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Entry of the budded virus form of baculoviruses into insect and mammalian cells is generally thought to
occur through a low-pH-dependent endocytosis pathway, possibly through clathrin-coated pits. This insight is
primarily based on (immuno)electron microscopy studies but requires biochemical support to exclude the use
of other pathways. Here, we demonstrate using various inhibitors that functional entry of baculoviruses into
insect and mammalian cells is primarily dependent on clathrin-mediated endocytosis. Our results further
suggest that caveolae are somehow involved in baculovirus entry in mammalian cells. A caveolar endocytosis
inhibitor, genistein, enhances baculovirus transduction in these cells considerably.

The Baculoviridae are a large family of enveloped DNA
viruses exclusively pathogenic to arthropods. Baculoviruses are
divided taxonomically into two genera, Nucleopolyhedrovirus
(NPV) and Granulovirus (35). Baculoviruses produce two dis-
tinct virion phenotypes, occlusion-derived virus and budded
virus (BV) (37), which are responsible for infection of insects
and insect cells, respectively. Phylogenetic studies indicate that
the NPV genus can be further subdivided into two subgroups,
I and II (8, 12, 14). Members of the two NPV subgroups
encode two different major BV envelope glycoproteins, GP64
for group I and F for group II, which mediate membrane
fusion during viral entry (27).

The initial step for successful virus entry into target cells in
general requires virion binding to cell surface-specific mole-
cules, followed by internalization for viral infection or virus-
based gene delivery to proceed. Viruses from various families
utilize different internalization and trafficking pathways to en-
ter target cells, including clathrin-mediated endocytosis,
caveola-mediated endocytosis, macropinocytosis, and phagocy-
tosis (9, 11, 23, 25, 28, 34). BVs of the baculovirus type species
and group I NPV Autographa californica nucleopolyhedrovirus
(AcMNPV) (3) are thought to enter insect cells via adsorptive
endocytosis (13, 38), as evidenced by immunological and (elec-
tron) microscopy observations. However, no direct biochemi-
cal evidence is available that shows that this is indeed the case
for all baculoviruses including group II NPVs, whether alter-
native routes such as through caveolae (29) or macropinocy-
tosis (34) are used, whether clathrin-coated pits are involved,
and whether this holds for the entry of baculovirus into insect
as well as mammalian cells.

In order to study and dissect the entry process of baculovi-
ruses, the effects of the inhibitors chlorpromazine (Sigma) (39)
and genistein (Sigma) (10, 26) on baculovirus entry in insect
and mammalian cells were studied. Chlorpromazine is a cat-

ionic, amphiphilic molecule that acts by shifting clathrin and
the AP-2 complex to the late endosomal compartment, thus
inhibiting clathrin-mediated endocytosis. Genistein interferes
with caveola-mediated endocytosis by inhibiting viral internal-
ization through caveolae; biochemically it blocks the phosphor-
ylation of tyrosine kinase, which is involved in the formation of
caveosomes. Bafilomycin A (Sigma) (1, 7), a specific inhibitor
of endosome proton ATPase, was included to confirm that
baculovirus BVs ultimately enter host cells in a low-pH-depen-
dent manner.

After a 30-min treatment with the respective drugs, Sf21
cells were incubated for 1 h with an AcMNPV carrying a green
fluorescent protein (GFP) gene under the control of a p10
promoter (21), at a multiplicity of infection (MOI) of 5 50%
tissue culture infective dose (TCID50) units per cell. Infected
cells were incubated in drug-free Grace’s medium supple-
mented with 10% fetal bovine serum (FBS). GFP expression
was examined 24 h postinfection by fluorescence microscopy.
The infectivity was estimated as percentage of GFP-expressing
cells for each treatment. Bafilomycin A and chlorpromazine
inhibited AcMNPV infection in Sf21 cells in a dose-dependent
manner (Fig. 1A and C). In contrast, AcMNPV infection was
not inhibited by genistein, even at a very high concentration,
and this supports the view that AcMNPV entry into insect cells
is primarily clathrin mediated. It has been demonstrated pre-
viously that lipid rafts are not involved in AcMNPV entry (40).

