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Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV)
isolated in 1976 from diseased Mongolian horses. The 212-kbp genome contained 7.5-kbp inverted terminal
repeats and lacked extensive terminal tandem repetition. HSPV contained 236 open reading frames (ORFs)
with similarity to those in other OPVs, with those in the central 100-kbp region most conserved relative to other
OPVs. Phylogenetic analysis of the conserved region indicated that HSPV is closely related to sequenced
isolates of vaccinia virus (VACV) and rabbitpox virus, clearly grouping together these VACV-like viruses.
Fifty-four HSPV ORFs likely represented fragments of 25 orthologous OPV genes, including in the central
region the only known fragmented form of an OPV ribonucleotide reductase large subunit gene. In terminal
genomic regions, HSPV lacked full-length homologues of genes variably fragmented in other VACV-like viruses
but was unique in fragmentation of the homologue of VACV strain Copenhagen B6R, a gene intact in other
known VACV-like viruses. Notably, HSPV contained in terminal genomic regions 17 kbp of OPV-like sequence
absent in known VACV-like viruses, including fragments of genes intact in other OPVs and approximately 1.4
kb of sequence present only in cowpox virus (CPXV). HSPV also contained seven full-length genes fragmented
or missing in other VACV-like viruses, including intact homologues of the CPXYV strain GRI-90 D2L/I4R CrmB
and D13L CD30-like tumor necrosis factor receptors, D3L/I3R and C1L ankyrin repeat proteins, BI9R
kelch-like protein, D7L. BTB/POZ domain protein, and B22R variola virus B22R-like protein. These results
indicated that HSPV contains unique genomic features likely contributing to a unique virulence/host range
phenotype. They also indicated that while closely related to known VACV-like viruses, HSPV contains addi-

tional, potentially ancestral sequences absent in other VACV-like viruses.

The genus Orthopoxvirus includes members of the family
Poxviridae historically relevant to human health—variola virus
(VARV), the etiologic agent of smallpox, and vaccinia virus
(VACV), the vaccine virus used to eradicate smallpox (32).
Other orthopoxviruses (OPVs), similar to VACV, are zoonotic
and significant for human health, including monkeypox virus
(MPXV) and cowpox virus (CPXV) (33). Still others, similar to
VARY, remain restricted to specific, albeit nonhuman, hosts,
including camelpox virus (CMLV) in camels and ectromelia
virus (ECTV) in mice. Recent developments have heightened
interest in OPV virulence and host range, including the threats
of deliberate VARYV reintroduction, virulence associated with
preemptive smallpox vaccination and use of VACV-based re-
combinant vaccines, and the introduction of MPXV into the
United States (16, 28, 69, 83). Isolation of OPV from infected
animals and humans during limited disease outbreaks or from
animals in the wild suggests that additional OPVs circulating in
nature could represent an emerging disease threat (24, 25, 27,
32, 46, 49, 50, 90).
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Given their importance, OPVs have been extensively studied
as models of poxviral molecular biology, genomics, genetics,
and virus-host interaction (19, 33, 59). Research has revealed
that OPVs contain approximately 170 to 230 genes, with those
in central genomic regions generally involved in poxviral intra-
cytoplasmic replication and those in terminal genomic regions
involved or potentially involved in virus-host interactions, in-
cluding manipulation of host immune or cellular apoptotic
responses (4, 19, 59, 60, 82, 87).

Comparative analysis of completely sequenced OPV ge-
nomes, including most known OPV species and several strains
of VARV, VACV and the closely related rabbitpox virus
(RPXV), MPXV, CMLYV, and CPXV has begun to reveal the
degree of variability within the genus Orthopoxvirus, verifying
that terminal genomic regions are the most variable and thus
likely to contribute to the virulence and host range character-
istics of different OPVs (2, 9, 21, 22, 36, 39, 51, 52, 54, 58, 78,
80, 81). The precise roles and contributions of many variable
genes and gene complements in OPV virulence and host range,
however, remain to be fully characterized. It is likely that
complete genomic data from uncharacterized OPV isolates
will aid in OPV gene identification and functional character-
ization, while also providing information regarding the patho-
genic potential of the virus.
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Horsepox virus (HSPV) is an OPV causing horsepox, clas-
sically known as a poxviral disease of horses. Although com-
mon before the 20th century, horsepox is rare today to the
point of being considered extinct (14, 44). Multiple clinical
forms of horsepox have been described, including a benign,
localized form involving lesions in the muzzle and buccal cavity
known previously as contagious pustular stomatitis and a gen-
eralized, highly contagious form known as equine papular sto-
matitis (44, 94). Horsepox has also been associated with an
exudative dermatitis of the pasterns described as “grease” or
grease heel, a clinical syndrome also associated with other
infectious and environmental agents (14, 33, 94). Horsepox is
differentiated clinically from two other poxviral diseases of
horses, equine molluscum contagiosum and Uasin Gishu dis-
ease. Equine molluscum contagiosum is a mild, self-limiting
cutaneous disease similar to the human disease and is associ-
ated with a virus similar to molluscum contagiosum virus (88,
94). Uasin Gishu disease has been described in nonindigenous
horses of eastern Africa and is associated with a poorly char-
acterized OPV; however, generalized skin lesions are prolifer-
ative and papillomatous and the disease may be chronic in
nature (33, 88, 94). HSPV is yet to be characterized molecu-
larly, with no DNA sequence information available. Given the
interest in understanding the genetic basis of viral host range
and virulence and the relationships between OPVs, we have
sequenced and analyzed the genome of a pathogenic field
isolate of HSPV.

