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Several microbes and chemicals have been considered as potential tracers to identify fecal sources in the
environment. However, to date, no one approach has been shown to accurately identify the origins of fecal
pollution in aquatic environments. In this multilaboratory study, different microbial and chemical indicators
were analyzed in order to distinguish human fecal sources from nonhuman fecal sources using wastewaters and
slurries from diverse geographical areas within Europe. Twenty-six parameters, which were later combined to
form derived variables for statistical analyses, were obtained by performing methods that were achievable in
all the participant laboratories: enumeration of fecal coliform bacteria, enterococci, clostridia, somatic co-
liphages, F-specific RNA phages, bacteriophages infecting Bacteroides fragilis RYC2056 and Bacteroides theta-
iotaomicron GA17, and total and sorbitol-fermenting bifidobacteria; genotyping of F-specific RNA phages;
biochemical phenotyping of fecal coliform bacteria and enterococci using miniaturized tests; specific detection
of Bifidobacterium adolescentis and Bifidobacterium dentium; and measurement of four fecal sterols. A number
of potentially useful source indicators were detected (bacteriophages infecting B. thetaiotaomicron, certain
genotypes of F-specific bacteriophages, sorbitol-fermenting bifidobacteria, 24-ethylcoprostanol, and epycopro-
stanol), although no one source identifier alone provided 100% correct classification of the fecal source.
Subsequently, 38 variables (both single and derived) were defined from the measured microbial and chemical
parameters in order to find the best subset of variables to develop predictive models using the lowest possible
number of measured parameters. To this end, several statistical or machine learning methods were evaluated
and provided two successful predictive models based on just two variables, giving 100% correct classification:
the ratio of the densities of somatic coliphages and phages infecting Bacteroides thetaiotaomicron to the density
of somatic coliphages and the ratio of the densities of fecal coliform bacteria and phages infecting Bacteroides
thetaiotaomicron to the density of fecal coliform bacteria. Other models with high rates of correct classification
were developed, but in these cases, higher numbers of variables were required.

Determining the source of fecal contamination in aquatic
environments is essential for estimating the health risks asso-
ciated with pollution, facilitating measures to remediate pol-
luted waterways, and resolving legal responsibility for reme-
diation. Source tracking methods should enable investigators
to uncover the sources of fecal pollution in a particular water
body (40). Candidate microbes and chemicals have been in-
vestigated and reviewed (15, 54, 55) as potential tools for the
identification of human fecal sources. More recently, new ap-
proaches using eukaryotic mitochondrial DNA to differentiate
fecal sources in feces-contaminated surface waters have been
explored (43). However, field studies using most of the numer-

ous chemical and microbiological methods available to track
sources of fecal contamination have shown that existing meth-
ods are limited (15, 40, 54, 55, 56). These limitations to source
identification approaches could be inferred from the reviews
cited above. These include the assay of complex samples (such
as those that are highly diluted or that are from an undeter-
mined mixed origin or those containing pollution that is not
recent), the use of approaches that are not spatially stable,
overemphasis on limited improvement of technical aspects of
methods rather than on the identification of appropriate
source indicators (tracers), or trying to determine an appro-
priate tracer and source tracking method at the same time.

In our opinion, it is necessary to first identify tracers or
combinations of tracers demonstrating high discrimination and
then adapt these methods to the needs of source tracking
studies. Consequently, both new conceptual and methodolog-
ical approaches are needed in order to develop models for
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microbial source tracking. These new approaches should ad-
dress, step by step, the factors that could influence the success-
ful determination of the source of fecal pollution. These fac-
tors include the nature of the dominant fecal pollution
contributions (anthropogenic or nonanthropogenic pollution),
dilution, the persistence of indicators and parameters, the
presence of complex mixtures from several distinct animal spe-
cies, and the selection of appropriate and consistent numerical
methods for the development of models.

The study described herein was initially designed to focus on
five key components that were selected after analyzing the
results of several previous investigations reported in recent
reviews (15, 54, 55). Initially, the study focused only on the
differentiation between human and nonhuman sources. Sec-
ondly, examination of highly polluted wastewaters or slurries
was included because failures previously reported in the liter-
ature were often related to the use of dilute samples that give
values under the threshold of the method investigated (46, 47).
The third key element was to study widely different geograph-
ical areas, as clear geographical variations in results have been
reported for several approaches described in the literature (50,
57, 59). The fourth key element was to include several indica-
tors of fecal pollution from both human and nonhuman
sources throughout the study, since this is needed for defining
ratios between discriminant and nondiscriminant indicators
and for defining the persistence of the values of fecal contam-
inants in the environment. Finally, the fifth key element was to
identify statistical or machine learning methods to develop
appropriate predictive models.

Recently, a multilaboratory study was undertaken in the
following areas of Europe: northern Europe (Stockholm, Swe-
den), northwestern Europe (Brighton, United Kingdom), cen-
tral Europe (Nancy, northeastern France), southeastern Eu-
rope (Nicosia, Cyprus), and southwestern Europe (Barcelona,
Spain). During a first phase, quality control schemes were
agreed upon and published (6). In order to fully acquaint all
relevant laboratory personnel from the participating laborato-

ries with the methods and the materials to be analyzed, col-
laborative training sessions, in which reference materials were
used, were undertaken prior to an interlaboratory comparison
study. Furthermore, the reference materials were used as stan-
dard samples for first-line quality control during the full study.
In this first phase, nine methods achievable in all laboratories
(enumeration of fecal coliforms, enterococci, Clostridium per-
fringens, somatic coliphages, F-specific RNA phages, and bac-
teriophages infecting Bacteroides fragilis RYC2056; genotyping
of F-specific RNA phages; and biochemical phenotyping of
fecal coliforms and enterococci by a miniaturized system) were
applied to local samples in all the laboratories. The novel
methods, or methods not achievable in some of the laborato-
ries, were applied to local samples only in the laboratories that
had the appropriate facilities and/or expertise. The novel meth-
ods were those related to the specific detection of Bifidobacterium
species and bacteriophages infecting Bacteroides thetaiota-
omicron GA17, detection of adenoviruses and enteroviruses by
genomic methods (PCR and reverse transcription-PCR), geno-
typing of Giardia, and determination of fecal sterols. Following
this first phase, several methods (detection of adenoviruses and
enteroviruses by genomic methods, genotyping of Giardia, and
analysis of antibiotic resistance profiles) were rejected either
because of failures (suspected true or false negatives) or be-
cause the method gave unreliable results in some of the labo-
ratories. Results of this first phase were reported elsewhere
previously (6). Taking the results of the first phase of study into
account, the second phase involved sampling of wastewaters
and slurries of human and animal origin in the different geo-
graphical areas using the single and derived parameters pre-
sented in Table 1. Moreover, a number of statistical methods
were tested to aid in the identification and classification of
sources of fecal pollution in water based on microbial and/or
chemical indicators, which have been proposed as discriminant
tracers. These included discriminant analysis (17, 48, 58), the
nearest-neighbor technique (maximum similarity) (10, 13, 51),
and the use of artificial neural networks (9, 18). Until now,

