmtC carried by several
donor recombinant plasmids based on two different backbones
(Fig. 1A) to the recipient plasmid R388 (TMPr) was investi-
gated with a standard mating assay. Escherichia coli DH5�
harboring R388 together with various recombinant plasmids
and E. coli HB101 (STRr) were used as the donor and recipient
strains, respectively. Transconjugants were selected on Luria-
Bertani agar plates supplemented with gentamicin (10 �g/ml),
trimethoprim (50 �g/ml), and streptomycin (100 �g/ml).
Transconjugants were obtained when E. coli DH5� carrying
recombinant plasmids (pBCS68, pBCHS68, pMCLS68, and
pMCLHS68) (Fig. 1A) was used as a donor strain at a fre-
quency of ca. 10�7 to 10�6 per recipient. On the other hand,
transconjugants could not be obtained (frequency, � 10�9 per
recipient) when E. coli DH5� carrying plasmids (pBCES68 and
pMCLES68) lacking a part of ISEcp1 was used (FIG. 1A).
These findings strongly suggested that ISEcp1 plays an essen-
tial role in the transposition of rmtC.

Twenty recombinant plasmids carrying rmtC with the back-
bone of plasmid R388 obtained when pBCS68 was used as a
donor plasmid were extracted from the transconjugants. The
sequences of both terminal ends of the transposed fragments
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were determined in detail by direct sequencing of these recom-
binant plasmids with customized primers. As a result, eight
types of transposed fragments, which were structurally differ-
ent from each other, were obtained. All transposed fragments
analyzed contained both ISEcp1 and rmtC, and each left end
(IRL) of those fragments was perfectly identical (Fig. 1B).
However, the right end of each fragment (IRR1 to IRR8)
varied (Fig. 1B and Table 1). IRR was within 459 bases of the

end of rmtC in seven of eight cases, although only IRR2 be-
longed to the cloning vector region (Fig. 1B). The locations of
IRR3 and IRR8 were adjacent to the typical 5-bp nucleotide
sequence, TTCAA, which seemed to be an innate target site on
pARS68. Therefore, it is probable that the 2,973-bp frag-
ment bracketed on the left side by IRL and on the right end
by IRR3 or IRR8 constituted a potential transposon on
plasmid pARS68.

FIG. 1. (A) Schematic organization of genes in the 11-kb SacI fragment of pBCS68. ORFs and genes are shown as arrows indicating
transcription orientation. The IRL, IRR, and IRR� motifs are indicated by open rectangles. Possible 5-bp target sites (TTCAA) are shown as a
closed ellipse. DNA fragments carried by recombinant plasmids used in the transposition experiments are indicated by double-headed arrows with
the corresponding recombinant plasmid names. Fragments on pBCHS68 and pMCLHS68 were generated by ligating the fragment on pBCES68
or pMCLES68, and the PCR fragments were amplified by using primers supplemented with restriction sites (HindIII or EcoRI). Restriction sites:
S, SacI; H, HindIII; E, EcoRI. (B) Transposition of the ISEcp1-rmtC element onto R388 from pBCS68. The positions of the IRRs (IRR1 to IRR8)
were confirmed by transposition experiments with the ISEcp1-rmtC element in E. coli cells by using R388 as the recipient plasmid. Positions of the
5-bp duplicated target sites are shown as open ellipses. Upward-pointing arrowheads indicate the positions of the IRL and the IRR� extremities
of each probable transposed fragment (horizontal broken lines). This result reveals that the IRR� elements of ISEcp1 are not so rigorous but are
comparatively multifarious or flexible and that the 5-bp target sites or recombination junctions at the IRR� side are also diverse.

