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ABSTRACT TheS-layer ofBacillus sphaericus strain JG-A12, isolated from a uranium-mining site, exhibits a highmetal-binding
capacity, indicating that it may provide a protective function by preventing the cellular uptake of heavy metals and radionuclides.
This property has allowed the use of this and other S-layers as self-assembling organic templates for the synthesis of nanosized
heavymetal cluster arrays. However, little is known about the molecular basis of themetal-protein interactions and their impact on
secondary structure. We have studied the secondary structure, protein stability, and Pd(II) coordination in S-layers from the B.
sphaericus strains JG-A12andNCTC9602 to elucidate themolecular basis of their biological function and of themetal nanocluster
growth. Fourier transform infrared spectroscopy reveals similar secondary structures, containing;35% b-sheets and little helical
structure. pH-induced infrared absorption changes of the side-chain carboxylates evidence a remarkably lowpK, 3 in both strains
and a structural stabilization when Pd(II) is bound. The COO�-stretching absorptions reveal a predominant Pd(II) coordination by
chelation/bridging byAsp andGlu residues. This agreeswith XANESandEXAFSdata revealing oxygens as coordinating atoms to
Pd(II). The additional participation of nitrogen is assigned to side chains rather than to the peptide backbone. The topology of
nitrogen- and carboxyl-bearing side chains appears to mediate heavy metal binding to the large number of Asp and Glu in both
S-layers at particularly low pH as an adaptation to the environment from which the strain JG-A12 has been isolated. These side
chains are thus prime targets for the design of engineered S-layer-based nanoclusters.

INTRODUCTION

The regularly structured paracrystalline surface layers (S-layers)

are one of the most common surface structures found in

bacteria and archaea (1,2). Most of the S-layers are com-

posed of protein monomers with the ability to assemble in

two-dimensional arrays exhibiting either oblique, square, or

hexagonal lattice symmetry or other regular structures (3,4).

They possess regularly arranged pores of identical size that

enable the exchange of ions and small molecules between the

living cells and their environment. The uranium-miningwaste

pile isolate Bacillus sphaericus JG-A12 is enveloped by a

S-layer with a square symmetry, which is composed of iden-

tical protein monomers. The proteins are capable of selective

and reversible binding of large amounts of metals (5), thus

functioning probably as a barrier for toxic heavy metal ions in

the environment (6,7). This has raised interest in their

biotechnological applications for bioremediation (8) and for

the generation of metal nanoclusters (9,10) as has also been

shown for other S-layers (1,11,12). Here, we have studied

metal-protein interactions in S-layers to understand both the

molecular basis of a biological protection mechanism and the

implications for technological applications.

The development of cluster-assembled materials with dis-

crete, size-selected nanoparticles is of particular interest to

enable the fine-tuning of the properties of nanoparticles

(12,13). The latter usually differ significantly from those of

the bulk material from which they are formed (12), allowing

the generation of new materials (3). A promising approach

to produce such nanoparticles is the use of self-assembling

organic templates which allow the synthesis of a wide range

of inorganic nanocrystal lattices (3,14–17). Due to the crys-

talline arrangement of the S-layer, functional groups are found

in well-defined positions and orientations in the protein (3).

S-layers have been shown to function as templates in natural

mineralization processes (18–20) and have been used for the

synthesis of CdS (21), Au (3,10), Pt, and Pd cluster arrays

(22). In recent experiments, the S-layer of the closely related

strain B. sphaericus NCTC 9602 has been successfully used

to produce Pd-nanoclusters from bound Pd(II)-complexes by

electron irradiation (22). In contrast to the low numbers of

highly specific binding sites found in proteins that are con-

formationally regulated by metal-protein interactions, ultra-

violet/VIS (visible) spectroscopy on S-layers has demonstrated

the binding of 200–300 Pd complexes per S-layer monomer

(23). Despite the correspondingly low specificity of the indi-

vidual binding sites, which are also capable of binding a

variety of different metals, their large number is unique for

S-layers. This property must thus be linked to conserved

patterns of metal-interacting amino acids and structural fea-

tures that govern the accessibility of these groups. However,

no information about the mechanism of the initial Pd(II) com-

plexation, the impact on protein structure, and the functional

groups involved in Pd(II)-complexation has been obtained.
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As the sites of nanocluster growth are determined by the

metal-binding sites in the protein, their characterization and

identification is of prime interest for the determination of the

topology of metal nucleation within the protein matrix, as

well as for the specific engineering of metal-binding sites

through site-directed mutagenesis. Due to the lack of a high

resolution x-ray structure of S-layers, spectroscopy is cur-

rently the most powerful approach to characterize metal

binding.

In this study, extended x-ray absorption fine structure

(EXAFS), x-ray absorption near edge structure (XANES),

and Fourier transform infrared (FTIR) spectroscopy were

used to analyze the general features of the complexation

of Pd(II) within the large number of binding sites of the native

S-layer proteins of the strains B. sphaericus JG-A12 and

NCTC 9602. Specifically, the predominant chemical ele-

ments involved in the complexation are identified and their

location within side-chain or backbone groups is addressed.

In addition, the secondary structure and pH-dependent struc-

tural transitions of these proteins were studied because the

organisms are specifically adapted to a low pH environment.

Experiments were designed to investigate the function of

carboxylates in metal-protein interactions in these S-layers,

which are rich in Asp and Glu residues. The data evidence an

acidic average pKa, 3 of the titratable carboxylic acids. The

latter are specifically involved in metal-protein interactions

resulting in the stabilization of the secondary structure of

both S-layer proteins. Additional coordination by nitrogen is

likely to also originate in side-chain interactions rather than

coordination to the peptide backbone. The data reveal a re-

lation between metal binding and S-layer stability at low pH,

indicative of an adaptation to the specific environment from

which the strain JG-A12 has been isolated. These data iden-

tify prime targets for the engineering of metal-binding sites

in S-layer proteins.