TABLE 1. Distribution of samples from the geographical areas sampled by the research groups participating in this study

Source

Geographic area

Spain France Sweden United Kingdom Cyprus

No. of
samples

No. of
sampling

sites

No. of
samples

No. of
sampling

sites

No. of
samples

No. of
sampling

sites

No. of
samples

No. of
sampling

sites

No. of
samples

No. of
sampling

sites

Human wastewater
Urban 22 6 10 1 18 9 22 3 5 1
Hospital 16 1 5 5
Military camp 17 1

Animal wastewater a

Cow 6 2 15 3 9 6 8 1
Pig 9 3 5 1 7 1 8 1
Poultry 8 2 4 1 7 1 9 1
Horse 4 3
Mixedb 4 2 7 2 5 1

Total 49 15 48 7 45 25 44 6 44 5

a Slaughterhouses or farm slurries.
b Cow, pig, and sheep.
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there has been no widespread consensus on when the use of
each of the methods is the most appropriate, and to date, none
of these methods have provided an interpretable model. Fur-
thermore, there is no consensus on the most appropriate sta-
tistical analyses to determine the set of optimal variables for
developing these predictive models (51). Other numerical
methods should be assayed in order to develop predictive mod-
els for source tracking. Specifically, machine learning methods
(45) have been used with a considerable degree of success in
many disciplines. Their potential application to microbial
source tracking should therefore be evaluated.

The objectives of the present study were (i) to determine the
most discriminant tracers showing wide and consistent geo-
graphical stability between all locations, (ii) to identify subsets
of variables derived from tracers with the highest discriminant
capacity, and (iii) to evaluate and compare statistical or ma-
chine learning methods to develop predictive models for
source tracking using the minimum number of these variables.

MATERIALS AND METHODS

Samples and sampling. A total of 230 samples were analyzed during a period
of 2 years. Of these, 114 samples composed almost exclusively of feces of human
origin were taken from municipal wastewater at the influent to treatment plants
(77 samples), from hospital wastewaters (21 samples), and from wastewater from
a military camp (17 samples). The remaining 116 samples, composed almost
exclusively of feces of nonhuman (animal) origin, were taken from slaughter-
house wastewater effluents (57 samples) or farm slurries (59 samples) from
different animals (cattle, sheep, pigs, horses, and poultry). The number of sam-
ples and the sampling sites for each geographical area are summarized in Table
1. Details for each sample are provided in the supplemental material. Similar
proportions of samples of each type (human and nonhuman) were taken from
each geographic area. Municipal wastewater came from communities with 1,000
to 1.5 million inhabitants. Hospital wastewater was taken from hospitals with at
least 100 beds. The population contributing to the military camp wastewater was
approximately 600. Slurry samples were derived from units of at least 10 animals.
Wastewater was taken from different slaughterhouses processing between ap-
proximately 200 and 3,000 animals per day. Human and animal wastewater
sampling occasions were randomly distributed along the 2-year period. No more
than one sample was taken at each site on each occasion. For purposes of clarity,
the first group of samples will be referred to here as human samples, and the
second group will be referred to as animal samples. Sampling, transport, storage,
and pretreatment of samples were performed according to standardized Inter-
national Standardisation Organisation (ISO) protocols (20, 21, 22, 24, 26).

Detection and enumeration of bacterial indicators. Three fecal indicators were
measured: fecal coliforms, enterococci, and clostridia. Standardized methods
(23, 25, 28) for the enumeration of these indicators were followed. Briefly, fecal
coliforms were enumerated by membrane filtration on 0.45-�m-pore-size mem-
branes followed by incubation for 24 h on mFC agar (Difco, Detroit, Mich.) at
44.5°C according to established procedures (28). Enterococci were also enumer-
ated by membrane filtration according to standardized protocols by incubation
on m-Enterococcus agar (Difco, Detroit, Mich.) at 37°C for 48 h. Membranes
were then transferred to bile esculine agar (Difco) for 1 h at 44°C to confirm the
enterococci colonies on the basis of the hydrolysis of esculine. Clostridia were
enumerated by thermal shock of samples at 80°C for 10 min. Later, 10-fold
dilutions were made in one-quarter-strength Ringer’s solution, and 1 ml of each
dilution was inoculated into 50 ml of liquid sulfite polymyxin sulfadiazine agar
(Difco) followed by incubation at 44°C for 24 h.

Detection, enumeration, and typing of bacteriophages. Somatic coliphages,
F-specific RNA bacteriophages, and phages infecting Bacteroides fragilis
RYC2056 were enumerated in accordance with ISO standardized methods (27,
29, 30). PFU of somatic coliphages were counted by the double-agar-layer tech-
nique using Escherichia coli strain WG5 according to ISO standard 10705-2 (29).
Total numbers of F RNA and F-specific RNA bacteriophage PFU were deter-
mined using strain Salmonella enterica serovar Typhimurium strain WG49 (now
classified as Salmonella enteritidis subsp. typhimurium) in accordance with ISO
standard ISO 10705-1 (27). PFU of bacteriophages infecting Bacteroides fragilis
strain RYC2056 were determined by the double agar layer method according to
ISO standard 10705-4 (30). Phages infecting Bacteroides thetaiotaomicron GA17

were enumerated as described elsewhere previously (49) according to ISO stan-
dard 10705-4 (30); as stated in Results, plaques obtained on GA17 in the United
Kingdom were very turbid. In this case, plaques were counted by researchers
more experienced in the technique, and suspected plaques were verified by
subculture (enrichment followed by spot test).

Genotyping of F-specific RNA phages. The distribution of genotypes of F-
specific RNA bacteriophages was carried out by plaque hybridization as previ-
ously described (52) using probes previously described (3).