Recently a novel type of baculovirus BV envelope fusion
protein, named F, was identified in NPV group II baculovi-
ruses (16, 20, 27). In order to study the entry pathway of these
viruses, the same experiment was performed as in Fig. 1A, but
now by using BVs of a group II NPV, Helicoverpa armigera
NPV (HearNPV), and H. armigera Am1 (HzAM1) cells. Re-
sults achieved were similar to those for AcMNPV (Fig. 1B and
C; group I NPV). Chlorpromazine inhibition was almost com-
plete at a concentration of 2 mM for both AcMNPV and
HearNPV (Fig. 1C). The results obtained with these inhibitors
provide independent, biochemical support for the view that
BVs of both group I and group II baculoviruses enter insect
cells primarily through clathrin-mediated endocytosis. The
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caveola-mediated endocytosis pathway appeared to be not in-
volved in baculovirus NPV BV infection of insect cells, as the
virus uptake is unaffected by genistein (Fig. 1C).

Baculovirus BVs have been reported to effectively deliver
genes into mammalian cells, and this has provided great
impetus for the study and development of more effective
baculovirus-based gene therapy vectors (6, 15, 18, 19, 30, 32).
Understanding of the functional entry pathway of baculovirus
into mammalian cells is thus pivotal for a successful entry
process. Biochemical evidence suggested that baculovirus
transduction into these cells is low pH dependent, and micros-
copy evidence suggested that baculovirus enters, e.g., human
hepatoma cells through clathrin-mediated endocytosis and
possibly through macropinocytosis (24, 36). But the functional

entry pathway of baculovirus into mammalian cells, especially
from the cell surface to the early endosome (23), requires
further investigation. We therefore studied baculovirus entry
into mammalian cells (Fig. 2) using the same set of inhibitor
drugs as tested in insect cells (Fig. 1). By use of the bacmid
system (22), a novel recombinant AcMNPV, AcMNPV-GR,
carrying a GFP gene under the control of the AcMNPV p10
(late) promoter to evidence AcMNPV replication and a red
fluorescent protein (RFP) gene under the control of the
cytomegalovirus immediate-early (early) promoter was con-
structed to evidence entry, uncoating, and transport to the
nucleus (Fig. 2A).

Sucrose-purified AcMNPV-GR BVs (20) were resuspended
in phosphate-buffered saline and used to transduce BHK21
cells. GFP expression in AcMNPV-GR-infected Sf21 cells and
RFP expression in AcMNPV-GR-transduced BHK21 cells
were observed using fluorescence microscopy (Fig. 2B and 2C).
Bafilomycin A, chlorpromazine, and genistein were applied to
dissect the functional entry pathway of AcMNPV into BHK21
cells. After 30 min of drug treatment, BHK21 cells were trans-
duced with AcMNPV-GR at an MOI of 100 TCID50 units per
cell for 1 h, and RFP expression was examined 24 h posttrans-
duction. Transduction efficiency was calculated as the percent-
age of RFP-expressing cells. Similar to the results obtained
from the baculovirus entry into insect cells (Fig. 1), bafilomycin
A and chlorpromazine inhibited AcMNPV transduction into
BHK cells (Fig. 3), suggesting that the clathrin-mediated and
low-pH-dependent endocytic pathway is indeed involved in
functional entry of AcMNPV into BHK21 cells.

