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ABSTRACT Spatial dispersion of refractoriness, which is amplified by genetic diseases, drugs, and electrical and structural
remodeling during heart disease, is recognizedas amajor factor increasing the risk of lethal arrhythmias and suddencardiac death.
Dispersion forms the substrate for unidirectional conduction block, which is required for the initiation of reentry by extrasystoles or
rapid pacing. In this study, we examine theoretically and numerically how preexisting gradients in refractoriness control the
vulnerable window for unidirectional conduction block by a single premature extrasystole. Using a kinematic model to represent
wavefront-waveback interactions, we first analytically derived the relationship (under simplified conditions) between the vulnerable
window and various electrophysiological parameters such as action potential duration gradients, refractoriness barriers,
conduction velocity restitution, etc. We then compared these findings to numerical simulations using the kinematic model or the
Luo-Rudy action potential model in a one-dimensional cable of cardiac cells. The results from all three methods agreed well. We
show that a critical gradient in action potential duration for conduction block can be analytically derived, and once this critical
gradient is exceeded, the vulnerable window increases proportionately with the refractory barrier and is modulated by conduction
velocity restitution and gap junctional conductance.Moreover, the critical gradient for conduction block is higher for an extrasystole
traveling in the opposite direction from the sinus beat than for one traveling in the same direction (e.g., an epicardial extrasystole
versus an endocardial extrasystole).

INTRODUCTION

Sudden cardiac death is most commonly due to ventricular

fibrillation, which is characterized by multiple wavelets aris-

ing from an initial single or a figure-of-eight reentrant circuit

(1–4). From a therapeutic standpoint, the most critical issue

is how reentry is first initiated, and, more specifically, what

controls the vulnerable window for its initiation by prema-

ture extrasystoles or rapid heart rates, the common physio-

logical triggers for reentry. Initiation of reentry requires

unidirectional conduction block of a propagating excitation

wave. The vulnerable window describes the temporal win-

dow within which unidirectional conduction block or reentry

can be induced by premature extrasystoles from a given

spatial location.

Reentry can be initiated, even in homogeneous tissue, if a

critical tissue area is depolarized in the refractory phase of

the previous excitation, either by a point electrode with very

high current strength or by stimulation of a large region with

barely suprathreshold current strength (1–7). However, if the

tissue is heterogeneous, reentry can be induced by a point

electrode with stimulation strength just above the threshold

when the dispersion of refractoriness is sufficiently large or if

unexcitable obstacles are present (8–14). Dispersion of re-

fractoriness naturally exists in the heart (15,16) and is

amplified in heart disease by electrical remodeling (8,17,18).

It can also be induced or modulated by extrasystoles or heart

rate (15,16,19–22), by dynamically induced discordant alternans

(19,23–26), by nonuniform cell coupling (12,27,28), and by

unexcitable obstacles (29,30).

In normal guinea pig hearts in the presence of anatomic

obstacles, Laurita and Rosenbaum (30) found that a mini-

mum repolarization gradient of 3.2 ms/mm was required for

unidirectional conduction block to occur. Akar and Rose-

nbaum (17) showed that polymorphic ventricular tachycar-

dia could only be induced when the transmural action

potential duration (APD) gradient was.10 ms/mm in failing

dog hearts. Restivo et al. (18) showed that conduction block

occurred at refractory gradients from 10 ms/mm to 120 ms/

mm in subacute myocardial infarction. In a theoretical study,

Sampson and Henriquez (28) analytically estimated the min-

imum gradient of APD required for unidirectional conduc-

tion block in a one-dimensional (1D) cable of coupled

cardiac cells and showed that this minimum APD gradient

was determined solely by conduction velocity (CV) restitu-

tion. Computer simulations of two-dimensional (2D) tissue

(12,13) showed that the vulnerable window for reentry in-

creased as the difference in APD or effective refractory

period (ERP) between two regions. However, how cell

properties interact with tissue properties to determine the size

of the vulnerable window has not been systematically analyzed.

In this study, we use theoretical analysis and numerical

simulation to investigate how preexisting gradients in re-

fractoriness, coupled with CV restitution properties, affect

the vulnerability to conduction block of a single extrasystole

in a 1D cable of coupled cells. First, we develop a kinematic
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equation and obtain analytical solutions under simplified

conditions. We then simulate an ionic model in a 1D cable to

compare the results with those from the kinematic theory. In

this article, we focus on the vulnerability to conduction block

of a single extrasystole; in the companion paper (31), we

extend the analysis to multiple extrasystoles.

METHODS

Mathematical model

We simulated a 1D cable using Phase I of the Luo and Rudy (LR1) ven-

tricular action potential model (32):

@V

@t
¼ �ðIion 1 IstiÞ=Cm 1D

@
2V

@x
2 ; (1)

where V is the transmembrane potential, Iion is the total ionic current density

from the LR1 model, and D is the diffusion constant, set to 0.001 cm2/ms.

For the homogeneous cable, we used Na1 channel conductance �GGNa ¼ 16

mS/cm2 and the slow-inward current or the L-type Ca21 channel conduc-

tance �GGsi ¼ 0:06 mS/cm2. We also sped up the L-type Ca21 channel acti-

vation and inactivation by decreasing the time constants td and tf to 75%,

i.e., td/0.75 td and tf/0.75 tf. These modifications resulted in a baseline

APD of 200 ms and APD restitution steepness close to experimental

measurements in rabbit hearts (33). Slow recovery of the Na1 channel was

simulated by increasing the time constant of the j gate in the LR1 model,

e.g., a fivefold slowing of recovery is achieved by increasing tj fivefold as

tj/5 tj. Other parameters are the same as in the original LR1 model. Action

potential heterogeneity was simulated by creating a gradient in the max-

imum conductance of the time-dependent K1 channel, i.e., �GGK ¼ �GGKðxÞ.
For the case of ascending APD gradient, it is defined as

�GGKðxÞ ¼
�GGKmax; if x# x0;