MATERIALS AND METHODS

Isolation of the S-layer protein

Both B. sphaericus strains, JG-A12 and NCTC 9602, were grown in nutrient

broth, containing 3 g/L meat extract (Merck KGaA, Darmstadt, Germany)

and 5 g/L Bacto Peptone (Becton, Dickinson, Franklin Lakes, NJ). Cells

were harvested at the late exponential growth phase by centrifugation at

10,000 3 g for 20 min. Cell biomass was washed once, centrifuged, and

resuspended in a buffer solution of 50 mM TRIS-HCl, 1 mM MgCl2 3 6

H2O, 3 mM NaN3, pH 7.5 (standard buffer). For the removal of the bacterial

flagella from cells of B. sphaericus JG-A12, the cells were treated with a

rotating-blade bender IKA T8 (IKA Labortechnik, Stauffen, Germany) at

maximum speed for 10 min at 4�C. Flagella-free cells were harvested by

centrifugation at 6,000 3 g for 10 min at 4�C. The biomass of both B.

sphaericus strains was resuspended 1:1 in standard buffer, and a few crystals

of DNase II and RNase were added. The cells were disintegrated using a

high-shear fluid processor (M-110S Microfluidizer processor, Microfluidics,

Newton, MA) at 4�C, a pressure of 960 bar, and three passes, which results

in a desintegration rate of .99%. After washing the cell wall fragments

two times in standard buffer, the plasma membranes were solubilized in 1%

Triton X-100 in standard buffer for 10 min at room temperature. Remain-

ing cell wall fragments were washed twice. Peptidoglycan was lysed by

incubating the samples in a standard buffer containing 0.2 mg/ml lysozyme

for 6 h at 30�C. The S-layer fraction was washed several times, resuspended

in standard buffer, and stored at 4�C.
For further purification of the S-layer, protein suspensions were mixed

with 6 M guanidine hydrochloride in 50 mM Tris, pH 7.2, until the solu-

tions became clear. After stirring the solutions for 2 h at room temperature,

nonprotein components were precipitated by centrifugation at 12,400 3 g
for 60 min at 4�C. The supernatants were dialyzed two times against 2 l 10

mM CaCl2, 3 mM NaN3 for 24 h at 4�C using dialysis tubings with a

molecular weight cutoff of 50,000. Reassembled S-layers were harvested by

centrifugation at 12,400 3 g for 60 min at 4�C, resuspended in 10 mM

CaCl2, 3 mM NaN3, and stored at 4�C until use. Protein concentrations were

determined using the Protein Assay Kit (Sigma-Aldrich Chemie GmbH,

Deisenhofen, Germany) according to the manufacturer’s instructions.

Metalization of the S-layer

For sorption of Pd(II), the protein was dialyzed against H2O and 10 mg of it

were incubated in 100 ml of a solution of 2 mM Na2PdCl4 (pH ¼ 3.1), which

was prepared 24 h before the use and kept in the dark. After 3 h of incubation at

room temperature under shaking in the darkness, the sample was centrifuged

and the pellet was resuspended in H2O. Residual salts were removed by

dialysis of the metalized proteins against H2O. For EXAFS analysis, the protein

samples were dried in a vacuum oven (48 h, 80�C) and pulverized. Previous

controls done in our laboratory (C. Hennig, J. Raff, T. Reich, and S. Selenska-

Pobell, unpublished data) revealed that the EXAFS spectra of Pd(II)-bound

S-layers dried at 80�C and 30�C are almost superimposable, showing that the

Pd(II) coordination is very little affected by the dehydration temperature. This is

in agreement with the high stability of S-layer secondary structures (4).

X-ray absorption spectroscopy

Palladium K-edge x-ray absorption spectra were collected at the Rossendorf

Beamline located at the European Synchrotron Radiation Facility (ESRF),

Grenoble, France (24), using a Si(111) double-crystalmonochromator and Si-

coated mirrors for focusing and rejection of higher harmonics. Samples were

cooled to 30 K in a closed-cycle He cryostat, and data were collected either in

transmission mode or in fluorescence mode using an Ar-flushed ionization

chamber or a 13-element Ge detector, respectively. The energywas calibrated

by measuring the Pd K-edge transmission spectrum of a palladium foil and

defining the first inflection point as 24350 eV. The Pd-loaded samples were

measured as dry samples. TheEXAFSoscillationswere isolated from the raw,

averaged data by removal of the preedge background, approximated by a first-

order polynomial, followed by m0-removal via spline fitting techniques and

normalization using a Victoreen function. Dead-time correction was applied

to fluorescence data. The theoretical scattering phase and amplitude functions

used in data analysis were calculated using FEFF8 (25). The amplitude re-

duction factor was held constant at 1.0 for the FEFF8 calculation and EXAFS

fits. The shift in threshold energy,DE0, was varied as a global parameter in the

fits. Ametallic Pd foil; powder form of PdO, PdCl2, and [Pd(NH3)4]Cl2; and a

solution of 2 mMNa2PdCl4 (pH 3.1) were used as reference compounds. For

the Pd-loaded S-layer protein spectrum, data for phase shifts and backscat-

tering-amplitudes were obtained from the PdO reference compound (Pd-O

and Pd-Pd scattering).

Proteolysis of S-layer proteins

The endoproteinase Glu-C recognizes and cleaves specifically -Glu-P19- and

-Asp-P19- bonds at pH ¼ 7.8 in phosphate buffer. For digestion with the

endoproteinase Glu-C (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany),

200 mg of the purified S-layer proteins and of the metalized proteins were

resuspended in 32 ml of a 50 mM KH2PO4/Na2HPO4 buffer (pH ¼ 7.8).
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After addition of 2 mg of the endoproteinase Glu-C, the solution was

incubated for 24 h at 37�C. The resulting fragments were separated by

sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with a 4%

stacking gel and a 10% or 12.5% separation gel as described (26) using the

Mini-PROTEAN II (Bio-Rad GmbH, Munich, Germany). After electropho-

resis, gels were stained with Coomassie brilliant blue R 250 or with Sypro-

Ruby (Bio-Rad) and visualized with a VersaDoc Imaging System (Bio-Rad).

The densitometric analysis of the gels was carried out with the software

RFLPscan (Scanalytics, BD Biosciences, Rockville, MD).