Phenotyping of fecal coliforms and fecal streptococci. From each sample, 24
fecal coliform colonies and 24 Enterococcus colonies were selected at random
from selective agar plates (23, 28) containing between 30 and 100 colonies and
were picked from these plates to obtain a pure culture for biochemical pheno-
typing. The number of bacterial isolates required in each sample for diversity
analysis was previously determined by other authors (4). Biochemical phenotyp-
ing was performed using PhP-RE and PhP-RF microplates according to the
manufacturer’s instructions (PhP-Plate Microplates Techniques AB, Sweden)
and previously described techniques (35). The basis of biochemical fingerprinting
using these microplates has also been described previously (33). The biochemical
profiles were calculated for each isolate as previously described (36) by using
PhpWin software (PhP-Plate Microplates Techniques AB). Simpson’s diversity
index (Di) was used to calculate the diversity of bacterial populations in each
group studied (2, 19), while similarity between populations was calculated by the
population similarity coefficient (36). Calculations of diversity (Di), population
similarity indices, and correlation coefficients and cluster analyses were also
performed using PhpWin software (PhP-Plate Microplates Techniques) as pre-
viously described (36). In addition, the species distribution of Enterococcus
species was analyzed using a previously described matrix (41) and a previously
described procedure (5). The percentage of Enterococcus faecium plus Entero-
coccus faecalis isolates (variable FMFS) and the percentage of Enterococcus hirae
isolates (variable HiR) were also calculated, because differences in their propor-
tions in wastewaters of animal and human origin have been reported previously
in other studies (34). Similarly, the percentage of E. coli within the fecal coli-
forms was determined by comparing isolates with E. coli PhP-Plate reference
phenotypes. Additionally, the percentage of those fecal coliform isolates that did
not demonstrate fermentation of cellobiose was also calculated. E. coli isolates
are normally cellobiose negative (16), whereas other thermotolerant coliform
species showing E. coli-like colonies on mFC agar are often cellobiose positive,
and thus, this proportion is an estimation of the proportion of E. coli isolates
among the E. coli-like isolates.

Bifidobacterium determinations. Total bifidobacteria were counted on human
bifido sorbitol agar as described previously by other authors (42). Yellow colonies
on human bifido sorbitol agar were counted as sorbitol-fermenting bifidobacteria as
described elsewhere previously (8). Additionally, the presence of Bifidobacterium
dentium and Bifidobacterium adolescentis was determined by PCR amplification
using specific primers of the 16S RNA genes as described elsewhere previously (7).

Determination of fecal sterols. The procedure for analysis of sterols in waste-
water with high concentrations of solid fraction was performed as previously
described (37). First, separation of the solid fraction from 100-ml volumes of
each sample was carried out by filtration through glass filters. The membranes
were then weighed and frozen at �70°C until analysis. Gas chromatography with
flame ionization detection analysis of four main fecal sterols (coprostanol [5�-
cholestan-3�-ol], stigmastanol or 24-ethylcoprostanol [24-ethyl-5�-cholestan-3�-ol],
epicoprostanol [5�-cholestan-3�-ol], and cholestanol [5-�-colestan-3�-ol]) was
then performed.

Establishment of operating principles and quality assurance. In order to
establish a set of operating principles for data quality, a training session for
operators from all the participant laboratories was undertaken. Noncertified
reference materials (bacterial strains and bacteriophages) were prepared and
used during the training session as previously described (39). These reference
materials were provided to the partners at the end of an interlaboratory exercise
session in order to evaluate the implementation of the methods in participating
laboratories. Moreover, these reference materials were used in routine quality
control practices at the participating laboratories. Taking into account the avail-
able facilities in the different laboratories and the results of the interlaboratory
exercises, the following parameters were tested in each of the five laboratories:
enumeration of fecal coliform bacteria, enterococci, clostridia, somatic coli-
phages, F-specific RNA phages, total bifidobacteria, sorbitol-fermenting bi-
fidobacteria, bacteriophages infecting B. fragilis RYC2056, and bacteriophages
infecting B. thetaiotaomicron GA17; genotyping of F-specific RNA phages; and
phenotypic characterization of fecal coliforms and enterococci. Detection of
Bifidobacterium dentium and Bifidobacterium adolescentis by PCR and fecal sterol
analysis of all samples were performed in the laboratories of the University of
Barcelona.
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Data treatment and statistical analyses. Raw data from the analyses per-
formed provided 26 variables, as presented in Table 2. This initial group of
variables used in the statistical analyses consisted of the 20 single variables and
6 derived variables from the phenotyping of fecal coliforms and enterococci
(percentage of cellobiose-negative fecal coliforms [CNFC], diversity index for
fecal coliforms [DiC], diversity index for enterococci [DiE], percentage of E. coli
Ph-Plate phenotypes [ECP], FMFS, and HiR). Some values that were below the
threshold value (lowest sensitivity) for the method were corrected to the thresh-
old value.

Descriptive statistics (minimum and maximum values, mean, error, standard
deviation, and median) were calculated for each of the single variables studied.
First, Student’s t test was performed in order to determine significant differences
in microbial and chemical analytes between waste streams of human and non-
human origin. Variables were analyzed by segregating them according to the
measured parameters into several groups, namely, enumeration of bacterial and
bacteriophage groups, genotypes of F-specific RNA phages, diversity index and
percentage of certain species of enterococci and fecal coliforms, ratios between
bifidobacteria populations, molecular detection of Bifidobacterium adolescentis
and Bifidobacterium dentium, and concentration of fecal sterols (see Tables 3 to
7, respectively). Additionally, correlation, regression, and discriminant analyses
were conducted. These data analyses were performed using Statgraphics statis-
tical analysis software (Statgraphics plus 5.1; STSC Software Publishing Group,
Rockville, MD) and aimed to assess the discriminatory power of the individual
variables.

In order to improve the chances of obtaining good predictive models, 12 new
variables were derived by combining some of the 20 single variables (as sums or
ratios). Samples containing incomplete or outlying parameter values likely to be

attributable to technical error were discarded. Consequently, a data matrix with
38 variables and 103 samples (called here “observations”) was obtained (Table
2). Techniques for selection of variables (32) (notably, the Relief algorithm [31])
were used in conjunction with several statistical or machine learning methods
(45) in a series of experiments. The objective of these experiments was to find the
most prominent subset of variables that yielded the highest discriminatory power
with the lowest number of variables. Using this subset, predictive models for
accurate microbial source tracking could be obtained.

The methods chosen were the k nearest-neighbor technique (with Euclidean
distance), the linear and quadratic Bayesian classifiers (two discriminant analysis
methods) (14), and the support vector machine (11). The development of pre-
dictive models was carried out using 81 of the 103 observations (hereafter
referred to as the “training set”) and using cross-validation, as explained below.
The remaining 22 observations (the “test set”) were withheld for an independent
and unbiased assessment of the feasibility of the predictive models. These hold-
out observations presented unequivocally distinct values according to their ori-
gins (11 from waters polluted by human fecal sources and 11 from waters
polluted by nonhuman fecal sources). These analyses were performed using the
software package WEKA (60).