MATERIALS AND METHODS

Viral DNA isolation, cloning, sequencing, and sequence analysis. The HSPV
strain MNR-76 was isolated from sick horses in Bayan-somon of Khentei aimak,
Mongolia, in 1976. MNR-76 causes severe disease in horses of the Mongolian
breed, including pyrexia, pustular stomatitis with occasional lesions on udders
and ears, and especially severe disease in foals and mares, in which death was
noted (S. M. Mamadaliyev, personal communication). Viruses were passaged
twice in sheep kidney cells, from which viral genomic DNA was extracted as
previously described (93). Random DNA fragments were obtained by incom-
plete enzymatic digestion with Tsp5091 endonuclease, cloned into the dephos-
phorylated EcoRI site of pUC19 plasmids, and grown in Escherichia coli DH10B
cells (Gibco BRL, Gaithersburg, Md.). Double-stranded DNA templates were
purified and sequenced from both ends with M13 forward and reverse primers
using dideoxy chain terminator sequencing chemistries and the Applied Biosys-
tems PRISM 3700 automated DNA sequencer (Applied Biosystems, Foster City,
CA). Chromatogram traces were base called with Phred (30), which also pro-
duced a quality file containing a predicted probability of error at each base
position. The sequences were assembled with Phrap (29) and CAP3 (43) using
quality files and default settings to produce a consensus sequence with some
subsequent manual editing using the Consed sequence editor (37). Gap closure
was achieved by primer walking of gap-spanning clones and sequencing of PCR
products. Final DNA consensus sequences represented on average sevenfold
redundancy at each base position, contained no obvious polymorphisms, and
demonstrated a Consed estimated error rate of less than 0.01 error per 10 kb.

Sequence analysis was conducted essentially as previously described (1).
Briefly, DNA composition, structure, repeats, and restriction enzyme patterns
were analyzed and open reading frame (ORF) maps created using EMBOSS
(70), GCG v.10 (Accelrys, Inc., San Diego, CA), and MacVector (Accelrys, Inc)
software packages. ORFs longer than 30 amino acids with a methionine start
codon were evaluated for coding potential using the GLIMMER (71) computer
program, and those greater than 60 amino acids were subjected to similarity
searches against nonredundant protein databases and redundant viral protein
databases using BLAST (8) and against viral nucleotide databases using
TFASTA and TFASTX (65, 66). Here, 236 ORFs were annotated and numbered
from left to right, with alphabetic subordering given to indicate multiple poten-
tial fragments of larger OPV ORFs. Given the predicted nature of all HSPV
genes and gene products, ORF names were used throughout the text to indicate
both the predicted gene and its putative protein product. Genomic, subgenomic,
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and protein alignments and comparisons were done using DIALIGN v2.2.1 (57)
using anchors as generated by CHAOS (17), Multi-LAGAN (18), CLUSTAL W
(89), BLAST, FASTA (64), SEAVIEW (34), and DOTTER (84) programs.
Phylogenetic analyses were conducted on whole-genome sequences and genomic
subregions, including a central region used previously for OPV phylogenetic
analysis (positions 26800 to 170171) (22, 51), using PHYLIP (31); PHYLO_WIN
(34), TREE-PUZZLE (73), and PHYML (40) programs, with evolutionary mod-
els selected using MrModeltest 2.2 (62) and additional analyses conducted on
alignments in which poorly aligned regions were removed with Gblocks (20).
Nucleotide sequence accession number. The HSPV MNR-76 genome se-
quence has been deposited in GenBank under accession no. DQ792504.

RESULTS AND DISCUSSION

Organization of the HSPV genome. HSPV MNR-76 genome
sequences were assembled into a contiguous sequence of
212,633 bp. The leftmost nucleotide was arbitrarily designated
base 1. Similar to other OPVs, the HSPV genome contained
69% A+T nucleotide composition and a central coding region
bounded by two identical inverted terminal repeat (ITR) re-
gions.

HSPV ITRs were 7,527 bp and contained elements similar
to repetitive and nonrepetitive sequences characterized in
other OPVs, including a portion of the terminal hairpin loop-
like sequence (positions 1 to 15 from each terminus) and non-
repetitive region 1 (NR1) (positions 21 to 101 from each ter-
minus) and concatemer resolution (position 21 to 40 from each
terminus) sequences identical to those present in VACYV strain
Copenhagen (CPN) (11, 36, 55). Notably, HSPV lacked exten-
sive tandem repetition of terminally located sequences, con-
taining only single copies of the 69-bp (positions 102 to 170,
100% identical to CPN) and 54-bp (positions 518 to 571, 96%
identical to CPN) motifs repeated 8.5 to 42 times in VACV
strains and RPXV (9, 10, 36, 51). Incomplete copies of 69-bp
(positions 171 to 188), 54-bp (positions 572 to 601), and VACV
125-bp repeat-like (positions 494 to 517) motifs flanked com-
plete 69-bp and 54-bp motifs, which were also separated from
each other by an NR2-like sequence (positions 189 to 493, 92%
identity to CPN positions 2867 to 3171). The HSPV ITR con-
tained eight ORFs initiating and terminating in the ITR, with
HSPV001/HSPV207 encompassing the 54-bp and 125-bp motif
region (Table 1). These data indicate that while similar to
VACV in regions of the ITR, HSPV organizationally resem-
bles other OPVs such as VARV, MPXV, and ECTV which
contain fewer or single complete tandem repeat units in their
termini (21, 53, 81).

