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An equation for membrane voltage is derived that takes into
account the electrogenicity of the Na�K pump and is valid dynam-
ically, as well as in the steady state. This equation is incorporated
into a model for the osmotic stabilization of cells. The results
emphasize the role of the pump and membrane voltage in lower-
ing internal Cl� concentration, thus making osmotic room for vital
substances that must be sequestered in the cell.

internal Cl � modified Goldman–Hodgkin–Katz equation

A fundamental problem for cells with fragile membranes is
the control of their volume (1). A cell must concentrate

inside itself substances that are essential for its existence, e.g.,
DNA, proteins, amino acids, and sugars. The osmotic activity of
these internally sequestered substances, which are not free to
leave the cell, creates a swelling tendency. The pressures created
by the osmolarity differences between inside and out can easily
reach an atmosphere or more, whereas the plasma membrane is
only about as strong as a soap bubble. In bacteria and plant cells,
swelling is prevented by a strong cell wall that surrounds the
plasma membrane. Animal cells have no cell wall and have
adopted a different strategy to control the swelling tendency.
They reduce their internal ionic content to make ‘‘osmotic
room’’ for the internally sequestered substances, thus reducing
the osmolarity differences between inside and outside to zero.
Over many years, it became clear that the osmotic stabilization
of a living animal cell was related to the active transport of Na�

from and K� into the cell (2–5). The first mathematical model
based on this general idea was the lucid pump-leak model of
Tosteson and Hoffman (1), so named because the Na�K pump
counteracts the tendency of Na� to leak into and K� out of a cell.
Their model assumed that the cell was in a steady state, and it
successfully accounted for volume control in high- and low-K red
blood cells. Tosteson (6) extended this model to the dynamic
case, as did a later model by Jakobsson (7). Lev et al. (8) have
formulated a model that includes many ion transport mecha-
nisms, including ion exchanges, but does not deal directly with
the relation of the Na�K pump to osmotic stabilization.

Aside from its intrinsic fascination, there are two reasons for
revisiting the question of osmotic stabilization. First, there is a
lingering cloudiness about the mechanism by which stabilization
is achieved. This paper emphasizes the use of membrane voltage
as a means to lower internal Cl� concentration, thus making
osmotic room for the vital substances that are sequestered
internally. Second, previous models have either been confined to
the steady state (1) or have been complicated by the lack of a
simple equation for membrane voltage (Vm) that includes the
contribution of the electrogenic Na�K pump. The pump (Fig. 1)
generates a small electric current by extruding three Na� ions
while taking in only two K� ions in each cycle (9). Mullins and
Noda (10) modified the Goldman–Hodgkin–Katz (GHK) equa-
tion (11, 12) for membrane voltage to include a term for the
pump, but their equation is valid only when ion concentrations
are not changing. An equation is derived here that takes the
pump current into account and is valid dynamically as well as in
the steady state. So far as I am aware, this is the first equation
of its kind that is explicitly soluble for Vm. With the incorporation

of this equation, the model presented here is valid at all times,
providing analytical solutions for volume, Vm, and ion concen-
trations. It is easily handled by a small computer.

The Model
The model cell has properties similar to those of frog skeletal
muscle fibers, which were intensively studied by Hodgkin and
Horowicz (13).

Water Permeability. The cell has high water permeability and is
always at osmotic equilibrium (equilibration is instantaneous on
the time scale of the calculations).

Osmotic Equilibrium. The requirement for osmotic equilibrium
(and stable volume) is that osmolarityout � osmolarityin. This
equality must be so at all times, because the fragile plasma
membrane of the cell cannot support a pressure difference.

Electroneutrality (Approximate). For a cell of normal size, if the
membrane voltage has a reasonable (millivolt scale) value, the
cationic charge must be almost equal to anionic charge, on both
sides of the membrane. The exact equations for a cell with a
membrane voltage Vm (voltage inside � voltage outside) are

� cationic chargein � � anionic chargein � Vm � Cm, [1]

and

Abbreviation: GHK, Goldman–Hodgkin–Katz.