�GGKmax � ð �GGKmax � �GGKminÞðx � x0Þ; if x0 , x, x0 1 h;

�GGKmin; if x$ x0 1 h

8><
>:

(2)

where we set x0¼ (L� h)/2. In this study, we used a cable length L¼ 40 mm

and hwas chosen to be 10 mm. For the descending case, Eq. 2 was used with
�GGKmax and �GGKmin exchanged. In this study, �GGKmax ¼ 0:564 mS/cm2 was

fixed and �GGKmin ¼ 0:282 mS/cm2 was used unless otherwise specified. Isti in

Eq. 1 is the stimulation current density of the stimuli (S1 and S2), which

were applied in a 1 mm segment of the cable with strength being �30 mA/

cm2 and duration being 2 ms. S1 was the baseline stimulation and always

applied at the left end of the cable with cycle length 1 s, whereas the ex-

trasystole (S2) was applied at different location. Equation 1 was integrated

using the explicit Euler method with a time step 0.005 ms and a space step

Dx ¼ 0.0125 cm.

CV and CV restitution

CV was measured in the cable by calculating the time DT for the wavefront

propagating from x � Dx to x 1 Dx, defining uðxÞ ¼ 2Dx=DT. The

waveback velocityQ(x) was similarly calculated. CV restitution curves were

obtained by plotting CV versus diastolic interval (DI) measured at the

middle of the cable. It was difficult to obtain the critical CV (uc) in a ho-

mogeneous cable, and so it was calculated in a heterogeneous cable (APD

heterogeneity was the same as in Fig. 2 A) for an S1S2 coupling interval at

which S2 wave successfully propagated through the cable, but conduction

failed for a 1 ms shorter S1S2 interval. The minimum u detected in the cable

for this S1S2 interval was defined as uc.

APD and ERP

APD was defined as the duration of transmembrane voltage V . �72 mV

and DI as the duration of V,�72 mV. ERP was also measured in the cable

as follows: an S1 pacing train was followed by a premature S2 to determine

ERP. ERP was defined as the shortest S1S2 interval such that the S2 prop-

agated successfully through the cable.

RESULTS

Kinematic theory

We assume that a premature extrasystole S2 occurs after a

normal S1 beat, which causes two waves propagating in the

opposite directions (the S2 wave and S2* wave in Fig. 1 A).
The S1 beat, such as the sinus beat, occurs at a long cycle

length so that APD and CV are at their baseline values. The

CV of the S2 wave is a function of its previous DI, i.e., the

CV restitution function

u2 ¼ gðd1Þ; (3)

where d1 is the DI preceding the S2 wave, and u2 is the CV of

the S2 wave. Fig. 1 B shows two CV restitution curves ob-

tained from the 1D cable with the LR1 model, which can be

fit by

FIGURE 1 (A) schematic illustration of the S1 and S2 stimulation in a 1D

space. S1 is always applied at x ¼ 0, but S2 is applied at location l, which

stimulates two opposite propagating waves (the S2 wave and S2* wave). u is

the wavefront velocity andQ is the waveback velocity. (B) CV versus DI for

normal Na1 current (h), which was fit by u ¼ 0:55ð1� 0:6e�ðd�10Þ=10Þ
(line), and CV versus DI for fivefold slowed recovery of Na1 channel (s),

which was fit by u ¼ 0:55ð1� 0:6e�ðd�17Þ=50Þ (line). (C) Graphical

definitions of APD (a), DI (d), and critical DI (dc); refractory period (r),

excitable gap (e), and vulnerable window (w). Note that the refractory period
can be either shorter or longer than APD under normal conditions, which

depends on how APD is defined. In the case of postrepolarization

refractoriness, the refractory period is much longer than APD. With our

APD definition in this study, the refractory period is longer (between 10 ms

and 20 ms) than APD.
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u2 ¼ u0ð1� de
�ðd1�dcÞ=tÞ; (4)

where u0 is the baseline CV (i.e., CV at the infinite DI), and d

and t are two positive parameters, with dmeasuring the vary-

ing range of CV and t measuring the slope of CV restitution.

dc is the critical DI at which CV reaches a critical velocity

uc ¼ u0ð1� dÞ and the S2 wave begins to fail. Fig. 1 C
illustrates the relations between the various electrophysio-

logical quantities.

Due to heterogeneity in repolarization and refractoriness,

the waveback and wavefront can propagate at different ve-

locities, whose relationship can be deduced as follows: the

time for the waveback to propagate a small distance Dx is Dx/
u(x) (the time it takes the wavefront to propagate this same

distance, plus the APD difference [Da(x) ¼ a(x 1 Dx) �
a(x)], i.e., Da(x) 1 Dx/u(x). Therefore, the waveback veloc-

ity Q1 of the S1 wave is

Q1ðxÞ ¼
Dx

Dx=u1ðxÞ1Da1ðxÞ
¼ u1ðxÞ

11 u1ðxÞa1xðxÞ
; (5)

where a1xðxÞ ¼ Da1ðxÞ=Dx is the spatial APD gradient of the

S1 wave. A similar equation was originally derived by

Courtemanche (34) and then modified into the form of Eq. 5

(19,28). In Eq. 5, we define the waveback as the repolar-

ization front. Alternatively, if one defines the waveback as

the refractory front, then APD gradient in Eq. 5 is replaced

by ERP gradient. From Eq. 5, for an APD gradient a1x . 0,

(i.e., APD increases along the direction of propagation), then

Q1(x), u1(x). That is, the waveback propagates more slowly

than the wavefront, so that the wavelength [u1ðxÞa1ðxÞ] in-
creases as the wave propagates. If �1,a1xðxÞu1ðxÞ,0, then