RESULTS

Directly quantifiable microorganisms. Table 3 summarizes
the descriptive statistics relating to the numbers of bacterial
and bacteriophage tracers studied. With the exception of clos-

TABLE 2. Definition of terms used for single and derived variables in the statistical and machine learning methods of this study

Variable Label Parameter

Single BA Detection of the presence (1) or absence (0) of Bifidobacterium adolescentis
BE Detection of the presence (1) or absence (0) of Bifidobacterium dentium
BTHPH Enumeration of B. fragilis bacteriophages using the new host strain B. thetaiotaomicron GA17
CHOL Concn of cholestanol or 5-�-colestan-3ß-ol
CL Enumeration of clostridia
COP Concn of coprostanol or 5ß-cholestan-3ß-ol
EPICOP Concn of epicoprostanol or 5ß-cholestan-3�-ol
ETHYLCOP Concn of stigmastanol or 24-ethylcoprostanol
FC Enumeration of fecal coliforms
FE Enumeration of fecal enterococci
FRNAPH Enumeration of F-specific RNA bacteriophages
FRNAPH I % of genotype I of F-specific RNA bacteriophages
FRNAPH II % of genotype II of F-specific RNA bacteriophages
FRNAPH III % of genotype III of F-specific RNA bacteriophages
FRNAPH IV % of genotype IV of F-specific RNA bacteriophages
FTOTAL Enumeration of F-specific bacteriophages
RYC2056 Enumeration of B. fragilis bacteriophages using the host strain RYC2056
SFBIF Enumeration of sorbitol-fermenting bifidobacteria
SOMCPH Enumeration of somatic coliphages
TBIF Enumeration of total bifidobacteria

Derived CNFC % of cellobiose-negative fecal coliforms
COP/EPICOP Ratio of concn of coprostanol to that of epicoprostanol
COP/ETHYLCOP Ratio of concn of coprostanol to that of stigmastanol
DA Sum of values of BA and BE
DiC Simpson’s diversity index for fecal coliforms
DiE Simpson’s diversity index for enterococci
ECP % of E. coli Ph-Plate phenotypes
FC/BTHPH Ratio of the no. of fecal coliforms to that of the new host strain B. thetaiotaomicron GA17
FC/FE Ratio of the no. of fecal coliforms to that of enterococci
FC/RYC2056 Ratio of the no. of fecal coliforms to that of phages on the host strain B. fragilis RYC2056
FC/SOMCPH Ratio of the no. of fecal coliforms to that of coliphages
FMFS % of E. faecium and E. faecalis
FRNAPH I � FRNAPH IV Sum of the % of genotypes I and IV of F-specific RNA bacteriophages
FRNAPH II � FRNAPH III Sum of the % of genotypes II and III of F-specific RNA bacteriophages
HiR % of E. hirae
SFBIF/TBIF Ratio of the no. of sorbitol-fermenting bifidobacteria to that of total bifidobacteria
SOMCPH/BTHPH Ratio of the no. of somatic coliphages to that of the new host strain B. thetaiotaomicron GA17
SOMCPH/RYC2056 Ratio of the no. of somatic coliphages to that of phages on the host strain B. fragilis RYC2056
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tridia and total Bifidobacterium species, the numbers of each
tracer in human samples differed significantly (Student’s t test)
from the numbers in animal samples (P � 0.01). However, two
groups of source indicators can be distinguished. The first
group includes fecal coliforms, enterococci, clostridia, somatic
coliphages, and total bifidobacteria. These were detected in
almost all samples (other than a single sample in the case of
total bifidobacteria) of both human and animal origin. They
were more abundant in the animal samples than in the human
samples, but this seems to be due to the higher fecal load of
these samples, since relative densities were similar in both
groups of samples. In addition, no appreciable differences were
observed between geographical areas with respect to this group
of microorganisms, as supported by the low standard devia-
tions. Conversely, the other group (which included F-specific
RNA phages, phages infecting B. fragilis RYC2056, phages
infecting B. thetaiotaomicron GA17, and sorbitol-fermenting
Bifidobacterium species) showed a different pattern. Tracers in
this second group either were not detected in animal samples
or were present at significantly lower levels (P � 0.001) than in
human samples. However, each tracer in this group was de-
tected in some animal samples. Phages infecting B. thetaiota-
omicron and sorbitol-fermenting bifidobacteria showed the
greatest variation (P � 0.01) between animal and human sam-
ples. Additionally, both parameters showed a minor number of
overlapping results when we tried to establish reference values;
that is, a few animal samples gave higher values compared with
the lowest values for a few human samples. Again, no appre-
ciable differences between geographical areas were observed
with regard to this second group of microorganisms (as dem-

onstrated by the low standard deviations shown in Table 3).
However, in all samples from the United Kingdom, more than
90% of the plaques of phages infecting B. thetaiotaomicron
were very turbid. These plaques were barely visible to the
untrained eye and needed to be counted by a more experi-
enced operator. The results reported herein include results
from the turbid plaques detected by the more experienced
operator. In the other geographical areas, the great majority of
plaques reported for phages infecting B. thetaiotaomicron were
clear and were easily detected by less experienced operators.

Distribution of genotypes of F-specific RNA phages. The
descriptive statistics for the distribution of genotypes of F-
specific RNA bacteriophages are shown in Table 4. As de-
scribed elsewhere previously (52), the method used here (53)
gave a percentage of plaques (ranging from 0 to 10% in dif-
ferent samples) that hybridized with the probes of two different
genotypes. These plaques were assigned to the genotype that
showed the stronger hybridization signal. Percentages of geno-
types were also calculated by deleting the counts of the plaques
hybridizing with two probes. The final calculations of percent-
ages of genotypes with both approaches were similar (data not
shown). The relative distributions of genotypes I, II, and IV in
human samples and animal samples were significantly differ-
ent. Genotypes I and IV were significantly more abundant in
animal samples, and genotype II was significantly more abun-
dant in human samples (P � 0.001). The percentages of geno-
type III in human and animal samples did not differ signifi-
cantly, although the average percentage in human samples was
slightly higher than that in animal samples. The major differ-
ences between human and animal samples were shown by