FTIR

Spectra were recorded with a Vector22 equipped with a dialysis-coupled

internal reflectance unit Bio-ATR-II (Bruker Optics GmbH, Ettlingen,

Germany) and a liquid nitrogen-cooled mercury-cadmium-telluride detec-

tor. A total of 50 ml of suspensions of S-layers at a concentration of 40–50

mg/ml were spread on the ATR-crystal (Si). A total of 10 mMTris-Cl buffer,

pH 7, was layered on top of the sample, whichwas then sealed with a dialysis

membrane (10 kD MW cutoff). Lowering of the pH was carried out by

extensive buffer exchange through tubings connected to the dialysis volume

and a peristaltic pump. Interferograms were recorded at 2 cm�1 resolution

and coadded for the calculation of absorption spectra. Reference spectra

were recorded for each measured pH with the identical buffer solutions, and

water absorption was corrected in the final spectra by minimizing the broad

absorption band of water at 2000 cm�1. For experiments in D2O, 2 ml of

S-layer suspension were spun 15 min at 12,000 3 g (MiniSpin table cen-

trifuge, Eppendorf, Westbury, NY) and the pellet resuspended in D2O

sample. The procedure was repeated three times with 1 h waiting between

spins. The pH was adjusted using microliter amounts of NaOD and DCl in

otherwise unbuffered solution. The sample was kept overnight in D2O at

room temperature. Spectra were recorded the next day immediately after a

final D2O exchange and transfer of the pellet to the sealed ATR-cell. All

measurements were done at room temperature. The amide I and II absorption

was fitted by Gaussian/Lorentzian lines using the spectrometer software

OPUS. Positions of the main components in the amide I range around 1630–

1640, 1650–1660, and 1680–1690 cm�1 and in the amide II band were

determined from the negative peaks in the second derivative spectrum and

fixed in an initial fit of band shapes and widths. In the final fit, all parameters

were free to vary.

RESULTS

Secondary structure and stability of native
S-layer proteins

We have studied by FTIR the secondary structure of S-layers

of B. sphaericus strains NCTC 9602 and JG-A12 as a

function of pH and Pd(II) binding. The vibrational modes of

the peptide backbone give rise to amide I (peptide C¼O

stretching) and amide II (peptide C-N stretching coupled to

NH bending) absorptions in the 1620–1690 and 1540–1560

cm�1 range, respectively. The amide I absorption frequency

depends on protein secondary structure allowing us to assess

relative amounts of secondary structure based on the inten-

sity of corresponding spectral components (27–29). Here, we

have used attenuated total reflectance (ATR) FTIR-spectros-

copy (30,31) coupled to dialysis (32), which allows us to

record infrared (IR)-spectra in bulk aqueous phase at varying

pH. Fig. 1 c shows the absorption spectrum of strain JG-A12

in the amide I and II range at pH 6. The amide I peak is found

at 1636 cm�1. Individual spectral components centered at the

negative peaks in the second derivative spectrum (Fig. 1 a)
were fitted (see Materials and Methods). The main compo-

nent at 1635 cm�1 is indicative of b-structure as well as the

band at 1685 cm�1. The integral intensity of these bands

suggests that;35% of the peptide backbone forms b-sheets.

The frequency of the second-largest component at 1658 cm�1

lies in a region of strong overlap of a-helical structure (1650–

1656 cm�1) disordered peptide backbones (1645–1657

cm�1) and turns (typically absorbing above 1660 cm�1). It

is thus likely that several structures contribute to the 1658-

cm�1 -absorption. The lack of the 1658-cm�1 shoulder in the

FIGURE 1 IR absorption in the amide spectral range of a suspension of

S-layer from strain JG-A12. The structure-sensitive amide I mode (c) was
approximated by fitted bands whose frequencies where determined from

negative peaks in the second derivative of the spectrum measured in H2O

(a). Original data and the sum of the fitted components are superimposed.

The integral intensity of the bands above 1600 cm�1 was used to estimate

the type and amount of secondary structure (summarized in Table 1). Dis-

appearance of the shoulder at 1658 cm�1 in D2O (b) argues for a large

contribution from turns and unordered structure rather than a-helices (52).

(d) Absorption in D2O (shaded spectrum), where a better distinction be-

tween turns and random structure is achieved as evident from the larger

separation of the two fitted bands (shaded) at 1667 and 1649 cm�1, re-

se two peaks in the amide I9 range are shown. Spectra are scaled to the 1635

cm�1 peak, which is barely affected in D2O as is typical of b-sheet

absorption).
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second derivative spectrum when measured in D2O (Fig. 1 b)
particularly argues for a large contribution of disordered struc-

ture, typically exhibiting a ;10-cm�1 downshift in D2O,

whereas the amide I modes of helices and turns respond less

to the isotope exchange (33). The smallest component at

1677 cm�1 can be assigned to b-turns (5% integral intensity)

typically absorbing above 1660 cm�1. Table 1 summarizes

the amide I band assignments for both strains. The similar

spectral properties of both strains imply very similar sec-

ondary structure compositions. The IR-based assessment of

b-sheet is in agreement with secondary structure predictions,

whereas the amount of a-helices is ,20%, in contrast to up

to 50% predicted by the algorithms listed in Table 1. The low

helical amount is confirmed by the analysis of the amide

I9 mode in D2O (Fig. 1 d) where the expected downshift

of the high frequency band of the b-sheet to 1682 cm�1 is ob-

served. The band analysis resolves a 1649 cm�1-absorbing

component, i.e., at lower frequency than the 1651–1653 cm�1

range typical of helices. This indicates that the 1649 cm�1

band accounts mainly for absorption by random structure

and cannot be fully assigned to helices. There is also no

indication of a component at 1630 cm�1, a frequency typical

of strongly solvent-interacting a-helices. In the region of

turns, however, the D2O measurements provide a more

accurate description, because overlapping contributions from

random structures (mainly accounted for by the 1658 cm�1

in H2O) are downshifted and allow the appearance of a clear

1667-cm�1 component in the fit. This band is typical of the

absorption by turns and probably describes the high fre-

quency part of the amide I9 band more realistically than the

strong overlapped fitted bands at 1677 and 1658 cm�1 inH2O.

Therefore, the contribution of turns shown in Table 1 is taken

from the D2O experiment, whereas the amount of b-sheet

determined from the H2O experiments is fully reproduced

with the spectra obtained in D2O.