*E-mail: carmstro@mail.med.upenn.edu.

Fig. 1. The model cell in normal conditions. Its membrane contains three
types of channels, Cl, K, and Na, which mediate passive movement of these
ions. Ion concentrations are in mM. Permeability of the resting cell is PK 1.0, PNa

0.02, and PCl 2.0 (in arbitrary units). An ATP-driven pump extrudes three Na�

ions and imports two K� ions per cycle. The resting potential is �80 mV, and
the resting volume is 1.0 (arbitrary units). Internal [Cl�] is only 7 mM, making
osmotic room for internally sequestered substances, S�, at a concentration of
143 mM.
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� cationic chargeout � � anionic chargeout � �Vm � Cm,

[2]

where Cm (C � V�1) is membrane capacitance. Vm � Cm is the
small excess of charge that makes the membrane voltage, an
excess of negative charge on one side and positive on the other.
It is negligibly small compared with the � cationic charge or
� anionic charge, so, at the beginning of a calculation it is
justified to assume perfect electroneutrality; i.e., � cationic
charge is set equal to � anionic charge both inside and outside.
The excess of charge, Vm � Cm, is not used in the computations.

Ion Flux Through Channels. Following the reasoning given in
Appendix, the currents (C�cm�2�s�1) of the permeant ion species
through channels in the membrane are given by the equations

IK � PK � F � zK��K��ie� � �K��o	

INa � PNa � F � zNa��Na��ie� � �Na��o	

ICl � PCl � F � zCl��Cl � �oe� � �Cl � �i	

� � zx � Vm � F�R � T,

[3a]

where PX (cm�s�1) is the number of pores�cm2 times the
permeability of a single pore �K (cm3�pore�1�s�1). F (C�mol�1) is
Faraday’s constant, zX (dimensionless) is the magnitude of the
valence (1 for all ions considered here), R is the gas constant, and
T is the absolute temperature. � (dimensionless) is the ratio of
potential (zx � Vm � F) to random thermal energy (R � T). The
current voltage (I–Vm) relations for Na� and K� are shown in
Fig. 2. Eqs. 3 are interpretable, for Na� and K�, as a voltage-
independent influx, and an efflux that varies exponentially with
voltage, whereas for Cl�, the opposite is true. Alterations of the
model that use other single-channel I–V relations are described
below.

Ion Flux Through the Na�K Pump. The equations for Na� and K�

f lux (mol�cm�2�s�1) through the pump are

Pump flux of Na� � 2.17�ATP���1 � �Na��c��Na��i	
3

Pump flux of K� � �pump flux of Na��pump ratio,
[4]

where [Na�]c is the concentration for half-maximal occupation
of a Na�-binding site on the pump. For very low concentration
the pump rate thus depends on the third power of the [Na�]i. The

factor 2.17, the pump rate coefficient, was determined empiri-
cally. For simplicity, pump rate is a linear function of ATP
concentration and is independent of [K�]o. Neither of these
simplifications matters for present purposes. The minus sign in
the second equation shows that Na and K flux are in opposite
directions. The Na�K pump ratio is normally 3�2 (9). Pump
current (C�cm�2�s�1) is

Ipump � �pump flux of Na� � pump flux of K�	 F. [5]

Membrane Voltage. To obtain an easily calculable model, it is
necessary to have an equation for membrane voltage that takes
into account the contribution of the Na�K pump. Further, the
equation must be compatible with the equations for the current
of each ion species. The following derivation uses the current–
voltage relations shown above (Eqs. 3a) to get an equation for
Vm that includes a term for pump activity. As is the case with the
GHK equation and the Mullins–Noda equation, the equation
derived here is valid only when Vm changes slowly enough that
capacitive current is negligible. The derivation assumes the usual
relation between net membrane current and the rate of change
of Vm:

INa � IK � ICl � Ipump � Cm�dVm�dt	.

Expanding the currents with Eqs. 3a and assuming that Vm is not
changing gives


PNa��Na��ie� � �Na��o	 � PK��K��ie� � �K��o	

� PCl��Cl��oe� � �Cl��i	�F � Ipump � 0.

