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Extreme environments are closely associated with phenotypic evolution, yet the mechanisms behind this

relationship are poorly understood. Several themes and approaches in recent studies significantly further

our understanding of the importance that stress-induced variation plays in evolution. First, stressful

environments modify (and often reduce) the integration of neuroendocrinological, morphological and

behavioural regulatory systems. Second, such reduced integration and subsequent accommodation of

stress-induced variation by developmental systems enables organismal ‘memory’ of a stressful event as well

as phenotypic and genetic assimilation of the response to a stressor. Third, in complex functional systems,

a stress-induced increase in phenotypic and genetic variance is often directional, channelled by existing

ontogenetic pathways. This accounts for similarity among individuals in stress-induced changes and thus

significantly facilitates the rate of adaptive evolution. Fourth, accumulation of phenotypically neutral

genetic variation might be a common property of locally adapted and complex organismal systems, and

extreme environments facilitate the phenotypic expression of this variance. Finally, stress-induced effects

and stress-resistance strategies often persist for several generations through maternal, ecological and

cultural inheritance. These transgenerational effects, along with both the complexity of developmental

systems and stressor recurrence, might facilitate genetic assimilation of stress-induced effects.

Accumulation of phenotypically neutral genetic variance by developmental systems and phenotypic

accommodation of stress-induced effects, together with the inheritance of stress-induced modifications,

ensure the evolutionary persistence of stress–response strategies and provide a link between individual

adaptability and evolutionary adaptation.
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1. INTRODUCTION
Environments outside the range normally experienced by a

population, and the associated changes in organisms’

morphological, physiological or behavioural homeostasis,

accompany most evolutionary changes (Bijlsma &

Loeschcke 1997; Hoffmann & Parsons 1997; Hoffmann &

Hercus 2000). Depending on the intensity, predictability

and recurrence of stress, responses might range from stress

tolerance and avoidance at the organismal level to the rapid

appearance of novel traits or extinction at a population

level. Yet, moderate stress is essential for normal growth

and differentiation of many organismal systems (Huether

1996; Clark & Fucito 1998; Muller 2003). For example, a

large part of skeletal development is directed by exposure to

tension and mechanical overloads in excess of those

normally experienced in the organism’s functioning (Hall

1986; Carter 1987; Herring 1993). Stress plays an

important role in facilitating local adaptation by enabling

better adjustments, synchronization and functioning of

many organismal systems (Simons & Johnston 1997;

Emlen et al. 2003; Rutherford 2003; Wingfield 2003;

Robertson 2004). Anyone who has experienced the

invigorating effects of diving into icy-cold water after a

sauna, the health benefits of rigorous exercise, as well as
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analgesic and attention-sharpening effects accompanying

stressful encounters (McEwen & Sapolsky 1995; Shors &

Servatious 1997)will testify to these effects of stress.On the

other hand, response to an acute and unfamiliar stressor

precludes normal organismal functions (Sibly & Calow

1989), and the high cost of stress tolerance or lack of

evolved stress response strategies leads to evolutionary

stasis (Parsons 1994).

Extreme environments not only disrupt normal

development and induce large phenotypic changes in

novel directions, they also simultaneously exert strong

phenotypic selection that favours changes in these direc-

tions (Waddington 1941; Schmalhausen 1949; Bradshaw&

Hardwick 1989; Jablonka et al. 1995). Not surprisingly,

evolutionary diversification, the appearance of phenotypic

novelties and mass extinction are all closely associated

with extreme environmental changes (e.g. Howarth 1993;

Guex 2001; reviewed in West-Eberhard 2003). Although

it is widely recognized (especially in physiological and

embryological studies) that stress plays an important role

in directing and organizing the adaptive adjustment of an

organism to ever-changing environments, very little is

known about the evolution of mechanisms that enable the

organismal accommodation of stress-induced variation.

The lack of a developmental perspective in evolutionary

studies of stress has left us with several unresolved
q 2005 The Royal Society



Table 1. Empirical patterns of the stress-induced phenotypic and genetic variation.

general phenomenon specific pattern (organisms) references

stress-induced
generation of novel
genetic variation

exposure to stress induces directional and
locally adaptive mutations (green alga,
bacteria, yeast, Daphnia)

Ruvinsky et al. (1983), Cairns et al. (1988), Hall
(1990), Steele & Jinks-Robertson (1992),
Foster (2000), Goho & Bell (2000),
Sniegowski et al. (2000), Bjedov et al. (2003)
and Wright (2004)

increase in evolutionary rate of a gene
(cyanobacteria; human)

Prody et al. (1989) and Dvornyk et al. (2002)

increase in frequency of sexual recombination
(Volvox)

Nedelcu & Michod (2003)

increase in mutation and/or recombination
rates (many species)

Belyaev & Borodin (1982), Parsons (1988),
Selker (1990) and Imasheva (1999)

increase in stress-induced transposition
(plants, Drosophila)