The secondary structure of both strains shows little de-

pendence on pH down to pH 2.5 as seen for JG-A12 in Fig.

2 A. Below this pH, the protein denatures and the amide I band

broadens and shifts irreversibly to 1625 cm�1. In addition,

acidification reduces the IR absorption of the symmetric and

antisymmetric COO�-stretching modes at 1400 and in the

1560–1580 cm�1 range, respectively, because these groups

become protonated. Correspondingly, the absorption by the

C¼O-stretching mode of protonated carboxylic acids at

;1720 cm�1 increases with acidification. These changes can

be visualized by the subtraction of a spectrum recorded at

neutral pH from that recorded at pH 0.8 (Fig. 2 B). The pH
dependence of the 1400 cm�1 band reveals an unusual low

pK of 2.8–3.0 at which half-maximal reduction of the COO�

absorption occurs. Both strains exhibit virtually undistin-

guishable responses to pH as is evident from the superpo-

sition of their pH-induced difference spectra.

Secondary structure and stability of
Pd(II)-bound S-layers

Fig. 3 A shows the pH-dependent IR-absorption of Pd(II)-

bound S-layers from strain JG-A12. At neutral pH, the amide

I mode is downshifted by 4 cm�1 versus the native protein.

The amide II peak appears broadened and upshifted in fre-

quency. However, acidification shows that the actual amide

II band is superimposed with a broad absorption at 1562 cm�1

(compare Figs. 2 A and 3 A). Based on its pH sensitivity (as is

obvious in the difference spectrum in Fig. 3 B), we assign the
large integral intensity at ;1562 cm�1 to the antisymmetric

COO�-stretching vibrations in the Pd(II)-bound S-layer. The

center frequency of these vibrations is downshifted by 10

cm�1 versus the native S-layer of JG-A12. The unobscured

amide II mode is seen at 1533 cm�1 in the acidified sample at

pH 0.7 when the COO� groups are replaced by COOH. In

addition, metal binding causes splitting of the symmetric

COO�-stretching mode into two components at ;1410 and

1386 cm�1. The metal-induced appearance of absorption of

the symmetric COO� stretch above 1400 cm�1 has been also

observed with Ca21 binding to carboxylates in proteins (34)

strongly suggesting that carboxylates coordinate the metal

ion also in the S-layers. The metal-induced spectral features

are identical in both B. sphaericus strains except for the

Pd(II)-dependent downshift of the antisymmetric COO�-

stretching vibration, which is not seen in the reference strain

NCTC 9602. Remarkably, acidification below pH 1 of the

metal-bound S-layers does not generate the 1625 cm�1 amide

I absorption of the denatured state, revealing an increased

resistance of the Pd(II)-complexed proteins to acidic pH.

TABLE 1 Amide and carboxylate IR-absorptions for S-layers

of the B. sphaericus strains JG-A12 and NCTC 9602

Amide I components (cm�1)

Integral band intensity (%)

JG-A12 NCTC 9602

1687 11 6

1676 5 5

1658 25 25

1635 39 48

1616 20 16

Structure assignment % %

Helix ,18 (10–45) ,18 (9–44)

b-Strand 33 (25–50) 36 (24–52)

Turns 10–20 (0–40) 10–20 (0–40)

Random .30 (0–40) .30 (0–40)

Carboxylate vibrations Native Pd(II)-bound Native Pd(II)-bound

s COO� (cm�1) 1400 1386�1410 1400 1386�1410

as COO� (cm�1) 1570 1560 1573 1572

C¼O stretch 1720 1720 1720 1720

Secondary structure estimation is based on published assignments (27,

29,53) as reviewed in Barth and Zscherp (52). The range of results of

secondary structure predictions from primary structure-based algorithms

(54–56) is shown in brackets. Integral intensities were transformed into

relative amounts of secondary structure using absorptivity ratios of

0.6:1:1.5 for random coils and turns: a-helices, b-sheet (57).
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Digestion with Glu-C

The FTIR results strongly indicate complexation of Pd(II) by

Asp and Glu side chains and a concomitant stabilization of

the secondary structure. The spectroscopically derived involve-

ment of carboxylic acids in Pd(II) binding is strongly sup-

ported by the digestion of the S-layer proteins with the

endoproteinase Glu-C. At pH ¼ 7.8, the enzyme cleaves

specifically -Glu-P19- and -Asp-P19- bonds (presumably

located on the surface of the protein). Proteolytic digestion of

the purified recrystallized S-layer protein of strains JG-A12

and NCTC 9602 with the Glu-C yields five and nine frag-

ments, respectively (Fig. 4 A). The S-layer protein of JG-A12
(1207 aa) contains 63 Glu and 62 Asp residues, whereas that

of NCTC 9602 (1197 aa) possesses 64 Glu and 77 Asp res-

idues (35). In both cases the Glu and Asp residues are reg-

ularly distributed in the amino acid sequences. Thus most of

the cleavage sites were buried inside the folded protein and

FIGURE 2 (A) pH-dependent IR-absorption of the S-layer of strain

JG-A12. A suspension of S-layers (20–30 mL) was measured in attenuated

total reflection on a Si-crystal (Bio-ATR-II) and was successively exposed

to solutions of different pH (10 mM sodium phosphate) by dialysis. The

protonation of carboxylic acids causes the reduction of the COO�-stretching

modes, which have lost half of their initial intensity at pH 3 (symmetric

COO� at 1400 cm�1). Irreversible denaturation is evidenced by the down-

shift of the amide I absorption at pH 0.7. (B) pH-induced absorption changes

(spectra at pH 0.8 minus spectra at pH 7) for S-layers of JG-A12 (thick line)

and NCTC 9602 (thin line) visualize both the carboxylate and amide I

absorption change in the pH 7 to pH 0.7 interval.