Q1(x) . u1(x), i.e., the waveback propagates faster than

the wavefront does. If a1xðxÞu1ðxÞ,� 1, then Q1(x) , 0 ,

u1(x). This case results in a retracting waveback that prop-

agates in the opposite direction of the wavefront (see ). A

special case occurs when a1xðxÞu1ðxÞ ¼ �1, such that the

waveback velocity becomes infinite. In this case, the spatial

gradient in refractoriness cancels out the repolarization time

difference due to propagation, resulting in simultaneous

recovery in space. Another special case is at the limit of u1(x)
being infinite, or every cell is excited simultaneously,Q1(x)¼
1/a1x, which is finite. Therefore, with a spatial gradient of

repolarization or refractoriness, the waveback velocity can

be very different from the wavefront velocity. Fig. 2 A shows

an ascending APD gradient created by introducing a gradient

in the K1 current conductance �GGK (Eq. 2) and under the

baseline (S1) stimulation, which can be fit by

aðxÞ ¼ amin 1Da=ð11 e
�ðx�x0Þ=eÞ: (6)

Fig. 2 D shows a descending APD gradient fit by

aðxÞ ¼ amin 1Da=ð11 eðx�x0Þ=eÞ: (7)

In Eqs. 6 and 7, Da ¼ amax � amin. The repolarization

distribution from apex to base measured in the epicardial

surface of guinea pig hearts with Long-QT syndrome was

also well fit by Eq. 6 (22). Fig. 2, B and E, show the wave-

back velocity Q(x) due to the two types of heterogeneities

measured from the simulation of the 1D cable using the LR1

model (symbols) and calculated using Eq. 5 with a(x) from
Eqs. 6 and 7 (lines). For the descending APD gradient, the

waveback velocity becomes negative in the region of the

gradient. In this case, a repolarization front propagates in

the negative x direction due to the descending gradient (Fig. 2
F), which corresponds to the negative velocity region shown
in E.
After applying S2, the DI in space is governed by the

following differential equation (see Appendix for derivation):

d½d1ðxÞ�
dx

¼ 1

u2ðxÞ
� 1

Q1ðxÞ
(8)

with the initial condition d1ðlÞ ¼ DTS1S2 � a1ðlÞ �
R l

0
ðdx=

u1ðxÞÞ. This type of kinematic equation has been used by a

number of authors to study spatially discordant alternans and

conduction block (19,25,28,29,35–37). Equation 8 cannot be

analytically solved in general, since both u2(x) and Q1(x) are
nonlinear functions of x, but it can be solved if u2(x) is

determined by Eq. 4 and a(x) is a piecewise linear function

(Fig. 3, A and B). In this case, we can analytically derive the

vulnerable window (w) for S2 at large w (see Appendix). For

an ascending APD gradient and S2 applied at x ¼ x0 (Fig. 3
A), w satisfies (from Eq. A17 in the Appendix)

w ¼ Da� t

11su0

ln
su

2

0

uc 1sucu0 � u0

; (9)

where s ¼ ðDa=hÞ. For a descending APD gradient and S2

applied at x ¼ x0 1 h (Fig. 3 B), S2 may be blocked by

running into the repolarization front propagating in the

negative x direction (Fig. 2 E), and w satisfies (from Eq. A21

in the Appendix)

w ¼ Da� 2

u0

h� t

su0 � 1
ln

2u0 � su
2

0

uc � sucu0 1 u0

: (10)

From Eqs. 9 and 10 (also see Fig. 3), we have the follow-

ing observations:

1. The vulnerable window w is proportional to the refrac-

tory barrier (Da) in the ascending case when the gradient

in refractoriness s is fixed and exceeds a critical value

(see Eq. 11 below for the critical value), but also depends

on h in the descending case (see Appendix for detailed

spatial dependence of w).
2. Increasing the steepness of the spatial gradient (s) in-

creases the vulnerable window (Fig. 3 D).
3. Broadening the sloped region of the CV restitution curve

(increasing t) decreases the vulnerable window.

4. Decreasing the wavefront velocity (u0) or increasing the

critical velocity for conduction failure (uc) increases the

vulnerable window (Fig. 3 C).
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A minimal APD gradient for conduction block can be

obtained from Eq. 5 or Eqs. 9 and 10. For conduction block

of the S2 wave to occur, the waveback velocity of the S1

wave must be smaller than the critical velocity, i.e.,Q1 , uc.

When the S1 and S2 waves propagate in the same direction,

we obtain from Eq. 5 that

a1x .
1

uc

� 1

u1

¼ u1 � uc

u1uc

: (11)

This relation can also be derived from Eq. 9 by setting

u1 ¼ u0, since uc1sucu0 � u0.0 is required. For normal

conduction, u1 ¼ u0 is ;0.5 mm/ms and uc is ;0.2 mm/ms,

which gives rise to a minimum APD gradient of 3 ms/mm for

unidirectional conductional block to occur (Fig. 3 D). Note
that a similar equation has been used by Sampson and

Henriquez (28) to estimate the minimum APD gradient re-

quired for conduction block in 1D cables of coupled cardiac

cells.

When the S1 and S2 waves propagate in the opposite di-

rections, we obtain from Eq. 5 or Eq. 10:

a1x , � ð 1
uc

1
1

u1

Þ ¼ �u1 1 uc

u1uc

: (12)

In this case, the minimum APD gradient required is much

larger than for the other case, for example, for u1¼ 0.5 mm/ms

and uc ¼ 0.2 mm/ms, it is 7 ms/mm (Fig. 3 D).

Numerical simulations

To validate the kinematic equations and relate their pheno-

menological parameters to biological parameters (e.g., ion

channel properties), we numerically simulated the LR1model

in a 1D cable (Eq. 1) and compared the results to those of the

kinematic model (Eq. 8).