TABLE 3. Bacterial indicators and bacteriophage densities

Tracer a No. of
samples

% Positive
samples

Log10 CFU or PFU per 100 ml
P valueb

Minimum Maximum Mean SD Median

FC-H 110 100 5.43 8.26 6.94 0.55 6.94 �0.001
FC-A 111 100 3.90 10.24 7.43 0.94 7.39

FE-H 108 100 4.01 7.20 6.01 0.53 6.04 �0.001
FE-A 111 100 4.54 8.89 6.37 0.88 6.20

CL-H 110 100 3.56 6.96 5.05 0.66 5.07 0.160
CL-A 111 100 3.28 8.30 5.24 1.25 4.89

TBIF-H 56 100 �5.60 8.24 7.01 0.57 6.98 0.119
TBIF-A 56 98.2 �3.00 9.73 7.30 1.22 7.31

SFBIF-H 54 100 �5.00 8.15 6.40 0.59 6.41 �0.001
SFBIF-A 56 21.4 �3.00 9.00 �5.27 1.39 �5.08

SOMCPH-H 110 100 4.04 7.66 6.03 0.80 6.07 �0.001
SOMCPH-A 110 100 1.69 9.62 6.73 1.13 6.72

FRNAPH-H 110 99 �1.70 6.92 5.30 0.89 5.62 0.008
FRNAPH-A 110 80 �1.70 8.40 4.76 1.84 5.21

RYC2056-H 108 99 �1.70 5.53 3.99 0.81 4.14 �0.001
RYC2056-A 110 78.1 �1.70 5.96 3.50 1.27 3.53

BTHPH-H 73 98.6 �1.70 5.86 4.19 0.68 4.17 �0.001
BTHPH-A 71 7.0 �1.70 3.08 1.76 0.25 �1.70

a Labels of tracers are shown in the list of variables in Table 2. H, samples of human origin; A, samples of animal origin.
b Value of P from Student’s t test.
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genotype II. However, the percentage of genotype II in some
animal samples (6%) was the highest among genotypes I to IV,
and in 5% of human samples, it was the lowest among all the
genotypes. The rule that genotypes II and III were higher in
humans and I and IV were higher in animals complied in all
human samples but failed in 35% of the animal samples.

Phenotyping of fecal coliforms and enterococci. The descrip-
tive statistics of the different diversity indices and percentages
of species, which were calculated from the phenotyping of fecal
coliform bacteria and enterococci, are shown in Table 5. Di-
versity indices for fecal coliforms and enterococci (DiC and
DiE, respectively) were higher in human samples than in ani-
mal samples. CNFC, ECP, FMFS, and HiR also differed sig-
nificantly in the human and animal samples (P � 0.01). E.
faecalis and E. faecium dominated enterococcal populations in
human samples, but E. hirae dominated in animal samples. The
samples of municipal, hospital, and military camp wastewaters
also showed a lower ECP than did samples of animal waste-
waters and slurries. No differences were observed between

geographical areas with regard to diversity indices and the
calculated percentages of different populations related to hu-
man or animal samples. However, in spite of the significant
differences among human and animal samples, it is very diffi-
cult to establish differentiating reference percentages of
CNFC, ECP, FMFS, and HiR, and there are many overlaps.
For example, the percentage of human samples in which FMFS
is lower than the average is 38%, and the percentage of animal
samples in which FMFS is higher than the average from the
human samples is 24%. The trend is similar for HiR, ECP, and
CNFC. Therefore it is very difficult to use any of these data
alone to differentiate fecal sources.

Bifidobacterium. The descriptive statistics for the data relat-
ing to the ratio between the number of sorbitol-fermenting bac-
teria (SFBIF) and the number of total bifidobacteria (SFBIF/
TBIF) are shown in Table 6. The difference is significant (P �
0.001). It is difficult to establish a value for the differentiation
of origins. Thus, taking the SFBIF/TBIF log values to be �0.5
for human samples and �0.5 for animal samples, there is still
a 5% failure rate. However, this may be considered the best
value for this variable to differentiate sources attending to the
percentage of correct sample classification achieved. The se-
lection of other values as reference criteria resulted in more
failures.

With regard to the detection of Bifidobacterium dentium and
Bifidobacterium adolescentis, there were significant percentages
of negatives in human samples (45% and 6.3%, respectively)
and positives in animal samples (9.5% and 24.5%, respec-
tively). Consequently, it is also difficult to use these tracers
alone to identify fecal sources.

TABLE 4. Percentages of the four genotypes of F-specific RNA phages in human and animal samples

Tracer a No. of
samples

% Positive
samples

% of tracer in samples
P valueb

Minimum Maximum Mean SD Median

FRNAPH I-H 103 89.3 0 22 5.02 5.16 4.00 �0.001
FRNAPH I-A 82 95.1 0 98 35.19 30.90 28.30

FRNAPH II-H 103 99.0 0 100 49.56 28.35 46.90 �0.001
FRNAPH II-A 82 65.8 0 69 7.61 11.78 3.85

FRNAPH III-H 103 96.1 0 100 40.23 26.28 38.00 0.072
FRNAPH III-A 82 87.8 0 98 32.23 33.87 16.00

FRNAPH IV-H 103 65.0 0 34 5.18 6.68 2.10 �0.001
FRNAPH IV-A 82 90.2 0 99 24.94 27.82 14.80

a Labels of tracers are shown in the list of variables in Table 2. H, samples of human origin; A, samples of animal origin.
b Value of P from Student’s t test.

TABLE 5. Levels of Simpson’s diversity index and percentages of
different microorganisms in human and animal samples

Tracer a No. of
samples

Value of tracer in samplesc
P

valueb
Minimum Maximum Mean SD Median

DiE-H 103 0.16 1 0.88 0.14 0.94 0.001
DiE-A 110 0.09 1 0.80 0.21 0.89

FMFS-H 103 13.00 100 72.54 18.34 75.00 �0.001
FMFS-A 109 0.00 100 50.16 29.34 54.00

HiR-H 103 0.00 54 12.30 11.88 12.00 �0.001
HiR-A 109 0.00 96 24.55 27.61 13.00

DiC-H 105 0.38 1 0.92 0.10 0.96 0.001
DiC-A 110 0.38 1 0.87 0.11 0.91

ECP-H 105 8.00 100 78.73 20.97 87.00 �0.001
ECP-A 105 32.00 100 96.52 9.20 100

CNFC-H 104 8.00 100 72.97 21.84 75.00 �0.001
CNFC-A 109 29.00 100 92.81 12.10 100.00

a Labels of tracers are shown in the list of variables in Table 2. H, samples of
human origin; A, samples of animal origin.

b Value of P from Student’s t test.
c Values for FMFS, HiR, ECP, and CNFC are percentages; all other values are

diversity indexes expressed as rates of 1.