HSPV contained 236 ORFs potentially encoding proteins of
53 to 1,920 amino acids and sharing similarity with those in
previously described OPV genomes (Tables 1 and 2). Of these
236 annotated ORFs, 54 were significantly smaller or frag-
mented forms of 25 larger ORFs present in other OPVs, leav-
ing 182 potentially full-length OPV gene homologues. The
HSPV central genomic region contained genes colinear and
highly conserved among other OPV genomes, with ORFs
HSPV041 to HSPV145 sharing an average 98% amino acid
identity with VACV CPN ORFs F1L to A24R and with CPXV
GRI-90 ORFs G1L to A25R (Table 2 and data not shown).
Genes in this conserved region included those involved in basic
replicative functions such as viral transcription and transcript
modification, DNA replication, and assembly of intracellular
mature and extracellular enveloped virions (IMVs and EEVs,
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TABLE 2. HSPV ORFs in central genomic regions compared to orthologues annotated in VACV CPN“

HSPV . VACV CPN ) o
ORF Position (length®) Putative function/similarity

ORF Length

HSPV063 61662-63362 (567) E6R 567

HSPV064 63447-63944 (166) E7R 166

HSPV065 64072-64890 (273) E8R 273 Virion core protein

HSPV066 67919-64902 (1,006) EOL 1,006 DNA polymerase

HSPV067 67951-68235 (95) E10R 96 IMV redox protein

HSPV068 68622-68236 (129) EI11L 129 Virion core protein

HSPV069 70609-68612 (666) Ol1L 666

HSPV070 7098370660 (108) O2L 108 Glutaredoxin

HSPV071 72067-71132 (312) I1L 312 DNA binding virion core protein

HSPV072 72304-72077 (76) 2L 73

HSPV073 73114-72308 (269) I3L 269 DNA binding phosphoprotein

HSPV074a 73439-73200 (80) 1417 771 Ribonucleotide reductase large subunit

HSPV074b 74885-73566 (440) 14L 771

HSPV074¢ 75213-74842 (124) 14L 771

HSPV074d 75503-75216 (96) 14L 771

HSPV075 75770-75534 (79) ISL 79 IMV membrane protein

HSPV076 76937-75792 (382) IeL 382 Telomere binding protein

HSPV077 78201-76933 (423) I7L 423 Virion core proteinase

HSPV078 78207-80234 (676) IS8R 676 RNA helicase NPH-II

HSPV079 82016-80244 (591) GIL 591 Metalloprotease

HSPV080 82342-83001 (220) G3L 220

HSPV081 82348-82016 (111) G2R 111 Transcriptional elongation factor

HSPV082 83348-82977 (124) G4L 124 Glutaredoxin 2

HSPV083 83351-84652 (434) G5R 434 Virion core protein

HSPV084 84663-84851 (63) G5.5R 63 RNA polymerase subunit RPO7

HSPV085 84856-85350 (165) G6R 166

HSPV086 86433-85321 (371) G7L 371 Virion core protein

HSPV087 8646487243 (260) G8R 260 Late transcription factor VLTF-1

HSPV088 87266-88285 (340) GI9R 340 Myristylated protein

HSPV089 88289-89038 (250) L1IR 250 Myristylated IMV envelope protein

HSPV090 89073-89333 (87) L2R 87

HSPV091 90378-89329 (350) L3L 350

HSPV092 90403-91155 (251) L4R 251 DNA binding virion core protein

HSPV093 91168-91551 (128) L5R 128 IMV membrane protein

HSPV094 91511-91969 (153) JIR 153 IMV membrane protein

HSPV095 91988-92518 (177) J2R 177 Thymidine kinase

HSPV096 92587-93585 (333) J3R 333 Poly(A) polymerase small subunit

HSPV097 93503-94057 (185) J4R 185 RNA polymerase subunit RPO22

HSPV098 94585-94187 (133) J5L 133

HSPV099 94692-98549 (1,286) J6R 1,286 RNA polymerase subunit RPO147

HSPV100 99064-98552 (171) HIL 171 Tyr/Ser protein phosphatase

HSPV101 99078-99644 (189) H2R 189 IMV membrane protein

HSPV102 100624-99653 (324) H3L 324 IMV envelope protein

HSPV103 103012-100628 (795) H4L 795 RNA polymerase-associated protein

HSPV104 103198-103830 (211) H5R 203 Late transcription factor VLTF-4

HSPV105 103834-104775 (314) H6R 314 DNA topoisomerase 1B

HSPV106 104815-105252 (146) H7R 146

HSPV107 105299-107830 (844) DIR 844 mRNA capping enzyme large subunit

HSPV108 108225-108935 (237) D3R 237 Virion core protein

HSPV109 108232-107795 (146) D2L 146 Virion core protein

HSPV110 108938-109591 (218) D4R 218 Uracil DNA glycosylase

HSPV111 109626-111980 (785) D5R 785 NTPase, DNA replication

HSPV112 112024-113934 (637) D6R 637 Early transcription factor small subunit

HSPV113 113964-114446 (161) D7R 161 RNA polymerase subunit RPO18

HSPV114 115326-114415 (304) DSL 304 IMV membrane protein, cell binding

HSPV115 115368-116006 (213) D9R 213 MutT motif