This equation attributes all of the voltage dependence of the
fluxes to the efflux (Na� and K�), or to the influx (Cl�), as
described in Appendix. It rearranges to

e�
PNa�Na��i � PK�K��i � PCl�Cl��o�

� PNa�Na��o � PK�K��o � PCl�Cl��i � Ipump�F.

Rearranging and taking the log of both sides gives

Vm � RT�F ln�PNa�Na��o � PK�K��o � PCl�Cl��i � Ipump�F
PNa�Na��i � PK�K��i � PCl�Cl��o

�.

[6a]

Internally Sequestered Impermeant Anions. The dominant internal
anion is assumed to be an S� molecule that bears a charge of
�1e. This assumption is made for simplicity, but many other
choices are possible. For example, S could be composed of two
species present at equal concentrations, one bearing a charge of
0 and the other a charge of �2e. Jakobsson (7) has studied
the effect of altering the valence of internally sequestered
substances.

Volume. Volume is normalized relative to the steady-state volume
in standard ionic conditions, with 3 mM internal ATP.

Sequence of Computations. When the model is set running, (i) Vm
is calculated from the permeabilities and the initially assigned
values for ion concentrations and pump flux. (ii) The passive flux
of each ion species is calculated by using Eqs. 3a with the present
values of internal and external concentration and the just
calculated value of Vm. (iii) The pump fluxes of Na� and K� are
calculated from Eqs. 4 and 5. (iv) Net fluxes are calculated by
summing passive flux and pump flux (which is zero for Cl�). (v)
By conceptually delaying water flux for the moment (handled in
steps vi and vii), the would-be osmolarity is calculated from the
initial concentrations, adjusted by the net fluxes just calculated.

Fig. 2. Theoretical current–voltage relations for open Na and K channels. (A)
The solid curves are from Eqs. 3a (the Na curve is the almost horizontal line, just
negative to zero), and the dashed curves from Eqs. 3b. For both sets of curves,
INa � �IK at �80 mV; i.e., the resting potential is �80 mV. (B) Approximately
linear current–voltage relations, generated from Eqs. 8. These relations are
most similar to the experimentally observed curves, but the model works well
when any of the three pairs of current–voltage relations are used, as described
in the text.
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Water movement is handled implicitly, by (vi) adjusting the
volume as required to make internal osmolarity equal to exter-
nal, and (vii) by calculating the new values of ion concentrations
using this volume. (i) Using the new concentrations, Vm is
calculated, and the cycle repeats.

Alternative I–V Relations for the Channels. Eqs. 3a above predict the
current (I) as a function of voltage (Vm) through conducting
channels as given by the solid curves in Fig. 2 A for K� and Na�

(INa is the almost horizontal line). The curves have been scaled
according to the resting permeabilities, so that at the resting
potential inward INa is equal in magnitude to the resting potential
outward IK. These curves are not much like the I–V curves of
known channels, and two different paths were taken to assess the
importance of the disparity. The first path taken was to derive
an alternative form of the I–V relations that, for cations,
attributes all voltage dependence to the influx (rather than to the
efflux as in Eqs. 3a), and the opposite for Cl�.

IK � PKF��K��i � �K��oe�	

INa � PNaF��Na��i � �Na��oe�	

ICl � PClF��Cl��o � �Cl��ie�	.

[3b]

Using Eqs. 3b, the equation derived for Vm is

Vm � RT�F ln� PNa�Na��o � PK�K��o � PCl�Cl��i

PNa�Na��i � PK�K��i � PCl�Cl��o � Ipump�F�.

[6b]

The I–V relations for Na� and K� using Eqs. 3b are shown as
dashed curves in Fig. 2 A. At the resting potential, where INa is
equal but opposite to IK, both currents are much larger than with
Eqs 3a. To achieve stability, it is necessary to increase the pump
rate coefficient by a factor of 13. Once this is done, calculations
with Eqs. 3b and 6b give results that are very similar to the ones
with Eqs. 3a and 6a.