TABLE 6. Ratios between the values in log10 units of
sorbitol-fermenting bifidobacteria and those of total

bifidobacteria in human and animal samples

Tracer a No. of
samples

Value P
valueb

Minimum Maximum Mean SD Median

SFBIF/TBIF-H 54 0.7 1.0 0.91 0.05 0.92 �0.001
SFBIF/TBIF-A 56 0.0 1.0 0.08 0.20 0.01

a Labels of tracers are shown in the list of variables in Table 2. H, samples of
human origin; A, samples of animal origin.

b Value of P from Student’s t test.
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Fecal sterols. The descriptive statistics for fecal sterol con-
centrations are shown in Table 7. The concentrations of 24-
ethylcoprostanol, epicoprostanol, and cholestanol showed sig-
nificant differences between human and animal samples,
whereas coprostanol did not (P � 0.01), although it gave a P
value of 0.054. Concentrations of 24-ethylcoprostanol varied
the greatest between human and animal samples. Although in
all cases, this was the fecal sterol (among those analyzed) that
differed the most, the high number of overlaps prevented the
establishment of a reference concentration for differentiation
being established. The concentration of 24-ethylcoprostanol
being greater than the concentration of coprostanol in animal
samples, and vice versa in human samples, seems to be the
more discriminant criterion among the data reported here.
The percentage of incorrectly classified samples based on this
criterion was 6.5%.

Correlation, regression, and discriminant analyses. High
linear correlation was found between the derived variable
SOMCPH/BTHPH (ratio of the number of somatic coliphages
[SOMCPH] to the number of isolates of B. thetaiotaomicron
GA17 [BTHPH]) and the class variable (r � 0.886) and also
between the derived variable FC/BTHPH (ratio of the number
of fecal coliforms [FC] to the number of isolates of B. theta-
iotaomicron GA17) and the class variable (r � 0.847). The cor-
relation between these two derived variables was very high (r �
0.912). Best-subset regression performed with the 26 initial
variables indicated that subsets with as few as seven variables
(number of fecal enterococci [FE], percentage of genotype II
of F-specific RNA bacteriophages [FRNAPH II], FRNAPH
IV, concentration of epicoprostanol or coprostanol [EPICOP],
FMFS, ECP, and detection of the presence or absence of
Bifidobacterium adolescentis [BA]) gave an explanatory power
(85.1%) almost equal to that provided by using all the single
variables (85.7%). This fact points to high redundancy in terms
of the available variables, and a level of redundancy in the data
that is too high may reduce performance (38). However, sub-
sets of the variables obtained may be taken as a first indication
of relevance. Two-group discriminant analyses (for human or
nonhuman fecal samples) using all 26 measured microbiolog-
ical and chemical parameters provided a correct classification
in 100% of the cases. The performance of all the microbial and
chemical indicators allowed a predictive classification of cases

by discriminant analysis. The question remains whether the
same performance can be achieved using a lower number of
variables, which would decrease the number of parameters
measured, reduce costs, and provide simpler models that are
easier to analyze from a microbiological point of view. Specif-
ically, we were interested in finding the smallest subset of
variables that was able to provide a correct classification in
100% of the cases. This was a difficult undertaking that could
not be addressed by “generate-and-test” methods and is one of
the main reasons why we expanded the toolbox to consider
other statistical or machine learning methods. Before doing
this, the same discriminant analyses were performed using only
the subsets of variables that were considered meaningful. For
instance, when only the bacterial indicators analyzed in this
study were used (Table 3), 75% of nonhuman samples were
correctly classified as nonhuman (25% of nonhuman samples
were classified as human samples), and 3.7% of samples of
human origin were misclassified as nonhuman samples (96.3%
of human samples were classified as human samples). Classi-
fication using only the four genotypes of F-specific RNA
phages allowed 98% of nonhuman and 85% of human samples
to be classified correctly (with false-positive and false-negative
rates being 0.02 and 0.14, respectively). The fecal sterols stud-
ied did not show better correct classifications, since only 38%
of nonhuman samples were correctly classified, although 98%
of human samples were correctly classified. Similar levels of
correct classification were found for the phenotypic analysis of
fecal coliforms and enterococcal populations: 79% of nonhu-
man and 89% of human samples were correctly determined
(with false-positive and false-negative rates being 0.17 and
0.13, respectively). Finally, the classification functions devel-
oped using the results from the enumeration of the various
bacteriophages (somatic coliphages, F-specific RNA phages,
bacteriophages infecting B. fragilis RYC2056, and bacterio-
phages infecting B. thetaiotaomicron GA17) provided a correct
classification (human versus nonhuman samples) in all cases.

Machine learning methods. The Relief algorithm provided a
list of individual variables arranged according to their discrimina-
tory power. The top three variables in this list were SOMCPH/
BTHPH, FC/BTHPH, and FRNAPH II. The next group was a
group formed by the variables FMFS, FRNAPH II � FRNAPH
III (sum of the percentages of genotypes II and III of F-specific

TABLE 7. Concentrations of sterols in human samples and animal samples

Tracer a No. of
samples

Concn of sterols (�g/g)
P valueb

Minimum Maximum Mean SD Median

COP-H 92 5.0 6,476 413.79 1,096.44 60.10 0.054
COP-A 85 0.1 4,080 162.92 492.07 30.00

ETHYLCO-H 92 0.1 2,985 117.92 344.19 15.50 �0.001
ETHYLCO-A 85 0.1 9,360 1,305.36 2,302.33 154.60

EPICOP-H 92 0.1 2,035 85.63 247.15 7.40 0.001
EPICOP-A 85 0.1 6,390 494.87 1,206.28 19.80

CHOL-H 92 0.1 2,884 215.69 407.55 32.20 0.009
CHOL-A 85 0.1 6,600 529.46 1,058.37 114.70

a Labels of tracers are shown in the list of variables in Table 2. H, samples of human origin; A, samples of animal origin.
b Value of P from Student’s t test.
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bacteriophages), and FRNAPH I � FRNAPH IV. This outcome
was used to build an optimal solution by using the four methods
indicated above (Euclidean one-nearest-neighbor technique, lin-
ear Bayesian classifier, quadratic Bayesian classifier, and support
vector machine). The main finding was that a set of just two
variables, (SOMCPH/BTHPH and SOMCPH) provided a train-
ing set with 100% correct classification for all the inductive learn-
ing methods. The two variables FC/BTHPH and FC also pro-
vided excellent results using the four methods (100%, 98.8%,
98.8%, and 100% correct classification rates, respectively). The
observations can be displayed in a two-dimensional scatter plot
with no loss of information (Fig. 1). It is clear that observations of
samples of human and samples of nonhuman origin are neatly
separated. With this information, a linear separation is feasible.
These two pairs of variables also gave 100% correct classification
for the 22 samples in the withheld test set. Also noteworthy is the
fact that there were no apparent differences between the various
geographical sites. In other words, there were no subclusters. A
secondary finding was that other subsets of three or more vari-
ables also showed good discriminating ability (for example,
FRNAPH I, FRNAPH II, ECP, BA, and SFBIF). However,
these variables gave some incorrect classifications and lower iden-
tification rates overall (between 85and 95%).