HSPV116 116006-116749 (248) D10R 248 MutT motif

HSPV117 118648-116756 (631) DI11L 631 NPH-I, transcription termination factor

HSPV118 119546-118686 (287) D121 287 mRNA capping enzyme small subunit

HSPV119 121232-119580 (551) D13L 551 Rifampin resistance protein

HSPV120 121708-121259 (150) AIL 150 Late transcription factor VLTF-2

HSPV121 122403-121732 (224) A2L 224 Late transcription factor VLTF-3

HSPV122 122630-122403 (76) A25L 76 Virion redox protein

HSPV123 124579-122648 (644) A3L 644 Virion core protein P4b

HSPV124 125477-124635 (281) A4L 281 Virion core protein

HSPV125 125515-126006 (164) A5R 164 RNA polymerase subunit RPO19

Continued on facing page
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TABLE 2—Continued

HSPV . VACV CPN ) o
ORF Position (length®) Putative function/similarity
ORF Length
HSPV126 127124-126009 (372) A6L 372
HSPV127 129280-127151 (710) ATL 710 Early transcription factor large subunit
HSPV128 129334-130197 (288) A8R 288 Intermediate transcription factor VITF-3
HSPV129 130501-130196 (102) A9L 99 IMV membrane protein
HSPV130 133177-130505 (891) A10L 891 Virion core protein P4a
HSPV131 133192-134145 (318) AlIR 318 Nonstructural protein
HSPV132 134725-134153 (191) Al12L 192 Virion core protein
HSPV133 134961-134752 (70) A13L 70 IMV membrane protein
HSPV134 135341-135072 (90) Al4L 90 IMV membrane protein
HSPV135 135519-135361 (53) Al45L 53 IMV membrane protein
HSPV136 135793-135512 (94) Al15L 94 Virion core protein
HSPV137 136913-135780 (378) Al6L 378 Myristylated IMV membrane protein
HSPV138 137527-136919 (203) Al17L 203 Phosphorylated IMV membrane protein
HSPV139 137542-139020 (493) A18R 493 DNA helicase, transcriptional elongation
HSPV140 139237-139007 (77) A19L 77
HSPV141 139590-140867 (426) A21L 426 DNA polymerase processivity factor
HSPV142 139591-139241 (117) A20R 117 IMV membrane protein
HSPV143 140833-141360 (176) A22R 176 Holliday junction resolvase
HSPV144 141383-142528 (382) A23R 382 Intermediate transcription factor VITF-3
HSPV145 142528-146019 (1,164) A24R 1,164 RNA polymerase subunit RPO132

¢ Boldface indicates ORFs >10% different in length from intact orthologues from CPXV GRI-90 or Brighton Red.

®T4L is a larger ORF matching multiple HSPV ORFs.
¢ Lengths are in amino acids.

tors (TNFRs) (4, 45, 77). While terminal-region genotypes vary
both among OPVs and between known VACV-like viruses,
HSPV contained features similar to known VACV-like viruses
relative to other OPVs and features that were quite novel
(Table 1; Fig. 1).

HSPYV genetic features similar to VACV. Genotypic similar-
ity between HSPV and other VACV-like viruses included a
number of genes that were fragmented relative to CPXV and
occasionally relative to other OPVs. These genes included
several which were fragmented or arranged in a similar fashion
between HSPV and VACV-like viruses, commensurate with
their close phylogenetic relationship (Table 1; Fig. 2). HSPV
genes sharing similar ORF fragments with those in certain
VACVs include HSPV005/HSPV203 and HSPV020, genes en-
coding ankyrin proteins and fragmented or missing in most
OPVs (Fig. 1A). HSPV005b/HSPV203b in the ITR represents
the same fragment of GRI-90 D4L/I2R as CPN C18L/B24R.
HSPVO020a to -e and similar ORFs in VACV are homologous
fragments of CPXV CHOhr, a gene which enables replication
of VACV in the normally nonpermissive CHO cell line and
affects eukaryotic initiation factor 2a (eIF2«) phosphorylation
in HeLa cells (41, 85). Other HSPV ORFs with similar VACV
fragments included HSPV146d, HSPV180, and HSPV186.
HSPV146d encodes the same 725-amino-acid amino-terminal
fragment of the A-type inclusion (ATI) protein present in
several VACV-like viruses and expressed in some as a soluble
94-kDa protein (26). HSPV186 is a VACV-like ORF fragment
homologous to the amino-terminal region of the OPV homo-
logue of myxoma virus M-T4, a protein important for virulence
and infection of lymphocytes by myxoma virus (12). The
HSPV186 homologue is expressed in VACV strain Western
Reserve (WR); however, deletion mutants were not affected
for viral growth in vitro or virulence in mice (68). While amino-
terminal M-T4-like fragments are also present in certain