The second path for exploring the importance of I–V shape is
to make the PNa and PK terms in Eqs. 3a voltage dependent in
such a way as to approximately linearize the I–V relations.

PK�Vm	 � 0.2�P0Ke�0.71�

PNa�Vm	 � P0Na �70 � Vm	�106.4,
[7]

where P0K is normally 1 and P0Na is normally 0.02. The term
e�0.71� approximately linearizes PK and (70 � Vm) approximately
linearizes PNa. The factors 0.2 in the PK equation and 106.4 in the
PNa equation were chosen to keep the resting potential un-
changed at �80 mV. Combining Eqs. 3a and Eq. 7 gives

IK � PK�Vm	 � F��K��ie� � �K��o	

INa � PNa�Vm	 � F��Na��ie� � �Na��o	.
[8]

These I–V curves are shown in Fig. 2B. Thanks to the voltage-
dependent permeabilities, both IK and INa are approximately
linear over the voltage range in which the model is used. When
Eqs. 8 for currents are used collectively with Eq. 6a for Vm, the
results are qualitatively similar to those with Eqs. 3a and 6a.
Thus, all three sets of I–Vm relations give similar results, leading
to the conclusion that the shape of the I–V relation does not
affect the behavior of the model in essential ways.

Validation of the Model. A number of tests were performed to
ensure that the model gives reasonable and internally consistent
results, including the following. The first was a test of the stability
of the model cell in normal conditions. In a steady state,
concentrations, volume, and Vm should not change. When the

model is run for the equivalent of 100,000 min, none of these
variables changed detectably. This result shows that the equa-
tions are compatible with each other and that the model cell is
completely stable. A second test was performed to observe the
effects of turning off the pump. Because the pump is electro-
genic, turning it off should cause a small positive change in Vm.
A quick �2-mV change was observed, as expected, and slower
changes followed as described below. The pump rate is faster if
the internal [Na�] is high, making the quick jump in Vm larger.
Changes of ion concentrations, addition of external nonelectro-
lytes, and permeability changes all gave results that closely
resembled the behavior of living cells as described in the
literature (6, 7, 13).

Results
The Mutual Interaction of Cl� and Membrane Potential. The exper-
iments of this section help to understand the influence of Cl� on
Vm, and, on the other side of the coin, the influence of Vm on Cl�
distribution. In Fig. 3A, Vm is changed by increasing [K�]o from
5 to 20 mM at time 0, with a compensatory decrease of [Na�]o
from 145 to 130 mM. Vm quickly changes from �80 to �64 mV,
followed by a slow climb to �50 mV. The quick phase is
predicted by Eq. 6a, assuming that all internal concentrations are
the same before and just after the change. This phase is only
about half the alteration of EK calculated from the Nernst
equation, because current through Cl channels pulls Vm toward
the as-yet-unchanged Cl� equilibrium potential (ECl), �80 mV.
Cl�, however, is no longer in equilibrium: the less-negative
interior allows Cl� to move inward. As [Cl�]i increases, both the
ECl and Vm drift in the positive direction, each influenced by the
other. Finally, a new equilibrium for Cl� is achieved at �50 mV
where ECl and Vm are equal. Cl� is not pumped in any way into

Fig. 3. Cl permeability and membrane voltage. Traces were generated by the
model in the text to simulate a classical experiment of Hodgkin and Horowicz
(13). (A) To the left of 0 on the time axis, the cell is in normal conditions. At 0
min, [K�]o was increased from 5 to 20 mM, causing a quick change of Vm. A
slower change follows as Cl�, no longer at equilibrium, drifts into the cell,
causing a small volume increase. During the interval when Cl� is not in
equilibrium (0 min to �9 min), there is a Cl� current that keeps Vm negative to
its steady-state level, �50 mV. The current weakens with time as equilibrium
([Cl�]i � 23 mM, Vm � �50 mV) is approached. (B) The experiment is repeated
after setting PCl to zero at the time indicated. When [K�]o is increased to 20 mM
at time 0, Vm rises within milliseconds to �50 mV. The time course is quicker
than in A because there is no Cl� current. Notice that [Cl�]i, the very bottom
trace, and volume do not change.
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the model cell and it must come to equilibrium (unless its
permeability is zero) at the voltage dictated by the concentra-
tions and permeabilities of the pump-regulated ions, Na� and
K�. There is a small increase in volume, accounted for by an
increase in the cell’s content of K� and Cl�.