Vulnerability due to APD heterogeneity

Fig. 4, A and B, show the vulnerable windows w (shaded
areas) versus S2 location l, using the ionic model (Eq. 1) and

the kinematic model (Eq. 8), respectively, for the ascending

FIGURE 2 APD distribution in space and

waveback velocity from a heterogeneous 1D

cable of the LR1 model (symbols in each panel)

under the baseline (S1) stimulation. (A) APD

distribution for an ascending gradient in space

(symbols), which was fit by aðxÞ ¼ 182154=

ð11e�ðx�21:5Þ=2:5Þ(line). The shaded bar marks

the region with high �GGK, open bar for low �GGK,

and �GGK changes linearly as in Eq. 2 in the

patterned bar region. The dashed lines illustrate

the calculation of Dae, the effective refractory

barrier used for Eqs. 9 and 10. The intersection

of the vertical dashed line and the top one is

the point with the critical APD gradient for

conduction block. (B) Waveback velocity

measured from the cable for the APD hetero-

geneity in A (s) and calculated using Eq. 5

with the fitting function in A (line). (C) Time-

space plot showing conduction block of S2 beat

in the cable with ascending APD gradient as in

A. Voltage changes from �85 mV to 20 mV as

color changes from black to white. The stars

mark the time and location at which S1 and S2

were given. (D) APD distribution for a de-

scending gradient fitted by aðxÞ ¼ 1821112=

ð11eðx�18Þ=2:75Þ. �GGKmin ¼ 0:141 mS/cm2 was

used in Eq. 2. (E) Waveback velocity for the

heterogeneity in D. The line was calculated

using Eq. 5 with the fitting function in D. (F)

Time-space plot showing conduction block of

S2 beat in the cable with descending APD

gradient as in D. Voltage changes from �85

mV to 20 mV as color changes from black to

white. The stars mark the time and location at

which S1 and S2 were given. The negative

slope portion of the dashed line marks the

retracting waveback or the negative waveback

velocity portion.
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APD gradient shown in Fig. 2 A. The vulnerable window

from the ionic model agrees well with that from the kine-

matic model except for l. 25.5 mm. In the kinematic model,

w becomes zero at 25.5 mm, at which the waveback velocity

Q1 ¼ uc. When x . 25.5 mm, the APD gradient becomes

small so that Q1 . uc and thus w becomes zero. However, in

the ionic model, due to the finite size of the stimulus elec-

trode, a small w (3–5 ms) persists for l . 25.5 mm.

Vulnerability due to finitely sized electrodes in homogenous

1D cables has been studied by Starmer et al. (38,39) and

others (40). Fig. 4 C shows w versus Da from the simulation

of the ionic model (symbols), the kinematic model Eq. 8

(solid line), and Eq. 9 (dashed line) for S2 applied at location
x0, which agree well with each other. Fig. 5 shows the same

analysis for a descending APD gradient. In this case, the

shape of the vulnerable window (Fig. 5, A and B) is very

different from the one in the ascending case (Fig.4, A and B),
in addition to requiring a higher APD gradient. In the

ascending case, the vulnerable window is almost unchanged

when S2 is applied in any location in the region of the short

APD (the shaded bar region in Fig. 2 A), but in the

descending case, w depends on the S2 location even in the

FIGURE 3 (A and B) Schematics of a piecewise linear

ascending and descending APD gradient that were used for

the derivation of Eqs. 9 and 10. (C) w versus u0 when uc ¼
0.2 ms/mm (solid line) and w versus uc when u0 ¼ 0.5 ms/

mm (dashed line) for the ascending case obtained using

Eq. 9. t ¼ 10 ms, s ¼ 5 ms/mm, and h ¼ 10 mm were

used. (D) w versus s for the ascending (Eq. 9, solid line)
and descending (Eq. 10, dashed line) cases. t ¼ 10 ms, u0
¼ 0.5 mm/ms, uc¼ 0.2 mm/ms, and h¼ 10 mmwere used.

FIGURE 4 Effects of APD gradient on conduction

block when APD gradient is ascending. (A) Vulnerable

window w (shaded, the range of the S1S2 coupling interval

DTS1S2that conduction block occurs) versus the location l of

the S2 extrasystole obtained from the ionic model (Eq. 1).

The APD distribution is the same as in Fig. 2 A. (B) Same

as A but obtained from the kinematic simulation (Eq. 8).

(C) Vulnerable window w versus the APD difference Da

from the ionic model (symbol), the kinematic simulation

(solid line), and Eq. 9 (dashed line) for S2 applied at

l ¼ 0. In simulation of the ionic model, Da was generated

by varying �GGKmin in Eq. 2. In the kinematic simula-

tion, u2ðxÞ ¼ 0:55ð1� 0:6e�ðd1ðxÞ�10Þ=10Þ, aðxÞ ¼ 1821

Da=ð11e�ðx�21:5Þ=2:5Þ, and dc¼10 ms (at which uc ¼
0.22 mm/ms) were used. For Eq. 9, u0¼ 0.55 mm/ms, uc¼
0.22 mm/ms, t ¼ 10, h ¼ 10 mm, and an effective APD

difference Dae ¼ 0.9Da was used. Dae was the effective

APD barrier as illustrated in Fig. 2 A.
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short APD region (the shaded bar region in Fig. 2 D). Fig. 5
C shows w versus Da from the simulation of the ionic model

(symbols), the kinematic model Eq. 8 (solid line), and Eq. 10
(dashed line) for an S2 applied at location x01 h. The results
agree well, as in the ascending APD gradient case shown in

Fig. 4 C.

Vulnerability due to ERP heterogeneity

In the cases shown in Figs. 4 and 5, APD is a reliable mea-

sure of the refractory period, since excitability changed only

slightly across space. In real cardiac tissue, APD and re-

fractory period distribution in space may differ substantially

if postrepolarization refractoriness is present, such as in

ischemia or drug toxicity (8,41). Here, we simulate a case in

which APD is almost uniform, but ERP changes over space,

due to a gradient in Na1 conductance and recovery kinetics.

Since changing Na1 channel kinetics has a small effect on

APD (12), APD is almost uniform whereas ERP changes

significantly in space. Fig. 6 A shows ERP versus the change

of Na1 current conductance and recovery kinetics. Fig. 6 B
shows that w is proportional to Dr, similar to the case of the

APD gradient in Fig. 4.