strains of MPXV (22, 52), the large nucleotide deletion affect-
ing HSPV186 was characteristic of VACV (Fig. 1C). Also
characteristic of VACV are homologues of HSPV180a and
HSPV180b (CPN B2R and B3R, respectively), apparent frag-
ments of a larger ORF intact in all OPV species other than
VACV and VARV and previously annotated as similar to
cellular Schlafen, a family of variably sized proteins with the
prototypical 337-amino-acid murine Schlafen 1 recently shown
to target cyclin D1 pathways during induction of cellular
mid-G, cell cycle arrest (15, 39). Notably, HSPV180a and
HSPV180b revealed the bipartite nature of the larger OPV
homologue, with Schlafen similarity present in the HSPV180b-
like (carboxyl-terminal) region and the HSPV180a-like (amino-
terminal) region sharing similarity with the putative B2R homo-
logue of Melanoplus sanquinipes entomopoxvirus (MSV237)
and limited similarity with ORFs of unknown function (p26)
from nucleopolyhedrosis viruses (data not shown). While
maintenance of these two domains as separate ORFs in HSPV
and VACV conceivably suggests function, HSPV180b and
VACV orthologues lack carboxyl-terminal sequences both
present in the intact OPV ORF and similar to the carboxyl
terminus of cellular Schlafen. Overall, similar fragmentation
patterns between HSPV and VACV potentially represent
shared, derived characters.

Several genes fragmented in HSPV were also fragmented in
certain VACV-like isolates but intact in others (Table 1).
HSPV ORF fragments with intact homologues in certain
VACVs included HSPV018, HSPV161, HSPV173a and -b, and
HSPV175. HSPVO018 is an amino-terminal fragment homo-
logue of the ECTV p28 ubiquitin ligase, a protein critical for
ECTYV virulence and macrophage host range and having intact
homologues in all other OPV species (74, 87) (Fig. 1). While
this gene is also fragmented in several VACYV strains, intact
homologues have been identified in VACV strains IHD-W and
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FIG. 1—Continued.

Lister and in RPXV (51, 58, 91). Similarly, HSPV173a and -b mologues in WR and other VACYV strains, contained a car-
resembled homologous ORFs in VACV Lister and RPXV and boxyl-terminal truncation that may predict a nonfunctional
fragments of the CPN A51R gene intact in other VACV strains product (35). HSPV175, similar to several VACV-like viruses,
and all other OPVs. HSPV161 was a homologue of CPN encoded a truncated copy of the intact CrmC TNFR-like pro-
A39R, a secreted semaphorin affecting viral virulence and host tein encoded by VACYV strains Lister, Evans, and USSR (5).
inflammatory responses during infection, but, similarly to ho- HSPV039 and HSPV187 were fragmented genes with homo-
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FIG. 2. Phylogenetic analysis of HSPV central genomic regions.
Conserved HSPV central genomic nucleotide sequences (positions
26800 to 170171) corresponding to regions used previously for OPV
phylogenetic analysis (51) were aligned with homologous OPV se-
quences using DIALIGN, and gapped regions were realigned with
CLUSTAL W and trimmed with Gblocks. The unrooted tree for
124,677 aligned characters was generated using maximum likelihood
with general time reversible correction for multiple substitutions, four-
category discrete gamma model, estimation for proportion of invariant
residues, and 100 bootstrap replicates as implemented in PHYML.
Bootstrap values greater than 70 are indicated at appropriate nodes;
dots indicate values of 100. Homologous nucleotide sequences from
the following viruses and accession numbers were compared: VACV
strain CPN, M35027; VACV WR, AY243312; VACV Lister (Elstree)
vaccine consensus (Lis), AY678276; VACV Lister-derived LC16m0
(m0), AY678277; VACV Tian Tan (Tian), AF095689; VACV MVA,
U94848; RPXV Utrecht (RPXV), AY484669; CPXV strain GRI-90
(X94355); CPXV BRI, AF482758; MPXV strain Zaire-96-I-16
(MPXV ZAI), AF380138; MPXV WRAIR7-61 (MPXV W61),
AY603973; MPXV USA_2003_039 (MPXV U39), DQ011157; CMLV
strain M-96 (CMLV M96), AF438165; CMLV CMS, AY009089;
VARV strain Bangladesh-1975 (VARV BAN), L22579; VARV India-
1967 (VARV IND), X69198; VARV Garcia-1966 (VARV GAR);
Y16780; ECTV strain Moscow (ECTV MOS), AF012825. The scale
indicates estimated distance. Identical topologies at supported nodes
were obtained using additional maximum likelihood analyses as im-
plemented in TREE-PUZZLE, using neighbor-joining and maximum
parsimony as implemented in PHYLO_WIN and PHYLIP, respec-
tively, and using an unedited alignment (146,439 characters) (data not
shown). Similar topologies were also obtained using similar analyses
on whole-genomic alignments (data not shown).

logues fragmented in all VACV-like viruses but with VACV-
like homologues fragmented in a pattern distinct from those in
HSPV. HSPV039 was similar to both CPN KSL and K6L
fragments of the OPV monoglyceride lipase-like gene but was
much closer in size to the intact CPXV homologue, and
HSPV187 was a smaller fragment of the CPXV GRI-90 BOR
kelch-like protein. While HSPV175, HSPV039, and HSPV187
homologues were fragmented in both HSPV and most VACV-
like viruses, these genes were also disrupted in most other
OPVs (Fig. 1).