FIGURE 3 (A) pH-dependent IR-absorption of Pd(II)-bound S-layer of

strain JG-A12. (B) pH-induced absorption changes in S-layers from strain

JG-A12 (thick line) and NCTC 9602 (thin line) calculated as in Fig. 2 show

the carboxylate absorption changes, whereas amide absorption changes are

largely blocked. The asymmetric COO�-stretching modes are enhanced

versus the native proteins and their average frequency is downshifted by

10 cm�1 in JG-A12, whereas it is not altered in NCTC 9602. Experimental

conditions as in legend to Fig. 2.
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the difference has to be explained by both deviations in the

primary structure, especially in the C-terminal parts (35), and

differences in the protein conformation. However, the

densitometric analysis demonstrates that the endoproteinase

only digests ,5% of the Pd(II)-complexed S-layer protein of

JG-A12 (Fig. 4 B, lane 3). Additionally occurring bands

were the result of a slight fragmentation caused by the

metalization procedure or the metalization itself (Fig. 4 B,
lane 4). In summary, these results strongly support the sug-

gested interaction of Pd(II) with carboxyl groups, which,

thereby, become blocked for proteolytic attack by Glu-C.

Pd(II) coordination studied by XANES spectroscopy

Pd(II)-protein interactions were further addressed by XANES

spectroscopy. XANES provides information on the average

oxidation state and local coordination environment of metals

such as Pd (36). Small shifts (a few eV) in XANES ab-

sorption edge energies can occur when a metal changes its

average oxidation state. Just above the absorption edge, light

elements such as C, N, and O produce a strong signal (white

line), rendering XANES particularly useful to detect Pd-O

and Pd-N shells as their contribution to EXAFS amplitudes

is very weak. We have based the distinction between Pd-O,

Pd-N, Pd-Cl, or Pd-Pd bonds in metal-bound S-layers on the

reference compounds PdO, [Pd(NH3)4]Cl2, PdCl2, Na2PdCl4,

and Pd foil.

Fig. 5 shows the XANES regions of the XAS spectrum

obtained with the Pd(II)-bound S-layer from strain JG-A12

and for reference compounds containing two oxidation states

of palladium: Pd(II) (PdO, [Pd(NH3)4]Cl2, PdCl2, Na2PdCl4)

and metallic Pd (0.025-mm thick palladium foil). Compar-

ison of the experimental spectrum to the reference spectra

clearly shows that Pd is present as Pd(II) in the Pd-loaded

S-layer protein sample because the two absorption maxima

(;24360 and;24380 eV) characteristics of metallic Pd (fea-

turemarked a in Fig. 5) are absent. The fine structure of XANES

of the Pd-loaded S-layer resembles that of [Pd(NH3)4]Cl2
and PdO, indicating that Pd-O and Pd-N are the predominant

bonds that contribute to the metal-protein binding.

Pd(II) coordination studied by EXAFS spectroscopy

EXAFS spectroscopy samples the local structure around an

atom (37). It provides element-specific, short-range struc-

tural and chemical information on Pd coordination, the iden-

tities, coordination numbers of the neighboring atoms, and

their bond distances. Here, we have used this technique to

address the coordination environment of Pd and to verify its

chemical identity in the palladium-loaded S-layer protein of

B. sphaericus JG-A12 sample. We have studied reference

compounds to identify possible contributions from multiple

coordination modes of Pd(II) when bound to S-layers. The

data ranges of Dk and DR used in the fits of the EXAFS

spectra are presented in Table 2. The k3 weighted EXAFS

FIGURE 4 SDS-gelelectrophoresis. (A) The S-layer proteins of B.

sphaericus JG-A12 (lane 1) and NCTC 9602 (lane 2) were digested with

Glu-C and separated using a 12.5% gel. M, marker. (B) Native and Pd(II)-

complexed S-layer proteins of B. sphaericus JG-A12 were digested with

Glu-C and analyzed using a 10% gel. Lane 1: purified S-layer protein. Lane

2: Glu-C. Lane 3: purified S-layer protein with complexed Pd(II) after

digestion with Glu-C. Lane 4: S-layer protein with complexed Pd(II); M,

marker.

FIGURE 5 Pd K-edge XANES region of EXAFS spectra of Pd-loaded

S-layer protein of B. sphaericus JG-A12 and reference compounds (Pd foil,

PdO, Na2PdCl4, [Pd(NH3)4]Cl2, and PdCl2).

TABLE 2 Data range of Dk and DR used to fit the EXAFS

spectra of the S-layer samples and the reference compounds

Sample Dk DR

Pd foil 3.5–16.5 2–7.2

PdO 3.3–16 1–7

PdCl2 3.5–16 1–3.8

Pd[(NH3)4]Cl2 3.5–15 1–2

Na2PdCl4 3.5–15 1–2.3

S-layer 3.3–15 1–3.5
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spectra of the reference compounds: Pd foil, PdO, PdCl2,

[Pd(NH3)4]Cl2, and Na2PdCl4, and their corresponding Fou-

rier transforms (FT) are shown in Fig. 6. Table 3 summarizes

the fit parameters. It is well established that the FT of x(k)
over a finite k range is a radial structure function exhibiting a
series of peaks whose positions and magnitudes are related to

the interatomic distances and the number of atoms in the

different coordination shells, respectively. FT peak distances

are reported in units of angstroms and are uncorrected for

scattering phase shift, i.e., R1 DR. In the case of Pd foil, the
FT peaks of metallic Pd were attributed to six Pd-Pd shells

with distances of 2.75, 3.89, 4.77, 5.41, 6.15, and 7.34 Å.

The major peak corresponds to ;12 Pd atoms at a Pd-Pd

interatomic distance of 2.756 0.01 Å as reported (38) and in

agreement with x-ray diffraction studies. However, in the

case of the PdO spectrum, the FT reveals several shells con-

taining four oxygen atoms at 2.02 Å, consistent with x-ray

diffraction studies (2.018 Å) (39), four palladium atoms at

3.05 Å, and five palladium atoms at 3.43 Å. Additional

Pd-Pd contributions appear beyond 3.5 Å, corresponding to

higher coordination shells. The Na2PdCl4 and [Pd(NH3)4]Cl2
FT spectra indicate that palladium is coordinated to 3–4

chloride atoms at a distance of 2.32 Å and 3–4 nitrogen atoms

at 2.05 Å, respectively. The nearest environment of Pd in

PdCl2 consist of 4 Cl (2.31 Å) and 2–3 Pd (3.77 Å). The latter

results are in good agreement with those obtained with x-ray

diffraction (40).