Effects of Na1 current conductance and recovery kinetics

In the kinematic model, the properties of CV, such as the

slope of CV restitution (t), baseline CV (u0), and critical CV

(uc), can be independently varied. In the ionic model, these

properties cannot be independently varied. Since CV and its

restitution are mostly controlled by the Na1 current prop-

erties, we altered the Na1 current conductance and recovery

kinetics to study the effects of CV on vulnerability to con-

duction block.We altered these properties uniformly in space,

with the spatial APD heterogeneity as in Fig. 2 A. Reducing
the Na1 current conductance decreased u0, but had little

effect on uc (Fig. 7 A) or the vulnerable window (Fig. 7 B), as
predicted by Eq. 9 (line). In contrast, slowing recovery

slightly decreased uc (Fig. 7 C), but substantially altered the

vulnerable window (Fig. 7 D). The almost linear relation

between the vulnerable window and the recovery time was

also predicted by the analytical solution (Eq. 9).

Effects of gap junctional conductance

CV can also be altered by changing gap junctional conduc-

tance between cells, corresponding to the diffusion constant

in our ionic model (Eq. 1). In homogeneous tissue, a g-fold

FIGURE 5 Effects of APD gradient on conduction

block when APD gradient is descending. (A) Vulnerable

window w (shaded, the range of the S1S2 coupling interval

DTS1S2that conduction block occurs) versus the location l of

the S2 stimulus obtained from the ionic model (Eq. 1).

APD heterogeneity was the same as in Fig. 2 D. (B) Same

as A but obtained from the kinematic simulation (Eq. 8).

(C) Vulnerable window w versus the APD difference Da

from the ionic model (symbol), the kinematic simulation

(solid line), and the solution of Eq. 10 (dashed line) for S2

applied at l ¼ 25 mm. In simulation of the ionic model, Da

was generated by varying �GGKmin in Eq. 2. In kinematic

simulation, u2ðxÞ ¼ 0:55ð1� 0:6e�ðd1ðxÞ�10Þ=10Þ, aðxÞ ¼
1821Da=ð11eðx�18Þ=2:75Þ, and dc¼10 ms (at which uc ¼
0.22 mm/ms) were used. For Eq. 10, u0 ¼ 0.55 mm/ms,

uc ¼ 0.22 mm/ms, t ¼ 10, h ¼ 10 mm, and Dae ¼
0.8Da were used. Dae was the effective APD barrier as

illustrated in Fig. 2 A.

FIGURE 6 Effects of ERP heterogeneity on vulnerability. (A) ERP versus

b. b is a parameter that measures the change in Na1 conductance and

recovery, which is defined as in B. (B) w versus the ERP difference Dr for S2

applied at l ¼ 0. The ERP gradient was generated by linearly changing
�GGNamax ¼ 16 to �GGNamin ¼ 16ð1� ðb=10ÞÞ mS/cm2, and tjmin ¼ tj to

tjmax ¼ btj in a region h ¼ 10 mm, in the same manner as Eq. 2. Uniform
�GGK ¼ 0:564 mS/cm2 was used. Since Na1 kinetics has a small effect on

APD but a big effect on ERP (as shown in A), the APD distribution in the

cable is almost uniform but large ERP gradient occurs.
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reduction in gap junctional conductance resulted in a
ffiffiffi
g

p
-

fold reduction in CV, i.e., u90 ¼ u0=
ffiffiffi
g

p
, and also u9c ¼ uc=ffiffiffi

g
p

, since Eq. 1 can be rescaled in space by x9 ¼ x=
ffiffiffi
g

p
. In a

heterogeneous tissue with an APD gradient given by Eq. 2,

CV is only slightly affected so that the scaling for CV can

still hold approximately. However, the scaling for the APD

gradient, i.e., s9 ¼ ffiffiffi
g

p
s, cannot hold and therefore the

vulnerable window may change due to the change of gap

junctional conductance based on Eqs. 9 and 10. We first

studied the case in which APD gradient is generated by Eq. 2

with different gap junctional coupling strength. Fig. 8 A
shows APD versus x for different fold (g) reduction in gap

junctional conductance and Fig. 8 B shows the peak slope of

APD gradient for different g, showing that the peak gradient

tends to saturate as g increased, instead of being proportional

to
ffiffiffi
g

p
. Fig. 8 C shows w versus g from the simulation of the

1D cable with the LR1 model, in which w is insensitive to g

before a critical value at which w becomes zero. Using a

functional relation of s versus g as in Fig. 8 B and the

rescaled u0 and uc for Eq. 9, we obtain similar results to the

ionic model, as shown in Fig. 8D. We also simulated another

case in which APD is longer in a 0.5 cm segment in the

middle of the cable than at the two ends. In this case, the

maximum APD increases as cell coupling decreases (Fig.

8 E). As a consequence, w increases as g increases until a

critical value at which no conduction block is caused by the

heterogeneity (Fig. 8 F). The inset of Fig. 8 F shows w versus

Da ¼ amax � amin, showing a good linear relation until the

critical gap junctional conductance is reached, at which w
becomes zero. Therefore, uniformly decreasing gap junc-

tional conductance may increase or have no effect on

vulnerable window until it is reduced to a critical value at

which vulnerability to conduction block disappears. This

seems to be contrary to intuition since decreasing gap junc-

tional conductance increases dispersion of heterogeneity (42).

DISCUSSION

Unidirectional conduction block caused by dispersion of

refractoriness is a necessary, although not sufficient, condi-

tion required to induce reentry, and its theoretical underpin-

nings are therefore of critical importance to our understanding

of cardiac arrhythmogenesis. In this study, we combined

theoretical analysis and numerical simulation to investigate

the factors that control the vulnerability to conduction block

in a 1D cable of coupled cells. We quantitatively linked the

refractory gradient and barrier and CV restitution slope to the

vulnerable window of conduction block of waves induced

by a single extrasystole. Results from the kinematic theory

agree well with the numerical simulations using the LR1

ionic model in a 1D cable of coupled cells. Our major find-

ings are:

1. A critical gradient in refractory period is required for

unidirectional conduction block of waves induced by a

premature extrasystole. The critical gradient is deter-

mined by the wavefront CV and the critical CV below

which conduction fails.