HSPV also contained intact genes whose homologues were
intact in certain VACV-like viruses but disrupted in others,
similar to genes recently described in the RPXV genome (Ta-
ble 1) (51). HSPV002/HSPV206 in the ITR encoded the OPV
35-kDa secreted chemokine binding protein and, similarly to
the functional, full-length protein expressed by VACV Lister

J. VIROL.

and other OPVs, lacked the amino-terminal mutation prevent-
ing expression of functional protein in CPN, WR, and VACV
strain Tian Tan (6). HSPV147 was an intact copy of the gene
encoding P4c, a protein involved with direction of IMV to
insoluble ATIs but with homologues fragmented or absent in
CPN, Tian Tan, and modified vaccinia Ankara (MVA).
HSPV190 was only the third intact VACV-like orthologue of
the serine proteinase inhibitor (serpin) 2 (SPI-2) to be identi-
fied, and HSPV198 was an intact orthologue of the SPI-1 gene
intact in most VACV-like viruses but transposed to the oppo-
site terminus in RPXV and VACV CPN, Tian Tan, and Lister
and absent in MVA (Fig. 1C). Intact SPI-1 and SPI-2 exhibit
antiapoptotic and/or anti-inflammatory activity through inhibi-
tion of caspases and have been shown to affect viral virulence
and/or host range (48, 59, 82, 87). HSPV196 encodes an intact
ankyrin repeat protein truncated by deletion in all VACV-like
viruses except RPXV, where the homologue was recently iden-
tified as unique among VACV-like viruses in that the entire
nucleotide region encompassing the gene was present (51).
Similarly, HSPV199 encodes an intact homologue of the BRI
CPXV218 chemokine binding protein, with intact homologues
also encoded in the right terminus of WR and in the left
terminus of VACV Lister and RPXV (Fig. 1) (7). Overall,
different fragmentation patterns or gene loss between HSPV
genes and VACV homologues may indicate sequence diver-
gence after functional gene loss or, alternatively, could con-
ceivably reflect independent loss of gene function in different
VACV-like lineages during convergent adaptation toward sim-
ilar virulence or host range phenotypes. Gene loss near ITR
boundaries may reflect loss during terminal transposition
events (47, 61). These phenomena would help explain gene
fragmentation that is variable both within the VACV-like lin-
eage and between OPV species.

HSPYV genetic features distinct from VACYV. Despite sharing
specific genomic and genotypic features with some or all
known VACV-like viruses within the range of VACV-like ge-
notypic heterogeneity, HSPV contained many features that
were unique. These included genes uniquely intact in HSPV
but for which homologous nucleotide sequence was present in
other VACVs, and they included HSPV genes, both intact and
fragmented, that were associated with nucleotide sequences
completely novel among VACV-like viruses, resulting in ter-
minal genomic regions encoding additional proteins and pro-
tein fragments resembling those in CPXV (94% average amino
acid identity to CPXV GRI-90 orthologues) (Fig. 1; Table 1).
Finally, HSPV demonstrated unique fragmentation of several
genes, including those that were intact in all or most other
known VACV-like viruses.

HSPV contained in the ITRs intact genes that are frag-
mented or absent in all other VACVs (Table 1). HSPV003/
HSPV205 is an intact homologue of the secreted CPXV Brigh-
ton Red CrmB TNFR II-like protein (CPXV GRI-90 D2L/
I2R), a protein which interacts with and inhibits TNF and
lymphotoxin alpha and whose orthologue in VARV has been
recently shown to contain a novel carboxyl-terminal chemokine
binding domain also present and active in several other OPV
proteins (4, 7, 42). HSPV004/HSPV204 encodes an intact ho-
mologue of the ankyrin repeat protein encoded by CPXV GRI
D3L/I3R and intact homologues in MPXV, ECTV, and
CMLV (Fig. 1).
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HSPV contains approximately 17 kbp of sequence in three
distinct genomic regions (positions 7527 to 18195 in the left
terminal region and 194379 to 195517 and 198775 to 204285 in
the right terminal region) absent in known VACV-like viruses
but homologous to sequences in sequenced strains of CPXV
and other OPVs (Fig. 1). HSPV also contains approximately
1.4 kbp of sequence absent not only in VACV but also in all
known OPVs except CPXV. For this region, located between
positions 15453 and 16985, only MPXV contains a fragment
(approximately 75 bp) of homologous sequence. Notably, se-
quences near this region reflect ITR and/or terminal translo-
cations in several OPVs (Fig. 1), and repetitive sequence near
this locus in ECTV has been suggested to be a dynamic
genomic region (21). Conceivably, the presence of this 1.4-kbp
sequence in HSPV is consistent with retention of adjacent and
relatively significant amounts of CPXV-like sequence in this
left terminal region relative to other OPVs (Fig. 1).