The Pd K-edge EXAFS spectrum of the palladium species

formed on S-layer protein from B. sphaericus strain JG-A12

and its corresponding FT are shown in Fig. 7 as calculated

with two models (see below). The data exhibit an excellent

signal/noise ratio allowing analysis up to 15 Å�1 as sum-

marized in Table 4. Four peaks are found at bond distances

of 2.01, 2.49, 3.02, and 3.41 Å corresponding to Pd-O, Pd-O,

Pd-Pd, and Pd-Pd bonds, respectively. The distances were

identified using Pd-O and Pd-Pd backscattering phase and

amplitude functions obtained from atomic coordinates of

PdO using the FEFF 8 program. The first shell can be fitted to

;3–4 oxygen atoms at a distance of 2.01 Å. This is in good

agreement with the crystal structure of palladium acetate

where each palladium is surrounded by four bridging acetate

ligands with Pd-O distances in the range of 1.973–2.014 Å

(41). These results strongly support the assignment to ox-

ygen atoms particularly from the carboxyl groups of aspartic

and glutamic acids demonstrated by FTIR.

The second FT shell at 2.49 Å does not correspond to a

peak in the model compound spectra. It may be due to a side-

lobe peak, originating from a truncation effect due to the

limited reciprocal space integrated in the FT (in the fol-

lowing designated model a) or may have a structural origin

(model b). A similar FT peak at 2.1 Å (at a distance of 2.49

Å) is present also in the Pd reference sample PdO (Fig. 6).

Fig. 8 compares the EXAFS amplitudes of two Pd-S-layers

prepared and measured under identical conditions at pH 3.1

and pH 2. According to model a, peak B may be a side-lobe

of peak A. The intensities of both peaks change proportion-

ally with the change in pH as expected for side lobes in a

given Fourier-integration range. On the other hand, this is

also true for the intensities of the peaks at larger distances.

Thus, the assignment to a side lobe is ambiguous.

In model b, the shell at distance 2.49 Å may originate in

the contribution from a light atom (oxygen or nitrogen as was

demonstrated by XANES and FTIR) since this bond distance

is too short for a Pd-Pd bond length. EXAFS does not allow

us to distinguish between light elements. The structural

parameters of the Pd complexes formed by the S-layer

FIGURE 6 Pd K-edge k3-weighted EXAFS

spectra (left) and the corresponding FT (right)

of the Pd reference compounds.
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protein of B. sphaericus JG-A12 according to the two models

are presented in Table 4. Both models are statistically equiv-

alent best-fit models.

DISCUSSION

It has been shown that the heavy-metal-binding capability of

the S-layer of B. sphaericus strain JG-A12 may provide a

biological barrier for the entry of uranium into the cell (5–7).

This discovery has prompted biotechnological investiga-

tions of the use of these proteins for the bioremediation

of uranium-containing environmental sites (8). Alterna-

tively, these S-layers have been used as organic templates

for the generation of nanostructured heavy metal clusters

(7,10,42) as reviewed recently (9). The biological function as

well as the technological applications are based on a primary

interaction between a metal cation and the protein matrix.

Here, we have addressed the molecular details of metal

binding and its impact on protein secondary structure and

stability using IR and x-ray absorption spectroscopic (XAS)

methods. XAS can be performed under nondestructive

conditions. This agrees with our previous work on the

uranium LIII edge XAS characterization of the U complexes

formed by cells and isolated S-layer protein from B.
sphaericus (7). In addition, combined XAS and near IR

absorption spectroscopy has been applied to the complex of

human serum transferrin with Np (IV), where also no

irradiation damage was observed (43). The investigations

reported here have revealed four salient properties of S-layer

proteins of the two B. sphaericus strains JG-A12 and NCTC

9602: 1), predominance of b-sheet secondary structure over

helical structure (for quantitation see Table 1), 2), an average

TABLE 3 EXAFS structural parameters of the Pd

reference compounds

Sample Shell N* R[Å]y s2 [Å2]z DE[eV]

Pd foil Pd-Pd1 11.5 6 0.4 2.75 0.0021 �18.0

Pd-Pd2 4.2 6 0.9 3.89 0.0019

Pd-Pd3 17.6 6 2 4.77 0.0026

Pd-Pd4 14.0 6 2 5.41 0.0013

PdO Pd-O1 3.6 6 0.3 2.02 0.0020 �10.9

Pd-Pd1 4.0 6 0.3 3.05 0.0026

Pd-Pd2 5.0 6 0.4 3.43 0.0018

[Pd(NH3)4]Cl2 Pd-N 3.4 6 0.2 2.05 0.0019 �14.5

PdCl2 Pd-Cl 3.9 6 0.2 2.31 0.0020 �15.6

Pd-Pd 2.8 6 0.3 3.77 0.0027

Na2PdCl4 Pd-Cl 3.2 6 0.2 2.32 0.0010 �12.2

*Errors in coordination numbers are 625% and standard deviations as

estimated by EXAFSPAK.
yErrors in distance are 60.02 Å.
zDebye-Waller factor.

FIGURE 7 Pd K-edge k3-weighted EXAFS spectra (left) and the

corresponding FT (right) of the Pd complexes formed by S-layer of B.
sphaericus JG-A12 according to model a lower traces and model b upper

traces.

TABLE 4 EXAFS structural parameters of the palladium

complexes formed by the S-layer protein of B. sphaericus

JG-A12 according to the models a and b

Sample Shell N* R[Å]y s2 [Å2]z DE[eV] Error§

S-layer protein Pd-O 3.4 6 0.1 2.01 0.0037 �12.1 0.29

(model a) Pd-Pd1 1.5 6 0.1 3.03 0.0027

Pd-Pd2 3.1 6 0.5 3.43 0.0078

S-layer protein Pd-O1 3.4 6 0.1 2.01 0.0039 �14.15 0.26

(model b) Pd-O2 1.5 6 0.3 2.49 0.0050

Pd-Pd1 1.1 6 0.1 3.02 0.0019

Pd-Pd2 4.2 6 0.6 3.41 0.0094

*Errors in coordination numbers are 625% and standard deviations as

estimated by EXAFSPAK.
yErrors in distance are 60.02 Å.
zDebye-Waller factor.
§Error is given as the normalized fit error+(xdata(k)k

3 � xfit(k)k
3)2/(P � F).