DISCUSSION

Accurately determining the occurrence and level of tracers
in source feces may not be feasible because of the need to
study many samples. Therefore, in order to meet our objec-
tives, we studied only heavily contaminated waters such as
municipal and hospital wastewaters, wastewater from abat-
toirs, and slurries emanating from at least 10 individual farm
animals. We are aware that this approach results in the detec-
tion of only human or animal population tracers rather than

tracers of individuals. However, the water quality problems
that may be addressed through source tracking studies are
more likely to arise from population-based contamination, and
therefore, tracing of population-based contamination is more
applicable to “real-world” scenarios than tracing of fecal con-
tamination from individuals. Also, the effects of die-off
(whether during wastewater treatment processes or in the nat-
ural environment) and dilution, as well as the effects of differ-
ing physical and chemical characteristics of the target water,
will influence the detection of tracers in different water bodies.
These are issues that are best addressed after determining
which tracer or tracers best discriminate at the source level. As
has been described above, source tracking is a complex task,
and progress towards defining suitable tracers and methods
will be achieved only by tackling relevant questions in a logical
and linear sequence.

Results reported herein provide interesting information on
the various conventional fecal indicators tested because of the
broad spectrum of wastewaters and geographical areas tested.
Fecal coliforms, enterococci, clostridia, total bifidobacteria,
somatic coliphages, F-specific RNA phages, and phages infect-
ing strain RYC2056 of B. fragilis had similar relative densities
in municipal or human-derived wastewaters in the different
geographical areas studied. No significant differences were ob-
served between samples of human origin (hospital, military
camp, and municipal wastewaters), regardless of the size of
human communities (which ranged from a population of hun-
dreds for hospital samples to 1.5 million for municipal waste-
water samples). Consequently, wastewater samples from com-
munities of around 100 inhabitants were shown to be
representative. Also, for these indicators, geographical differ-
ences between animal samples were not evident.

With regard to the potential of the various microbial and

FIG. 1. Distribution of training observations according to the variables SOMCPH/BTHPH and SOMCPH. Values are standardized to zero
mean and unit standard deviation.
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chemical parameters studied as tracers of source pollution,
there are a number of observations worthy of discussion. No
differences were observed in the ratios between the values of
fecal coliforms (taken as the reference value of fecal load) and
those of bifidobacteria, enterococci, clostridia, and somatic
coliphages in human and animal samples. Conversely, F-spe-
cific RNA phages and phages infecting B. fragilis RYC2056
showed differences, since the ratios of their numbers to num-
bers of fecal coliforms were clearly lower in animal samples,
although the differences are not sufficient to allow source dif-
ferentiation. Among the culture-based microbiological meth-
ods tested, which are independent of the characterization of
the isolates, enumeration of phages infecting B. thetaiotaomicron
GA17 and the ratio between numbers of total bifidobacteria
and the numbers of sorbitol-fermenting bifidobacteria discrim-
inated the most samples according to origin. No differentiated
clusters were observed in the sets of values of all these non-
discriminant and discriminant indicators. Therefore, it can be
concluded that the numbers of all of them are comparable in
the various geographical areas studied. The only geographical
difference detected was in the characteristics of the plaques of
the phages detected by strain B. thetaiotaomicron GA17 in the
United Kingdom. Most of these plaques were turbid and re-
quired a well-trained operator to count the phages accurately.
This fact complicates the use of this method in this location.
However, a recent investigation has shown that obtaining a
geographically useful Bacteroides host with a performance sim-
ilar to that of strain GA17 is feasible (49).

Genotypic methods (F-specific RNA genotypes and molec-
ular detection of Bifidobacterium dentium and Bifidobacterium
adolescentis) allowed differentiation but with a percentage of
failures. As described previously, genotypes II and III predom-
inated in human samples, and genotypes I and IV predomi-
nated in animal samples (12, 47, 52, 53). However, in this work,
there was an unexpectedly high proportion of animal samples
(33%) with high percentages of genotype III, similar to the
ones in samples of human origin. There was also a small pro-
portion of samples that gave misleading values, showing in-
verted percentages to those expected. Additionally, the per-
centage ranges of each of the genotypes or combinations of
genotypes found in the different kinds of samples make the
establishment of a threshold for this method difficult.

Conversely, the percentages of both Bifidobacterium dentium
and Bifidobacterium adolescentis by molecular detection dif-
fered significantly in samples of human and nonhuman origin,
being more common in human samples than in animal sam-
ples. Both species have been specifically associated with human
intestinal microbiota. However, both species were not detected
by multiplex PCR (7) in some human samples, and positive
results were also observed for some animal samples. Both
species were detected in water polluted by feces of human
origin and not of animal origin. The detection method needs to
be improved in order to detect these species at the lower
densities commonly found in human samples to validate neg-
ative results in human samples. Additionally, an explanation
for their presence in a percentage of animal samples should be
sought as well. Although Bifidobacterium adolescentis has been
described as a species that is related to humans exclusively
(44), it was reported to have been found in samples from
poultry (7).

Although some variables derived from phenotypic parame-
ters are more related to nonhuman sources (percentage of E.
hirae among the enterococci and percentages of E. coli Phene-
Plate profiles or non-cellobiose-fermenting fecal coliforms
among the total fecal coliforms) and others are more related to
human fecal sources (percentage of E. faecium plus E. faecalis),
these variables alone could fail to provide a correct identifica-
tion of fecal source in some cases. On the other hand, pheno-
typing with the Phene-Plate system has previously been proven
to be useful to identify specific animal species as contamination
sources in surface water in Australia (1).

The relationships between the �-sterols coprostanol and 24-
ethylcoprostanol were different in human and nonhuman sam-
ples, as reported elsewhere previously (37), but there was a
percentage of failures that prevented the effective application
of these chemical indicators as fecal source discriminators.