If the experiment is repeated with PCl � 0 the results are quite
different. In Fig. 3B the trace begins in standard conditions, and
PCl is lowered at the time indicated. As predicted by Eq. 6a, there
is no change in Vm, because Cl� is at equilibrium and the net flux
through an open Cl channel is zero. When [K�]o is increased
([Na�]o decreased in compensation), Vm jumps immediately to
�50 mV, with no delay because of Cl� readjustments. Note that
there is a small volume increase with PCl � 2, but none when PCl
� 0. These experiments are based on the classic work of Hodgkin
and Horowicz (13), and show clearly that [Cl�]i in the model cell
is set in the steady state by Vm, which is, in turn, set (in the steady
state) by the gradients and permeabilities of Na� and K�. These
results also show that when (and only when) it is not in
equilibrium, Cl� has an influence on Vm by means of the current
flowing through open Cl channels. When Cl� is at equilibrium
(ECl � Vm) the current is zero (Eqs. 3).

The Pump, Cl� Ion, and Cell Volume. The influence of the pump on
cell volume is made clear by the experiment in Fig. 4A. The
model cell is in standard conditions until the arrow, when the
pump is turned off. At this point, [Na�]i begins to rise imme-
diately and [K�]i begins to fall. Vm quickly goes positive by �2
mV and then rises more slowly toward 0 mV. Volume and [Cl�]i
rise after a lag, i.e., with a sigmoid time course. Cl� movements
are controlled by Vm and the rapid phase of Cl� entry does not
occur until Vm has fallen to a low value, in response to falling
[K�]i. The internal Cl� concentration slowly approaches 150
mM, the concentration in the extracellular solution, while the
volume continues to climb toward infinity. The rate of volume

increase slows as the surface-to-volume ratio of the cell de-
creases, but the increase is inexorable: with the pump stopped,
there is no equilibrium until the volume is infinite. In these
conditions there is no osmotic room for the vital S� substances
in the cell, but they are trapped inside nonetheless. The result is
that swelling continues until S� is infinitely dilute.

The crucial importance of low internal [Cl�] to osmotic
stability is made evident when this experiment is repeated with
PCl made zero by adding an imaginary toxin. In Fig. 4B the toxin
is added to a cell in standard conditions at the time indicated
(PCl

�  0), producing no detectable effect because Cl� is in
equilibrium. At the second arrow the pump was turned off,
causing (i) an immediate efflux of K�; (ii) an immediate influx
of Na�; and (iii) a small quick jump of Vm, followed by a slower
increase toward 0 mV that is mainly the result of falling [K�]i.
Thanks to the absence of Cl� permeability, [Cl�]i does not
change. Most importantly for the present argument, there is no
volume change. It is important to remember that [Cl�]i was
initially low in the cell, making osmotic room for S�. Volume
remains normal (1.0) because Cl� cannot enter.

After the model reaches a steady state, the imaginary toxin is
removed (PCl � 2). Vm jumps to �68 mV thanks to ICl (ECl is �80
mV) and then rises toward zero as Cl� enters the cell. The most
important point is that volume rises concurrent with the entry of
Cl� and continues to rise until S� is infinitely dilute. There is a
transient increase in [K�]i as internal negativity draws K� into
the cell. The transient decrease of [Na�]i observed is simply
because of dilution: volume rises faster than Na�, with its limited
permeability, can follow.