(P number of data points, F number of variables.)

FIGURE 8 FT of the EXAFS spectra of Pd-treated S-layers at pH 2.0 and

pH 3.1. Note the constant ratio of the amplitudes of the peak A and peak B

indicating that the latter may be a side lobe of peak A. See text for details.
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pKa near pH 3 of the solvent-accessible carboxylates, 3), the

involvement of carboxyl groups in structure-stabilizing

metal-protein interactions, and 4), coordination of Pd in

oxidation state II by oxygen and nitrogen. The large

contribution of b-sheets deduced from the low amide I

frequency in both strains is in general agreement with

structure predictions for S-layer proteins (44). In contrast, the

amount of predicted a-helices depends strongly on the

prediction method, whereas the IR data presented here

indicate an upper limit of 18% a-helical structure.

Unexpectedly, Pd(II) binding stabilizes the S-layer sec-

ondary structure against acidification. The amide I frequency

of the Pd (II)-bound samples shows less response to acid-

ification than the native proteins (2 cm�1 vs. 11 cm�1 pH-

induced downshift), resulting in an amide I mode that is

4 cm�1 higher in the acidified metal-bound state versus the

irreversibly denatured metal-free state. Stabilization may be

mediated by metal-side-chain and metal-backbone interac-

tions. The data strongly argue for metal-carboxylate inter-

actions as an important mode of Pd(II) binding and thus of

structural stabilization. Biochemical evidence for coordina-

tion by carboxylates is provided by the fact that the Pd(II)-

bound S-layer of B. sphaericus JG-A12 becomes fully

protected against proteolytic attack by the -Asp-P19- and

-Glu-P19-specific protease Glu-C. Although the S-layer

protein of B. sphaericus JG-A12 possesses 125 possible

cleavage sites regularly distributed within the primary

structure of the protein, only four of these can be attacked

by Glu-C. This indicates the inaccessibility of most of the

carboxylates due to their structural seclusion and/or the large

size of the enzyme. The Pd(II)-dependent blockade of the few

accessible sites fully supports the role of Asp and Glu in

Pd(II) complexation. However, a much larger number of sites

is involved in complexation than only those that affect Glu-C

digestion. From preliminary inductive coupled plasma mass

spectroscopy (ICP-MS) we have obtained an estimate of

more than 400 mol Pd bound per mol S-layer protein of B.
sphaericus JG-A12, in agreement with the several hundreds

of metal atoms bound per monomer of other S-layers (23).

Spectroscopic evidence is based on the IR absorption of side-

chain carboxylates. S-layers from both strains exhibit an in-

crease in the absorption of the antisymmetric COO�-stretching

modes in the 1550–1580 cm�1 range and a broadening of the

symmetric COO�-stretching absorption. In principle, amide

II modes may contribute to the Pd(II)-induced absorption

increase in this range. However, measurements in D2O, where

the amide II absorption shifts to ;1450 cm�1 (C-N stretch-

ing uncoupled from N-H bending upon H/D exchange)

reveals that the intensity increase and the pH sensitivity

between 1560 and 1580 cm�1 must be solely attributed to

carboxylates (free from overlap with amid II9 in D2O),

whereas no pH sensitivity is observed in the amide II9modes

(free from overlap with carboxylates). Thus, at neutral pH,

the antisymmetric COO�-stretching absorption in D2O is

larger in the Pd(II) -bound state in the S-layer of JG-A12 than

in the metal-free state (Fig. 9, a and b). The assignment to

carboxylates is confirmed by the fact that the 1560–1580 cm�1

bands vanish completely upon acidification when the COO�

groups are transformed into COOH groups (Fig. 9, c and e,
for JG-A12, Fig. 9, d and f, for NCTC 9602). The broad

C¼O absorption of the COOH groups in the acidified

samples and its low frequency (see also Figs. 2 and 3) evi-

dence a broad distribution of H-bond strengths typical of

solvent-accessible protonated carboxyl groups.

FIGURE 9 FTIR spectra of S-layers of B. sphaericus strain JG-A12 and

NCTC 9602 measured in D2O. (a) Spectrum of JG-A12 at pH 7, metal free. (b)

Spectrum of JG-A12 at pH 7, Pd(II) bound. Note the broadening of the 1400

cm�1 absorption (symmetric COO� stretching) and the increase of the;1560

cm�1 absorption (antisymmetric COO�- stretching) as compared to a. The

antisymmetric COO�-stretching modes where fitted by two components

absorbing at 1576 and 1560 cm�1 (inset). Besides the strong absorption

enhancement, the salient effect of Pd(II) binding is the 10 cm�1 downshift of the

1560 cm�1 absorption, whereas the upshift of the high frequency part is less

pronounced. (c) Absorption of JG-A12 in the Pd(II)-bound state acidified with

DCl. (d) Absorption of NCTC 9602 in the Pd(II)-bound state acidified with

DCl. Note the absence of residual absorption in the 1560–1570 cm�1 range and

the lack of pH sensitivity in the amide II9 mode (1450 cm�1) in c and d as

compared to a and b. (e) Absorption of JG-A12 in the metal-free state acidified

with DCl. (f) Absorption of NCTC 9602 in the metal-free state acidified with

DCl. Note the correspondence of the amide II9modes in c and e and in d and f.
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The spectra further show that Pd(II) binding shifts the

center of the antisymmetric stretching frequency from 1567

to 1558 cm�1 in the S-layer of B. sphaericus JG-A12 (Fig. 9,
a and b). Correspondingly, the average frequency difference,
D, between antisymmetric and symmetric COO�-stretching

modes is reduced. In model compounds, this has been found

to be characteristic of carboxylates that chelate a metal ion

rather than coordinating it in unidentate fashion, where an

upshift of the antisymmetric COO�-stretching mode and an

increase of D is typically expected (45). The relation between

carboxylate vibrations and the type of metal ion coordination

in proteins has been established in studies of various Ca21-

binding proteins (46,47). Again, a downshift of the anti-

symmetric COO� stretch was found to be correlated with

bidentate coordination. Thus, bidentate coordination appears

to be the predominant Pd(II) binding mode in the S-layer of

strain JG-A12, whereas unidentate coordination seems to be

less abundant. The lack of a significant shift of the anti-

symmetric COO�-stretching mode in NCTC 9602 suggests

that a bridging coordination is more prevalent as this binding

mode has little effect on this mode in Asp and Glu side

chains in solution. The magnitude of the described effects on

the COO� absorption implies that the vast majority of carbox-

ylates is affected by Pd(II) binding. For example, the IR-spectral

changes caused by Ca21 binding to the four carboxylate-

containing binding sites in calmodulin (47) containing 148

amino acids would be barely visible on the scale that covers

the amide I absorption of the ;10-fold larger S-layer pro-

teins. The IR data are thus consistent with a multitude of

carboxylate- (and nitrogen-) containing Pd(II)-binding sites

found earlier for other S-layers (36) and supported by pre-

liminary ICP-MS results of the strains studied here.