Two-group discriminant analysis showed that using the en-
tire set of microbial and chemical indicators measured in this
study enabled the fecal source in wastewater or slurries to be
ascertained. However, testing of over 20 tracers is not feasible
for routine analyses because of the high cost, the time re-
quired, and the need for staff trained in a wide variety of
analytical fields (which is beyond the reach of many laborato-
ries). Furthermore, discriminant analysis carried out using dif-
ferent subsets of the parameters showed some promising re-
sults. A subset of parameters consisting of the enumeration of
the four bacteriophage groups was able to successfully distin-
guish the source of fecal pollution in the wastewaters and
slurries analyzed. It was also observed that only bacteriophages
infecting the host strain B. thetaiotaomicron GA17 showed a
high specificity to human samples. Enumeration of all these
four groups of bacteriophages provided information that com-
plemented the enumeration of bacteriophages infecting strain
GA17, achieving 100% correct classification. Conversely, the
variable subgroup consisting of the enumeration of different
bacterial groups, genotypes of F-specific bacteriophages, fecal
sterols, or bacterial phenotypes alone did not determine the
fecal source with a 100% correct classification. Again, individ-
ual variables within these subgroups (for example, sorbitol-
fermenting bifidobacteria) showed great differences between
water samples with human fecal contamination and those with
nonhuman fecal contamination. Consequently, other combina-
tions of the most promising tracers should be considered in
order to determine the lowest number of variables needed to
maintain the highest possible discrimination rate of fecal
source. Note that some combinations need not include the
enumeration of bacteriophages infecting B. thetaiotaomicron
strain GA17, which demonstrated geographical differences
with regard to the clarity of plaques. We were thus especially
interested in finding combinations specifically including or ex-
cluding this tracer. However, to resolve the problem of geo-
graphical variation, new host strains of Bacteroides, either B.
thetaiotaomicron or other species, should be obtained for each
specific geographical site in order to facilitate the enumeration
of this group of phages (49). Furthermore, the variations in
results of discriminant analyses of the parameter sets coincide
with previous studies by other authors who have studied the
assessment of statistical methods using library-dependent tests
for microbial source tracking (48, 51, 58). Those authors also
reported a high degree of variability in the correct classification
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rates among statistical methods and observed that no com-
monly used statistical technique emerges as superior. Our
results are in general agreement with this observation; but
additionally, our results suggest that some combinations of
library-independent methods that showed a consistently high
degree of discriminatory power could determine the origin of
fecal pollution. Consequently, the use of alternative statistical
methods that could determine the optimal combination of
discriminant parameters and thus facilitate the development of
predictive models is the logical next stage in the development
of data analysis for fecal source tracking.

To this end, several statistical and machine learning methods
were applied to the 38 single and derived microbial and chem-
ical variables. The obtained predictive models provided 100%
correct classification in the distinction of wastewaters of hu-
man origin and those of nonhuman origin. No differences were
found between the various European geographical locations in
this prediction model. A predictive model using the pair of
variables SOMCPH/BTHPH and SOMCPH emerged as the
optimal model and allowed the successful classification of fecal
source in all cases (in both training and test sets). It was noted
that the variable SOMCPH/BTHPH accounts for the greatest
part of the classification. In light of this observation, the vari-
able BTHPH alone might suffice. This could be achieved by
determining a reference level for BTHPH that differentiates
human samples (values above this reference) from nonhuman
samples (values below this reference). This reference level
could be obtained by taking the middle value between the two
closest known observations (in the training set), one of which
is human and the other of which is animal. This simpler rule
actually achieved 100% correct classification. However, this
approach may be unstable because of the closeness of the
values to the reference value, especially when factors such as
fecal aging or dilution in waters modify the concentrations of
the parameters (named variables in statistical or machine
learning analyses). A wider margin of separation is necessary in
order to obtain a more robust and stable discrimination. This
is accomplished by using the set of two variables SOMCPH/
BTHPH and SOMCPH, in which case the margin is greater.

Alternative predictive models that do not use the variable
BTHPH were also found. However, these models showed
lower rates of correct classification and required more param-
eters and thus entailed higher costs and resource require-
ments. Furthermore, their percentages of correct classification
were more dependent on the statistical method used. For in-
stance, the pair of variables SOMCPH and FRNAPH II
showed a 96% correct classification using a quadratic Bayesian
classifier, and sets of three (FRNAPH I, FRNAPH II, and
ECP) or four (e.g., SOMCPH, FRNAPH II, BA, and SFBIF)
variables were needed to provide 100% correct classification
when using the Euclidean one-nearest-neighbor classifier.

In conclusion, none of the tested microbial and chemical
parameters were alone able to determine the source of fecal
pollution in wastewaters and slurries of known human or non-
human origin, and therefore, a suite of parameters was re-
quired. However, we demonstrated that there are a number of
potentially good tracers showing high discriminatory capabili-
ties, and hence, there is a need for alternative numerical ap-
proaches to the data analysis. The concentration of phages
infecting certain strains of Bacteroides is the parameter show-

ing the greater discriminatory power. Host strains to detect
and enumerate phages of Bacteroides seem to be geographi-
cally dependent, but a method for the isolation of geographi-
cally specific host strains for the enumeration of phages infect-
ing Bacteroides has recently been published (49). Other tracers
such as FRNAPH I, FRNAPH II, ECP, BA, and SFBIF also
showed a good discriminatory ability when groups of three or
more variables were used. Combinations of variables based on
a discriminating tracer and a universal fecal indicator seem to
offer the best solutions. The universal and nondiscriminant
fecal indicator provides information on the fecal load of the
sample at the time it is taken. The discriminant indicator
(tracer) contributes to the identification of source. If both
indicators have similar persistence in the environment, their
combined use could be the best way of defining predictive
models suitable for any environmental water sample. Such
combinations may also offer advantages when samples differ-
ent from the ones tested here are analyzed (such as diluted,
aged, and mixed samples). Finally, the use of different statis-
tical or machine learning methods in conjunction with algo-
rithms for variable selection was shown to be a feasible numer-
ical analysis for the development of predictive models for
microbial source tracking in waters. The experimental ap-
proach used in this study aimed to provide a preliminary model
suitable for wastewaters and slurries, which are considered the
most important starting points for fecal pollution of surface
waters. Any subset of methods selected for predictive models
must be effective at this level of fecal pollution. Otherwise,
there is no sense in applying it to surface waters or other kinds
of waters with lower values for the indicators and parameters
involved. Following our experimental approach, the next stage
in the development of predictive models should consider ad-
ditional factors such as dilution, specific types of animal
sources, persistence of microbial tracers, and complex mixtures
from different sources. All these factors will progressively add
complexity to the models and bring them closer to “real-world”
scenarios so as to provide effective and practical solutions for
fecal pollution problems.
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