2. The vulnerable window is proportional to the refractory

barrier once the gradient is greater than the critical

gradient.

3. The propagation direction of a premature extrasystole,

i.e., whether in the same or opposite direction relative to

the preceding wave, has a significant influence on the

critical gradient required for unidirectional conduction

block.

FIGURE 7 Effects of Na1 channel conductance and

recovery on vulnerability to conduction block in hetero-

geneous cable with the heterogeneity as in Fig. 2 A. (A) u0
and uc versus �GGNa. (B) Vulnerable window w versus �GGNa.

(C) u0 and uc versus t. (D) Vulnerable window w versus t.

In D, the dashed line was obtained from Eq. 9 by using

s ¼ Da/h¼ 5 ms, u0¼ 0.55 mm/ms, and uc¼ 0.2 mm/ms.

The solid line was obtained by accounting the correction of

uc shown in (C). S2 was applied at l ¼ 0.
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4. Increased CV restitution slope decreases the vulnerable

widow for conduction block.

Dispersion of refractoriness

A close association between dispersion of refractoriness and

cardiac arrhythmias has been demonstrated experimentally

(17,22,43,44). Minimum repolarization gradients for con-

duction block were experimentally measured in normal

tissue (30) and after myocardial infraction (18,45). The min-

imum repolarization gradients estimated analytically by

Sampson and Henriquez (28) and by us in this study agree

well with the experimental measurements of 3.2 ms/mm in

the normal tissue (30), but are much less than 10 ms/mm

observed in postinfarction setting (18) and heart failure (17).

One explanation for this difference is that in postinfarct

tissue and heart failure, the cell coupling strength is sub-

stantially reduced due to gap junctional remodeling (46,47),

which increases the critical gradient for conduction block, as

we showed in Fig. 8. Another finding from our study is that

the analytical results (Eqs. 9 and 10) obtained in the case of

piecewise linear APD gradient agree well with the results

from numerical simulation of the kinematic equation and the

ionic model (Figs. 4 C, 5 C, 7 B, and 7 D), suggesting that

once the minimum gradient is reached, the refractory barrier

determines the vulnerable window, whereas the specific

spatial profile of the heterogeneity may be unimportant. The

existence of a critical gradient for conduction block may

serve to protect against initiation of lethal arrhythmias by

single premature extrasystole, since even normal heart con-

tains electrophysiological heterogeneity (15,44,48-50). How-

ever, as will be shown in the companion article, in the setting

of multiple extrasystoles (16,20) or very rapid heart rates in-

ducing spatially discordant alternans (23,25,35,37,51), large

refractory gradients and barriers may be dynamically in-

duced that are large enough to cause unidirectional conduc-

tion block by additional extrasystoles, even in normal hearts.

Arrhythmogenicity of endocardial versus
epicardial extrasystoles

With respect to arrhythmogenesis in the real heart, a

potentially important observation in the study presented here

is the dependence of the vulnerable window on the stim-

ulation sequence and location (Figs. 3–5). In real hearts, an

extrasystole originating from either endocardium or epicar-

dium faces an ascending APD gradient as it propagates into

the midmyocardial layer, which has a longer APD than either

FIGURE 8 Effects of gap junctional conductance on

vulnerability to conduction block. (A) APD distribution in

space for the different diffusion constants (D ¼ 0:001=g

cm2/ms in Eq. 1, from lowest curve to top: g ¼ 0.5, 1, 2, 3,

4, and 5) under baseline (S1) stimulation. (B) Maximum

gradient versus g for the APD distribution in A. (C) w
versus g from the 1D cable of the LR1 model (Eq. 1). (D)

w versus g from Eq. 9 in which Da ¼ 50 ms, s ¼
6:1� 2:87e�g=1:24, t ¼ 10 ms, u0 ¼ 0:55=

ffiffiffi
g

p
mm/ms, and

uc ¼ 0:22=
ffiffiffi
g

p
mm/ms were used. (E) APD distribution in

space for different diffusion constants (from lowest curve

to top: g¼ 0.5, 1, 2, 3, 4, 5, and 6). APD heterogeneity was

generated by setting �GGKðxÞ ¼ 0:564 mS/cm2 except in a

5 mm segment in the middle of the cable, in which
�GGKðxÞ ¼ 0:226 mS/cm2. (F) w versus g from the 1D cable

of the LR1 model with the heterogeneity in E. The inset

shows w versus Da. S2 was applied at l ¼ 0.
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the epicardial and endocardial layers (15,50), Since the

activation sequence during sinus rhythm typically proceeds

from endocardium to epicardium, an interesting prediction of

our study is that a single endocardial extrasystole arising

from the endocardium (i.e., traveling in the same direction)

will need a much lower critical gradient than a single

extrasystole originating from the epicardium (i.e., traveling

in the opposite direction). It should also be noted that the

APD gradient from epicardium to midmyocardium is usually

larger than that from endocardium to midmyocardium

(50,52), which could increase the probability of block of

an extrasystole originating in the epicardium. Based on

Eqs. 11 and 12, the difference in critical gradient is��� ðu11ucÞ=u1uc
��� ��ðu1 � ucÞ=u1uc

�� ¼ ð2=u1Þ, which is

independent of the critical CV (uc). For u1 ¼ 0:5 mm/ms,

the difference in the critical gradient is 4 ms/mm, as shown in

Fig. 3 D. This difference increases as conduction velocity

becomes slower. In addition to the difference between

epicardium and endocardium, induction of reentry in the epi-

cardial border zone in the postmyocardial infarction setting

may also depend on the stimulation sequence and location of

the extrasystoles. It will be interesting to test these theoretical

predictions experimentally.

The role of CV restitution

We find that CV restitution tends to protect an extrasystole

from unidirectional conduction block. Since the critical

refractory gradient for conduction block is proportional to

the difference between the CV of the previous wavefront and

the minimum CV (Eq. 11), less APD gradient is needed for

conduction block for slower CV, i.e., slowing CV promotes

conduction block. For example, during rapid pacing and

reentry of a ‘‘mother rotor’’, in which the waves propagate

much slower than in sinus rhythm, the critical gradient

required for conduction block is much smaller, based on Eq.