The XANES data indicate that oxygen and nitrogen are

the predominant groups that coordinate Pd(II) in the S-layer

of JG-A12. Their relative contributions were assessed by the

iterative target test factor analysis as described (48). The

calculation reveals a mixture containing 55% of Pd-O and

45% of Pd-N bonding. EXAFS analysis indicated the pres-

ence of an additional shell at a distance of 2.49 Å, which was

not found in PdO. This shell may be due to a truncation effect

by the limited reciprocal space integrated in the FT (model a)
or may have a structural origin (model b). The presence of

such unphysical shells is well documented. A weak peak

between the main Oax and Cl peaks in EXAFS spectra of uranyl

chloride complexes has been interpreted as an ‘‘overlap

effect’’ (49). A similar effect was observed with the U(VI)

aquo chloro complexes, and an assignment to a coordination

shell was ruled out by factor analysis (50). With respect to

model b, a survey of the interatomic palladium-oxygen (ni-

trogen) distances in the Cambridge Structure database

indicated that 2.49 Å is too long to correspond to a Pd-O

or Pd-N distance. It could be a Pd. . . .O ‘‘contact’’ but the

origin of this oxygen atom is unknown. A shell at the same

distance for the Pd coordination sphere of the precatalytic

solution of the phosphine-free Heck reaction using energy

dispersive EXAFS (EDE) has been reported (51) but could

not be fitted to carbon, oxygen, or even phosphorus. The

authors reported that the shell may indicate the presence of a

lighter element, but there is no definitive information about

its nature. Although the origin of the peak at 2.49 Å cannot

be clarified, our data interpretation is not impeded by this

ambiguity because there are also no significant differences

between the structural parameters of the S-layer-bound Pd

complexes determined with either model (Table 4).

The crystallographically determined nonbonded Pd-Pd

distances in Pd acetate in the region of 3.105–3.203 Å were

also found in the EXAFS spectrum of the Pd-loaded S-layer,

but the first shell could also equally well be fitted to a con-

tribution from nitrogen since EXAFS spectroscopy cannot

distinguish between neighboring elements in the periodic

table. Therefore, the question of coordination by nitrogen

was further addressed by the FTIR measurements in D2O.

Fig. 9 shows the shifted amide II9 absorption at 1450 cm�1,

which is free from overlap with carboxylate contributions.

Pd(II) binding affects the amide II9 modes neither at neutral

pH (amide II9 at 1450 cm�1, independent of Pd(II), Fig. 9,

a and b) nor in acidified samples (amide II9 at 1445 cm�1,

independent of Pd(II), Fig. 9, c and e, for strain JG-A12,

Fig. 9, d and f, for strain NCTC 9602). Thus, the predom-

inant effect of Pd(II) is on carboxylate vibrations, rather than

C-N-stretching modes of the peptide backbone. This indicates

that the possible contributions of nitrogen to Pd(II) complexation

are likely to result from side chains. Based on the evidence

for carboxylates as Pd(II)-coordinating groups, we have an-

alyzed possible relations between carboxyl- and nitrogen-

bearing amino acids in the primary structure. We find that

42% and 47% of the Asp and Glu residues in the S-layer

proteins from strain NCTC 9602 and JG-A12, respectively,

follow or precede a nitrogen-bearing amino acid. This is

;1.5-fold more often than expected from the amino acid

composition of both strains containing 12% carboxyl- and

20% nitrogen-bearing amino acids, typical also of S-layers

from other phylogenetic branches. Among the nitrogen-

bearing residues, Lys and Asn are the most frequent amino

acids found next to a carboxylate. The possible functional

role of these relations needs further investigation. In com-

bination with the XANES data, however, nitrogens from

amino acid side chains are likely to participate in Pd(II)

coordination in addition to carboxylates of neighboring Asp

and Glu residues. The IR absorption frequency of the C-N

stretches of nitrogen-bearing amino acid side chains in H2O

is typically found below 1500 cm�1 and is generally low in

intensity (52). Thus, the lack of clear Pd(II)-dependent effects

in the amide II range is consistent with contributions from

side-chain nitrogens but argues against the participation of

backbone nitrogen in Pd(II) coordination. The location of

positively charged side chains next to carboxylates could

also cause the lowering of the pK of Asp and Glu side chains

by charge stabilization through salt bridges. Such a topology

may provide a molecular adaptation of the S-layers of B.
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sphaericus to an environment where a high heavy-metal-

binding capacity must be maintained at low pH.

In summary, we have shown that carboxylates of Asp and

Glu residues exhibit an unusually low pK and are coordi-

nation sites for Pd(II) in the two related B. sphaericus strains
JG-A12 and NCTC 9602, which become structurally sta-

bilized by the heavy metal. Acidic amino acids and probably

nitrogen-bearing side chains are thus prime targets for the

site-directed modification of S-layer properties such as metal-

binding capacity and secondary structure stability, which are

relevant to metalization-based biotechnological applications.
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Uranabfallhalden mit Schwermetallen. Thesis FZR-358, Forschungs-
zentrum Rossendorf.

7. Merroun, M., J. Raff, A. Rossberg, C. Hennig, T. Reich, and S.
Selenska-Pobell. 2005. Complexation of uranium by cells and S-layer
sheets of Bacillus sphaericus JG-A12. Appl. Environ. Microbiol. 71:
5532–5543.

8. Raff, J., U. Soltman, S. Matys, M. Schnorpfeil, H. Böttcher, W. Pompe,
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