TABLE 1. Characteristics of inverted repeats and target sites for ISEcp1-mediated transposition

Description of sequence Nucleotide sequence of IRL
and IRRs (14 bp)a

5-bp duplicated target
site sequence

Size of transposed
fragment (bp)

IRL of ISEcp1 5�-CCTAGATTCTACGT-3� TTCAA
Expected perfect IRR of ISEcp1

(complementary sequence of IRL)
5�-ACGTAGAATCTAGG-3�

IRR of ISEcp1 5�-ACGTGGAATTTAGG-3�
IRR� 5�-CCTAGGAACTCGGC-3� TTCAA 2,973
IRR1 5�-GCCTGGGATTTCGA-3� TTCTT 2,943
IRR2 5�-GAACAGTATTTGGT-3� TATGT 6,556
IRR3 5�-CCTAGGAACTCGGC-3� ACGCA 2,973
IRR4 5�-TCCTAGGAACTCGG-3� GCCAA 2,972
IRR5 5�-ATATGGTGTTTCCT-3� ATGAA 2,991
IRR6 5�-AATCTTTTTTCGGA-3� AATTT 2,774
IRR7 5�-ACGCCGTAACTCGG-3� GTGAC 2,756
IRR8 5�-CCTAGGAACTCGGC-3� GAAAT 2,973

a Underlining of IRRs indicates nucleotide residues identical to the corresponding complementary nucleotide residues of the IRL sequence. IRR�, IRR3, and IRR8
showed identical nucleotide sequences.
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The numbers of base pairs in IRR, which is identical to those
in IRL, ranged from three to nine (Table 1). The 3� ends of the
IRRs identified varied (GA, GT, GC, GG, or CT), although it
was reported that ISEcp1B needs a guanosine (G) residue at
the 3� ends of the IRRs when it transposed the adjacent genes
blaKLU-A and blaCTX-M-19 (10, 13). In any event, it was com-
monly observed that ISEcp1 and ISEcp1B were able to trans-
pose adjacent antibiotic resistance genes by using IRRs com-
posed of a wide variety of nucleotide sequences.

Primer extension analysis of RNA from RmtC-producing E.
coli transformant, E. coli DH5�(pBC-KB1) (14), revealed the
start residue of the mRNA transcription of rmtC (Fig. 2A and
2B). Transcription was initiated at an A (adenine) residue,
located 99 nucleotides upstream of an AUG translation initi-
ation codon of rmtC. This position was located within ISEcp1
near its IRR. Although diversity in the start residue of tran-
scription was observed among ISEcp1-bearing antimicrobial
resistance genes, including rmtC, blaCTX-M, and blaCMY,
ISEcp1 commonly provides promoter sequences within the
right-end region near its IRR for expression of downstream
antibiotic resistance genes (2, 6, 12).

Recently, it was experimentally confirmed that ISEcp1B
could transpose upstream of chromosomally located blaKLU-A

of Kluyvera ascorbata, which is thought to be a progenitor of
CTX-M type �-lactamases, and, consequently, could also
transpose blaKLU-A to other target sites in E. coli (10). This
hybrid structure of ISEcp1B and blaKLU-A seems to be the
origin of that of ISEcp1 and blaCTX-M, which is widely distrib-

uted among members of the family Enterobacteriaceae world-
wide. Although the overall schemes for the development of the
hybrid structure of ISEcp1 and rmtC have not been elucidated,
it is probable that ISEcp1 first transposed into the 5� end of
chromosome-carrying rmtC in unknown aminoglycoside-pro-
ducing bacteria and that subsequently the ISEcp1-rmtC ele-
ment transposed to other DNA target sites on a residential
plasmid of the Enterobacteriaceae. To understand the develop-
ment of the hybrid structure of ISEcp1 and rmtC, it would be
necessary to identify natural reservoirs of rmtC. In conclusion,
we report here that ISEcp1 plays an essential role in the trans-
position and expression of a 16S rRNA methyltransferase
gene, rmtC.

Nucleotide sequence accession number. The nucleotide se-
quence of the 11-kbp SacI fragment shown in Fig. 1A was
submitted to the EMBL/GenBank database through the DNA
Data Bank of Japan (DDBJ) and can be found under accession
no. AB194779.
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