Discussion
The central problem in stabilizing a cell osmotically arises from
the need to make osmotic room for vital substances that the cell
must retain internally. A relatively easy path through the thicket

Fig. 4. The pump, Cl�, and cell volume. (A) Turning off the pump of an unperturbed cell leads to an exchange of Na� for K� internally. As Vm rises, Cl� is no
longer in equilibrium and enters the cell. The volume increases as the result of increased cell content of Na� and Cl� (Na� enters faster than K� is lost). Swelling
continues, in theory, until volume is infinite. (B) PCl is decreased to zero at the arrow. When the pump is turned off, the changes are similar to those in A except
that Cl� cannot enter and volume remains constant. On restoring PCl to 2, Vm jumps negative, pulled by Cl� current, then moves toward zero as Cl� equilibrates.
The negative jump of Vm causes a transient increase in [K�]i as internal negativity pulls K� inward. The quick volume increase causes a transient dilution of Na�.
Volume then increases slowly toward infinity, as Na� and Cl� enter the cell. The total cell content of S� remains fixed, but [S�] falls as volume increases.
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of pumps, channels, and voltages that accomplishes this goal is
the following: (i) The cell makes osmotic room internally by
driving most of the Cl� out of the cell. (ii) With low [Cl�] inside,
electroneutrality is achieved by placing negative charges on some
of the vital substances that are retained inside. (iii) The force for
driving Cl� out of the cell is internally negative membrane
voltage. Cl� moves through the membrane via Cl-selective
channels. (iv) The membrane voltage is made by (1) exchanging
K� for Na� internally (osmotically neutral) and (2) installing
K�-selective channels in the membrane.

Regarding points i and iii, why does the cell use membrane
voltage rather than an ATP-driven Cl� pump? There are, at best,
few examples of ATP-driven Cl� pumps. This paucity may simply
be an evolutionary development from bacteria, which have a very
negative internal membrane voltage (necessary for making
ATP), and thus have no need for a Cl� pump: internal negativity
is sufficient to drive Cl� out. For the purpose of lowering Cl�
concentration, there is little advantage in making voltage more
negative than about �70 mV, because at this point internal Cl�
is 14� lower than outside (assuming Cl� is in equilibrium). It
might be anticipated that metabolically active cells, like skeletal
and cardiac muscle cells, and neurons, with need for a lot of
osmotic room internally, would have quite negative membrane
voltages, whereas metabolically inactive cells, e.g., red blood
cells, would (and do) have small membrane voltages.

The essential role of internal Cl� and the vital internal
substances (S�) in osmotic stabilization is emphasized by the
following equation, which can be derived from the equations
given above (cf. Jakobsson, ref. 7):

Vol �
�S��1.0

0.5 � Osmo � �Cl�i
,

where [S�]1.0 is the concentration of S� when the volume equals
1.0 (143 mM in the model). The equation makes it clear that
there are two ways to lower volume. The first is to lower [Cl�]i,

which is normally accomplished by making the membrane
voltage negative, as described above. The second method is to
lower [S�]i. This method is used by ischemic heart cells (14) and
glial cells (15), which capture or release amino acids or inositol
to regulate internal osmolarity.

An alternative qualitative description of cellular osmotic
stabilization is that of a double Donnan equilibrium (5). Thus,
Na�, although recognized as permeant, is said to be an effec-
tively impermeant external species thanks to the operation of the
pump, thus offsetting the vital impermeant substances saved
inside. This explanation does not seem completely satisfactory,
because one could argue on the same grounds that K�, although
much more permeable than Na�, is an effectively impermeable
internal species thanks to the pump, offsetting Na� outside, and
leaving the internal substances uncompensated.

Although most (possibly all) cells use the mechanism de-
scribed for lowering internal Cl� concentration to make osmotic
room, it is clear that Cl� is not in equilibrium in all cells. An
example is the squid giant axon, in which [Cl�] is much higher
than the equilibrium level (16), presumably in part to increase
internal conductance.

Appendix
A Gas-Law Model for Membrane Flux, the Equilibrium Potential of
Ions, and the Membrane Voltage. An idealized model for flux of
ions through a membrane can be based on the physical picture
used in deriving the gas laws, with the addition of a membrane
voltage.