11. However, CV restitution has been shown to play an

important role in the formation and maintenance of discor-

dant alternans (19,24,25), in which case CV restitution tends

to promote dispersion of refractoriness for conduction block.

Limitations

We used a relatively simplified action potential model, which

does not include all of the important ionic currents or a

detailed treatment of intracellular Ca cycling. However, the

main goal of this study was to create a theoretical framework

for understanding unidirectional conduction block, in which

phenomenological parameters could be related to biological

entities as a crude test of accuracy, rather than to provide a

detailed analysis of how specific ion channels and other

proteins are involved in this process. In addition, we focused

our analysis on unidirectional conduction block, which is

necessary, but not sufficient, for the initiation of reentry in

2D and 3D tissue. For reentry to form in 2D tissue, other

requirements must be satisfied (3,4), which may result in a

different vulnerable window than that for unidirectional

conduction block in 1D tissue, even if the same refractory

gradient is assumed. For example, for a typical figure-of-

eight reentry pattern to occur in 2D, the two spiral tips have

to form at a critical separation distance to avoid mutual

annihilation. In 3D tissue, vulnerability may be further

altered due to the stability of vortex filaments (53–55) and

complex anatomical structures (7,56–58). However, our con-

clusions from the1Dcable studyprovide the quantitative basis

to guide more detailed analyses of vulnerability to reentry in

2D and 3D tissue.

APPENDIX

Assume S1 is applied at t ¼ 0 and location x ¼ 0 (Fig. 1 A), the time that the

waveback of S1 wave propagate to the position x is

t1B ¼ a1ðxÞ1
Z x

0

dx

u1ðxÞ
¼ a1ðlÞ1

Z l

0

dx

u1ðxÞ
1

Z x

l

dx

Q1ðxÞ
;

(A1)

where a1(x) is the APD of the S1 wave and Q1 is the waveback velocity of

the S1 wave. S2 occurs at t ¼ DTS1S2 and location x ¼ l. DTS1S2 is the time

interval between the S1 and S2 stimulation. The time that the wavefront of

the S2 wave propagates to the same position x is

t2F ¼ DTS1S2 1

Z x

l

dx

u2ðxÞ
; (A2)

where u2(x) is the wavefront velocity of the S2 wave at location x. Note that

Eq. A2 is also applicable to the S2* wave with its CV being negative and the

wavefront location x , l. The DI preceding the S2 wave or S2* wave at

position x is

d1ðxÞ ¼ t2F � t1B ¼ DTS1S2 � a1ðlÞ

�
Z l

0

dx

u1ðxÞ
1

Z x

l

dx

u2ðxÞ
�
Z x

l

dx

Q1ðxÞ
: (A3)

u2 is governed by Eq. 3, i.e., u2ðxÞ ¼ g½d1ðxÞ�.Q1 is governed by Eq. 5, i.e.,

Q1ðxÞ ¼ u1ðxÞ=ð11u1ðxÞa1xðxÞÞ. Equation A3 is equivalent to the follow-

ing differential equation for d1(x) with respect to x:

d½d1ðxÞ�
dx

¼ 1

u2ðxÞ
� 1

Q1ðxÞ
(A4)

with the initial condition

d1ðlÞ ¼ DTS1S2 � a1ðlÞ �
Z l

0

dx

u1ðxÞ
: (A5)

Equation A4 is the kinematics equation (Eq. 8 in the text) that we used to

derive the vulnerable window either analytically or numerically.

If one defines the waveback as the refractory front, then Eq. A3 becomes

e1ðxÞ ¼ DTS1S2 � r1ðlÞ �
Z l

0

dx

u1ðxÞ
1

Z x

l

dx

u2ðxÞ
�
Z x

l

dx

Q1ðxÞ
(A6)

with

Q1ðxÞ ¼
u1ðxÞ

11 u1ðxÞr1x
; (A7)
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where r1(0) is the refractory period of the S1 wave at location x ¼ 0, with its

relation to APD (Fig. 1 C) as rðxÞ ¼ aðxÞ1dcðxÞ. e1(x) is the temporal

excitable gap in front of the S2 wave, which is defined as e1ðxÞ ¼
d1ðxÞ � dcðxÞ. r1x is the spatial gradient of the refractory period of the S1

wave. Equation A6 is equivalent to the differential equation

d½e1ðxÞ�
dx

¼ 1

u2ðxÞ
� 1

Q1ðxÞ
: (A8)

In general, Eq. A4 cannot be solved analytically due to the nonlinearity. It

can be solved when the spatial distribution of APD is a piecewise linear

function (Fig. 3 A):

aðxÞ ¼
amin; if x# x0

amin 1sx; if x0 , x, x0 1 h
amax; if x$ x0 1 h

;

8<
: (A9)

where s ¼ ðamax � aminÞ=h ¼ ðDa=hÞ is the APD gradient. We also assume

that the S1 wave propagates at its maximum velocity u0 so that its waveback

velocity is

Q1ðxÞ ¼
u0; if x# x0

u0

11su0

; if x0 , x, x0 1 h

u0; if x$ x0 1 h

:

8><
>: (A10)

Inserting u2ðxÞ ¼ u0ð1� de�½d1ðxÞ�dc �=tÞ (Eq. 4) into Eq. A4, and the

solution of Eq. A4 is

t

d
u0e

½d1ðxÞ�dc �=t � u0d1ðxÞ ¼ x1C1; if x# x0; (A11a)

Q0d1ðxÞ1
Q

2

0

u0 �Q0

½d1ðxÞ � dc

1 tlnðu0 �Q0 � du0e
�½d1ðxÞ�dc �=tÞ�

¼ �x1C2; if x0 , x, x0 1 h; (A11b)

t

d
u0e

½d1ðxÞ�dc �=t � u0d1ðxÞ ¼ x1C3; if x$ x0 1 h; (A11c)

where C1, C2, and C3 are integration constants and Q0 ¼ u0=ð11su0Þ.
Assume S2 is applied at x ¼ l, then C1 can be determined by the initial

condition d1(l) ¼ DTS1S2 � a1(l) � l/u0 from Eq. A5. C2 is then determined

by d1(x0), which is obtained from Eq. A11a, andC3 is determined by d1(x01 h),

which is obtained form Eq. A11b.