Surprisingly, a high concentration of genistein (100 �g/ml),
rather than being without effect on virus entry in insect cells,
greatly increased AcMNPV transduction from 30% to more
than 70% transduced cells (Fig. 3). This is an unexpected
result, as entry of vertebrate enveloped virus either is not
affected by inhibition of the caveolar pathway, e.g., influenza
virus (33), or is reduced as in the case of murine leukemia virus
(4). Our result may suggest that the caveola-mediated endo-
cytic pathway is somehow involved in the functional entry of
AcMNPV into BHK21 cells or is enhanced as a consequence
of increased uptake of cholesterol (17). The enhanced trans-
duction efficiency could also be explained by a lock-up of the

FIG. 1. Baculovirus NPVs infect insect cells through clathrin-me-
diated and low-pH-dependent endocytosis. (A and B) Insect cells were
cultured in Grace’s medium (GIBCO) supplemented with 10% FBS
(GIBCO). Sf21 (A) and HzAM1 (B) cells were pretreated with 10 nM
bafilomycin A, 1 mM chlorpromazine, and 100 �g genistein per ml and
subsequently infected with AcMNPV (A) and HearNPV (B) at a
multiplicity of infection of 5 TCID50 units per cell for 1 h. Cells were
rinsed twice with fresh medium and further cultured for 24 h. (C) Virus
infectivity was quantified as the percentage of GFP-expressing cells
relative to total cell number. The data shown are the means and
standard deviations from three independent experiments.

FIG. 2. Construction of AcMNPV-GR. (A) A p10 promoter-con-
trolled enhanced GFP gene and a cytomegalovirus immediate-early
promoter-controlled RFP gene were introduced into an AcMNPV
bacmid, resulting in AcMNPV-GR. (B and C) GFP expression in Sf21
cells (B) and RFP expression in BHK21 (C) cells were examined.
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caveola-mediated endocytic pathway by genistein, possibly
driving more virus particles to enter mammalian cells through
clathrin-mediated endocytosis. Alternatively, the response of
insect cells to genistein showing no effect on virus uptake may
be different although the primary biochemical response, i.e.,
the inhibition of tyrosine kinase-mediated phosphorylation, is
the same (2, 31).

BHK21 cells are sensitive to high concentrations (50 �g/ml)
of chlorpromazine; thus, complete inhibition of transduction
into BHK21 cells by chlorpromazine does not occur. To con-
firm that the clathrin-mediated endocytosis is part of the func-
tional entry of AcMNPV into mammalian cells, we used E�95/
295, a dominant-negative form of Eps15 (epidermal growth
factor receptor pathway substrate clone 15), which specifically
interferes with clathrin-coated vesicle formation at the plasma
membrane and thus inhibits virus entry (5). As a control, we

used epidermal growth factor receptor mutant D3�2, another
form of Eps15 with no dominant-negative effect on clathrin-
mediated endocytosis. E�95/295 or D3�2 with an N-terminally
fused enhanced GFP gene to allow detection was transiently
expressed in BHK21 cells by using Lipofectin (Invitrogen).
Forty-eight hours after transfection BHK21 cells were trans-
duced with AcMNPV-GR at an MOI of 100 TCID50 units per
cell. Twenty-four hours after transduction, RFP and GFP ex-
pression was determined using fluorescence microscopy. As
expected, D3�2 expression had no effect on AcMNPV trans-
duction, whereas AcMNPV transduction was strongly inhib-
ited in cells transfected with E�95/295 (Fig. 4). This result is
consistent with the result from chlorpromazine treatment (Fig.
3) and proved that clathrin-mediated endocytosis is the major
functional pathway for AcMNPV entry into BHK21 cells.

In conclusion, our results using various inhibitor drugs and
reporter constructs support the view that baculovirus NPVs,
regardless of whether they belong to group I (GP64) or group
II (F) NPVs, primarily enter insect and mammalian cells
through a clathrin-mediated, low-pH-dependent endocytic
pathway. Baculovirus may enter mammalian cells through mul-
tiple pathways, but the caveola-dependent entry is somehow
involved as genistein enhances transduction. These data imply
that baculoviruses may be tailored by genetic engineering to
enter mammalian cells more efficiently through clathrin-medi-
ated endocytosis and promote the idea that tyrosine kinase
inhibitors may be used as novel agents to enhance baculovirus-
based gene delivery in these cells.
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FIG. 4. Transduction is inhibited in cells expressing E�95/295.
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hours after transfection, cells were transduced with AcMNPV-GR
BVs. Twenty-four hours after transduction, GFP (left panels) and RFP
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