An ideally thin membrane separates an inside compartment
from an outside one, each compartment containing a different
concentration of an ion (K� taken as a specific example). There
is a membrane voltage (Vm) with external voltage defined as
zero. The potential energy of a K� ion because of the voltage is
Vm � the charge of a K� ion, and is drawn for Vm negative. The
membrane is infinitely thin and contains a single pore that is
infinitesimal in length and is perfectly selective for K�. The pore
is so short that no interaction occurs with the selected ion. Ions
are present inside and out at the concentrations [K�]i and [K�]o.
The objective is to obtain current–voltage relations from this
physical model and to use these relations to derive an equation
for membrane voltage (Eqs. 6a or 6b in the text) that includes the
effect of the current generated by the Na�K pump. To show that
the physical model is reasonable, it will be used in this appendix
to derive two well known equations, the Nernst equation for the
equilibrium potential of an ion (K�), and the GHK equation
(11,12) for membrane voltage.

When Vm is negative, K� ions that arrive at the outer side of
the pore and have the proper trajectory simply pass on through:
all of the ions have enough energy to fall down the potential hill
created by the membrane voltage. The fraction of the ions that
have the proper trajectory is proportional to [K�]o and inde-
pendent of Vm. This fraction and other considerations, e.g., the
ion velocity, determine the permeability of a (single) pore, �K
(cm3�s�1�pore�1). Thus

inf lux �mol�s�1�pore�1	 � �K � �K�o.

Similarly, out-moving ions with the proper trajectory arrive at
the inner end of the pore at a rate proportional to the internal
concentration. In this case, however, only a fraction of the ions
have sufficient energy to jump up the potential hill created by the
membrane voltage. This fraction is given by the Boltzmann
factor e� (see Eqs. 3a above):

eff lux �mol�s�1�pore�1	 � �K � �K��ie�.

At �61 mV (37°C), for example, only 1 K� ion in 10 can jump
up the barrier and pass from inside to outside. At a specific
membrane voltage, called EK (the potassium equilibrium poten-
tial), the influx and the efflux are equal for given concentrations
of K� inside and out, and there is equilibrium. If Vm � EK,

inf lux�efflux � 1 � �K � �K��o��K � �K��ie�,

or

e� � �K��o��K��i.

Taking the natural logarithm of both sides yields the Nernst
equation
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EK �
RT
zKF

� ln��K��o��K��i	.

If the internal voltage is positive rather than negative

eff lux � �K � �K��i, influx � �K � �K��oe��,

which again yields the Nernst equation.
This model can be extended to obtain the GHK equation. The

requirement for an unchanging voltage is that the net current
through the membrane be zero:

INa � IK � ICl � �effluxNa � influxNa � effluxK � influxK

� influxCl � effluxCl	F � 0.

Using the gas-law picture for flux through pores selective for
Na�, K�, and Cl�, the sum of currents becomes


PNa��Na��ie� � �Na��o	 � PK��K��ie� � �K��o	

� PCl��Cl��oe� � �Cl��i	�F � 0

at negative voltage. Here, PK is the number of K pores�cm2 �
�K, the permeability of a single K pore, and similarly for the other

pores. Note that for the negative Cl� ion the energy hill is
reversed: inward flux is reduced by the negative internal voltage.
Consequently the influx term PCl[Cl�]o is multiplied by e�. At
positive voltage,


PNa��Na��i � �Na��oe��	 � PK��K��i � �K��oe��	

� PCl��Cl��o � �Cl��ie��	�F � 0.

Both of these equations rearrange to

e� �
PNa�Na��o � PK�K��o � PCl�Cl��i

PNa�Na��i � PK�K��i � PCl�Cl��o
,

and taking the logarithm of both sides gives the GHK equation,

Vm � �RT�zF	ln�PNa�Na��o � PK�K��o � PCl�Cl��i

PNa�Na��i � PK�K��i � PCl�Cl��o
�,

where z is 1. More generally, z must be the same for all ions
considered.
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