For the S2 wave to successfully propagate through the gradient region,

the DI before the S2 wave at location x01 h has to be greater than the critical

DI, i.e., d1ðx01hÞ$dc, or the S1S2 interval is greater than a critical interval

DTc
S1S2. In other words, at this critical condition we have

dc

1ðlÞ ¼ DTc

S1S2 � a1ðlÞ � l=u0 (A12)

and

d
c

1ðx0 1 hÞ ¼ dc: (A13)

The vulnerable window w for S2 applied at location l is then defined as (see

also Fig. 1 C)

wðlÞ ¼ d
c

1ðlÞ � dc ¼ DT
c

S1S2 � a1ðlÞ � l=u0 � dc: (A14)

In principle, by inserting Eqs. A12 and A13 into Eq. A11, one can obtain

w(l). Since an explicit solution for d1(x) from Eq. A11a cannot be obtained,

Eq. A11b cannot be solved to obtainw(l). However, we can obtainw(l) using

certain approximations. Assuming that S2 is applied at l , x0 and DTc
S1S2 is

large so that the wavefront velocity of S2 is ;u0, and since Q1 ¼ u0, the DI

will be almost unchanged unless x . x0. In this case, one can approximate

the DI at x0 by d1ðx0Þ � DTc
S1S2 � a1ðlÞ � l=u0, which is the same as

Eq. A12. If S2 is applied at l . x0, Eq. A12 still holds. Therefore, inserting

Eqs. A12 and A13 into Eq. A11b, we obtain

C2 ¼Q0½DTc

S1S2 �a1ðlÞ� l=u0�1
Q

2

0

u0�Q0

½DTc

S1S2�a1ðlÞ

� l=u0�dc1tlnðu0�Q0�du0e
�½DTcS1S2�a1ðlÞ�l=u0�dc �=tÞ�1 l9;

¼Q0dc1
tQ

2

0

u0�Q0

lnðu0�Q0�du0Þ1x01h (A15)

where

l9 ¼ x0; if l, x0;
l; if l$ x0:

�
(A16)

Again assuming that DTc
S1S2 is large so that u0e

�½DTc
S1S2

�a1ðlÞ�l=u0�dc �=t ¼
u0e

�wðlÞ=t can be neglected in Eq. A15, one obtains the vulnerable window

by using Eqs. A14 and A15 as

wðlÞ ¼
Da� t

11su0

ln
su

2

0

uc1sucu0�u0

; if l,x0

sðx01h� lÞ� t

11su0

ln
su

2

0

uc1sucu0�u0

;if l$x0

:

8>><
>>:

(A17)

Equation A17 shows that if S2 occurs in the short APD region (l, x0), w is

independent of where S2 is applied, whereas if S2 occurs in the APD

gradient region (l . x0), w depends linearly on the S2 location, as shown in

Fig. 4. However, as l becomes closer to x0 1 h, w becomes smaller, and the

term u0e
�½DTc

S1S2
�a1ðlÞ�l=u0�dc �=t will become bigger so that it can no longer be

neglected in Eq. A15, and thus Eq. A17 will become less accurate and

invalid. For example, when l ¼ x0 1 h, w becomes negative in Eq. A17,

which is incorrect.

If APD gradient is descending (Fig. 3 B), i.e.,

aðxÞ ¼
amax; if x# x0;
amax � sx; if x0 , x, x0 1 h;
amin; if x$ x0 1 h;

8<
: (A18)

then conduction block occurs for the wave that propagates opposite to the

S1 wave (e.g., the S2* wave in Fig. 1 A) when APD gradient is greater than

the critical gradient. In this case, the waveback velocity of the S1 wave is

Q1ðxÞ ¼
u0; if x# x0

u0

1� su0

; if x0 , x, x0 1 h

u0; if x$ x0 1 h

8><
>: (A19)

and the solution of Eq. A4 is

t

2
u0lnð2e½d1ðxÞ�dc �=t � dÞ � u0d1ðxÞ ¼ x1C1; if x# x0;

(A20a)

Q0d1ðxÞ �
Q

2

0

u0 1Q0

½d1ðxÞ � dc 1 tlnðu0 1Q0

� du0e
�½d1ðxÞ�dc �=tÞ� ¼ �x1C2; if

x0 , x, x0 1 h; (A20b)
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t

2
u0lnð2e½d1ðxÞ�dc �=t � dÞ � u0d1ðxÞ ¼ x1C3; ; ifx$ x0 1 h;

(A20c)

where C1, C2, and C3 are integration constants and Q0 ¼ u0=ð1� su0Þ.
Again, w(l) cannot be explicitly solved from Eq. 20. For conditions in which

w(l) is large, it can be obtained similarly as in the ascending case. If S2 is

applied at l . x0 1 h, one can use Eq. A20c and the approximation of

d � e½d1ðxÞ�dc �=t to obtain d1ðx01hÞ � 2ðl� x0 � hÞ=u01d1ðlÞ with d1(l) ¼
DTS1S2 � a1(l) � l/u0. Similar to the ascending case, we obtain the

vulnerable window by using Eqs. A14 and A20b with the critical conditions

Eq. A12 and dc1ðx0Þ ¼ dc as:

In this case, w depends on the S2 location l whether S2 is given in short or

the sloping region of APD, differing from the ascending case. Again, for

small w, the term u0e
�½d1ðlÞ�dc �=t will become bigger so that it can no longer

be neglected in the derivation of Eq. A21, and it will become less accurate

and invalid.
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