HSPV sequence in the left terminal region absent in other
VACV-like viruses corresponds to the D7L loci of CPXV
GRI-90 and the CPXV014 to CPXV020 region of CPXV BRI
(Fig. 1A). These sequences relative to other VACV-like vi-
ruses essentially extend from the ITR boundary region to the
region upstream of the HSPV016 viral growth factor homo-
logue (CPN C11R), replacing the OPV-like sequence that is
transposed from the right terminal region to the left terminal
region in other VACV-like viruses. HSPV sequences in this
region include 15 ORFs representing three intact OPV genes
(HSPV008, HSPV010, and HSPV012) and six potentially trun-
cated or fragmented genes (HSPV007, HSPV009, HSPV011a
to -c, HSPV013, HSPVO014a to -d, and HSPV015a and -b)
(Table 1; Fig. 1). HSPV008 encodes an intact protein ortholo-
gous only to CPXV GRI-90 D7L and ECTV strain Moscow
EVMO004 (21, 79). These proteins contain amino-terminal
BTB/POZ domains, evolutionarily conserved domains impor-
tant for oligomerization and ordering of protein complexes
and often present in amino-terminal regions of both cellular
and poxviral kelch-like proteins, but in these smaller HSPV008
orthologues the BTB/POZ domain is not associated with kelch
repeat domains (3, 75). HSPV009 encodes a truncated ortho-
logue of CPXV GRI-90 D12L product, a protein similar to the
CrmB carboxyl terminus and whose orthologue in ECTV was
recently characterized as a secreted chemokine binding protein
(7). HSPV010 encodes an intact orthologue of CD30 TNFR-
like proteins present in CPXV and ECTV, proteins able to
bind CD30 ligands and/or have immunomodulatory effects (63,
72). HSPV left-end sequences also contain genes for three
ankyrin repeat proteins absent in VACV. While HSPV012
encodes an intact ankyrin repeat protein also intact in CPXV
and MPXV, HSPV(011la to -c and HSPV014a to -d encode
fragments of intact ankyrin repeat proteins encoded only in
ECTV and/or CPXV, with HSPV014b and -c encoded within
the region containing 1.4 kbp of sequence found only in
CPXYV. Finally, HSPV015a and -b appeared to encode frag-
ments of a paralogue of CPN C7L, a VACV host range protein
which enables viral replication in human cells (67). While all
OPVs appear to encode intact C7L orthologues (HSPV(24),
intact HSPVO015 orthologues are encoded only in CPXV and
CMLYV, with fragmented ORFs annotated in MPXV and
VARV (Table 1).

HSPV sequence in the right terminal region absent in other
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VACV-like viruses essentially bound the region homologous to
the VACV WR SPI-1 (HSPV198) locus, a region transposed to
the opposite terminus in several other VACVs (Fig. 1). Unique
sequence upstream of HSPV198 includes HSPV197, an intact
kelch-like protein also intact in CPXV and ECTV but frag-
mented or absent in MPXV, CMLV, and VARV. Unique
sequences downstream of HSPV198 contain an intact ortho-
logue of the VARY strain Bangladesh B22R gene (HSPV200).
B22R homologues represent the largest poxviral genes, encod-
ing proteins of approximately 2,000 amino acids and with no
known function but predicted to contain carboxyl-terminal
transmembrane domains and cysteine residues which conceiv-
ably mediate disulfide bond formation (54, 56, 76). B22R ho-
mologues are intact in all OPV species except VACV-like
viruses, making the presence of HSPV200 notable (Fig. 1).

Despite containing additional sequence not present in other
VACV-like viruses, HSPV did lack sequences homologous to
several larger regions in other OPVs. These include from
GRI-90 the DSL to D11L locus, a region encoding ankyrin
repeat, kelch-like, and lectin-like proteins with homologous
sequence only in ECTV (79) (Table 1), and most of the KIR
to SIR/T1R locus, a region encoding ankyrin repeat, CrmD
TNFR, and CrmE TNFR proteins and with homologous se-
quence present in MPXV, ECTV, and CMLYV and, notably, in
VACYV Lister (Fig. 1C). HSPV also lacks any remnant of the
second VARV B22R-like gene identified in certain strains of
CPXYV and of which remnants remain in VARV and CMLV
lineages (HSPV185-HSPV186 locus [Fig. 1C]) (56).

Finally, HSPV contains fragmented genes intact in all or
nearly all other VACV-like viruses. Within the central con-
served region, HSPV(74a to -d represented fragments of the
CPN I4L ribonucleotide reductase large subunit gene, while
HSPV044 encoded an intact small subunit (Table 2). Ribonu-
cleotide reductase is a heterodimeric protein involved in redox
reactions that are key to synthesis of deoxyribonucleotides, an
activity for which various poxviruses encode different enzyme
complements, potentially adapted to replication in specific
host cell types lacking adequate nucleotide pools (59). Exper-
imental disruption of the VACV ribonucleotide reductase
large subunit has been shown previously to have no effect on
virus replication in vitro and a mild effect on virulence in mice
(23). Although I4L homologues are not encoded in all other
poxviral genera, to our knowledge this is the first example of its
natural disruption in an OPV genome. Similarly, HSPV183 is
unique among VACV-like homologues (CPN B6R) as the only
form of the gene to be fragmented, although a fragmented
form is also found in VARYV (Fig. 1B) and an isolate of MPXV
(accession no. AAY97373). Notably, HSPV contained frag-
mented genes intact in all VACVs except MVA, a virus that
has accumulated numerous mutations and extensive nucleo-
tide deletions through extensive passage in vitro and concom-
itant attenuation and restriction of host range (9). These in-
clude HSPV026, orthologue of CPN C5L BTB domain protein,
and the HSPV033 ankyrin repeat protein. In addition, HSPV178,
similar to MVA, demonstrates a smaller fragmented form of the
guanylate kinase gene than do other VACV-like viruses.

Perspective on relationship of HSPV to VACV. Genomic
sequence analysis of HSPV MNR-76 indicates that it is a novel
VACV-like OPV that contains unique features not present in
known VACVs. Although MNR-76 is unique in the comple-
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ment of OPV genes remaining intact in HSPV, the pattern of
terminal gene loss/fragmentation is commensurate with geno-
types observed in other VACV-like viruses. Notably, the ma-
jority of left terminal HSPV sequence absent in VACV ap-
pears to contain gene fragments, with HSPV conceivably in the
process of losing this sequence similarly to other VACV-like
viruses.

The close phylogenetic and genotypic relationship between
HSPV and other VACV-like viruses and the presence of ad-
ditional CPXV-like sequences in HSPV are notable given pre-
vious speculations involving horsepox and the origins of
VACV (14). While the origins of current VACV-like strains
have been heavily debated and remain obscure, current knowl-
edge affirms that VACV-like viruses constitute an OPV lineage
independent of known CPXV and VARYV species from which
VACYV has been speculated to be derived (14, 32, 33, 38) (Fig.
2). It is likely that a once naturally circulating but now rare
VACYV-like virus(s) from which current strains are derived was
introduced as a vaccine virus, and the agent of horsepox has
been surmised as a likely candidate (14). Indeed, apparently
Edward Jenner believed that his vaccine originated from the
“grease” infection found in the heels of horses, and the use of
horse-derived material for use as vaccines is documented (14,
33). In addition, phenotypic similarity of certain vaccines trans-
mitted between cows, humans, and horses has been noted, and
experimental infection of horses with VACYV can produce clin-
ical signs of horsepox (14, 44, 86). The data presented here
indicate that the HSPV MNR-76 genome contains features
consistent with such a hypothesis, a phylogenetically VACV-
like virus isolated from a horse and containing additional
OPV-like terminal sequences, sequences likely ancestral and
absent in other VACV-like viruses yet in certain regions ap-
pearing to be undergoing gene fragmentation and loss com-
mensurate with transition toward a VACV-like genotype.

Despite speculation as to what role horsepox played in the
development of smallpox vaccines, it is clear that HSPV
MNR-76 does not represent a direct ancestral genotype to all
known VACYVs, given the disruption of many HSPV genes
intact in certain VACYV isolates (Table 1). It is unclear what
constitutes the genotypic diversity of all the viruses historically
used for smallpox vaccine, especially considering the potential
for disparate source material and passage histories of VACV-
like vaccine viruses (14, 33). Indeed, phenotypic and genotypic
diversity is observed between and within strains of VACV (14,
33, 58) (Fig. 1). This diversity does include sequence unique to
a given strain, such as the presence of CPXV GRI K3R and
S1R/T1R-like genes in the historically important Lister vaccine
strain (Fig. 1C), making the presence of HSPV MNR-76-like
sequences in uncharacterized vaccine strains a possibility. Iso-
lated in 1976, HSPV was causing disease in horses while small-
pox vaccines were still being distributed during the World
Health Organization global smallpox eradication program
(32). Conceivably, local or a currently uncharacterized vaccine
could have been introduced into the horse population, as con-
tact with vaccinated persons is known to have been a source of
OPV disease in animals (33). Vaccine escape has been hypoth-
esized to account for other VACV-like viruses occasionally
isolated from domestic and sentinel animals, including RPXV,
buffalopox in India, and viruses associated with zoonosis in
South America; however, unique biological properties and/or
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inability to associate the isolate with vaccine virus has also led
to suggestions that they are natural VACYV isolates or VACV
subspecies (19, 24, 25, 27, 33, 46, 90). Similarly, HSPV
MNR-76 may represent a novel, naturally circulating virus and
perhaps one for which the horse was an incidental host, just as
other domestic and captive animals are not thought to be the
reservoir for CPXV infection despite being susceptible to in-
fection (13, 33). Unfortunately, little is known of the preva-
lence of disease associated with HSPV MNR-76 in Mongolia,
either in horse or in human populations. Conceivably, MNR-76
may represent a naturally circulating member of the VACV
lineage, as were viruses circulating among domestic animals in
the era in which current VACV-like viruses were collected as
vaccine. Whatever the historical relationship between HSPV
MNR-76 and characterized VACV-like viruses may be, genomic
sequence analysis of other VACV-like virus isolates may add
perspective to the novel nature of HSPV relative to other
viruses within the VACV lineage.
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ADDENDUM IN PROOF

Since completion of the analyses presented here, the ge-
nome sequences of several VACV clones derived from the
Dryvax vaccine have become available. Preliminary analysis
indicates that while most of the HSPV sequence reported here
as absent in VACV was also absent in these clones, one (Gen-
Bank accession no. AY313848) contained nucleotide sequence
and ORF fragments at the HSPV 197 locus, stressing the need
for additional genomic sequence and analyses in examining the
nature of VACV-like virus variability.
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