McClintock (1984), Bownes (1990), Rather et al.
(1992) and Wessler (1996)

appearance of primitive, ancestor-like forms Guex (2001)

stress challenge of
general homeostasis
releases hidden
variation

phenotypic responses to stress mimic the
expression of mutation

Goldschmidt (1940), Waddington (1941, 1953),
Milkman (1965), Ho et al. (1983), Chow &
Chan (1999) and Schlichting & Smith (2002)

phenotypically neutral genetic variance in
ancestral forms of domesticated organisms
becomes adaptive in the hybrid backgrounds,
including domesticated forms (soybeans,
maize, sunflowers) and other organisms

Roth et al. (1989), Lauter & Doebley (2002),
Rieseberg et al. (2003), Innan & Kim (2004),
Pelabon et al. (2004), Piffanell et al. (2004)
and Seehausen (2004)

environment dependency and context
dependency in expression of genetic
variation

Kondrashov & Houle (1994), Threadgill et al.
(1995), Leips & MacKay (2000) and Keller
et al. (2002)

complex and redundant developmental
systems enable accumulation of mutational
variance

Szafraniec et al. (2001)

stress challenge of
specific buffering
mechanisms releases
hidden variation

stress-induced changes in regulation of
chaperone proteins releases normally
unexpressed genetic variation

Rutherford & Lindquist (1998), Queitsch et al.
(2002) and Ruden et al. (2003)

release of cryptic genetic variation by
artificial selection (Drosophila)

Gibson & Hogness (1996) and Dworkin et al.
(2003)

epigenetic regulation of genes uncovers
normally unexpressed phenotypic variation

Rutherford (2003), Sollars et al. (2003) and True
et al. (2004)
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questions. First, how can organisms prepare for novel and

extreme environmental change? Organismal ability to

mount an appropriate reaction to a stressor requires

recognition and evaluation of the extreme environment.

How can this ability evolve in relation to stressors that are

short and rare in relation to a species’ generation time?

Second, numerous studies have documented an increase in

phenotypic and genotypic variance under stress, and it is

suggested that this variance is a source of novel adaptations

under changed environments. Yet, for stress-induced

modifications to have evolutionary importance, they have

to be inherited and must persist in a sufficient number of

individuals within a population. This requires an organism

to survive stress and reproduce; that is, to accommodate

stress-induced variation without reduction in the organ-

ism’s functionality. How is such accommodation accom-

plished? Moreover, could existing organismal systems

channel accumulation of stress-induced variance in some

directions, but not others and, thus, direct evolutionary

change in response to stress? The perspective outlined

here, with a particular focus on the effect of stress

during development in animals, suggests that these

questions are resolved by considering: (i) the organization

of developmental systems that enable accommodation
Proc. R. Soc. B (2005)
and channelling of stress-induced variation without

compromising organismal functionality; (ii) the signifi-

cance of phenotypic and genetic assimilation of neurologi-

cal, physiological, morphological and behavioural

responses to stressors; and (iii) multiple inheritance

systems that transfer the wide array of developmental

resources and conditions between the generations enabling

long-term persistence and evolution of stress-induced

adaptations.
2. SOURCES OF STRESS-INDUCED VARIATION
A stress-induced increase of phenotypic and genetic

variation in a population has three main sources. First,

directional selection imposed by a stressor can result in

faster rates of mutation and recombination. Second, stress

challenges to homeostatic mechanisms can release and

amplify phenotypic variation. Third, stressful environ-

ments can facilitate developmental expression of novel

genetic variation that had accumulated, but was pheno-

typically neutral under a normal range of environments.

These sources of variation can be adaptive under stressful

conditions when they facilitate the development of novel

adaptations to changed environments.
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(a) ‘Generated’ variance

Organismal reaction to a stressor is often associated with

generation of variation in a directional and locally adaptive

manner ( Jablonka & Lamb 1995; West-Eberhard 2003;

see table 1). In some cases, such directionality is attributed

to the channelling effects of complex developmental

networks (e.g. Walker 1979; Roth & Wake 1985). In

other cases, it is associated directly with a stressful

environment (e.g. Wills 1983). An extreme environment

often increases genetic variation because of the elevation

in mutation and recombination rates (Hoffmann &

Parsons 1997; Hoffmann & Merilä 1999; Imasheva

1999; Wright 2004). When such mutations are directional

(or ‘focused’; Caropale 1999) in relation to a stressor—

that is, when the stressful environment causes a mutation

and favours phenotypic change associated with this

mutation—such an increase in mutation rate might result

in greater similarity among individuals within a population

in response to a stressor facilitating evolutionary adap-

tation to novel environments (Shapiro 1992; Jablonka &

Lamb 1995; Foster 2000; Wright 2000; Brisson 2003;

Rutherford 2003; Wright 2004). Table 1 shows examples

of stress-induced generation of novel genetic variation. At

the level of phenotype, induction of a phenotypic trait by a

stressor and concurrent selection on the induced trait are

common (Price et al. 2003; West-Eberhard 2003).

(b) ‘Hidden’ variance

Stressful environments reveal greater phenotypic and

genetic variability than is seen under normal conditions,

and it is commonly suggested that such hidden variation

results from stress-induced challenge to organismal

homeostasis (Scharloo 1991). In turn, an increase in

variation and subsequent reorganization of organismal

systems are thought to enable the formation of novel

adaptations (Bradshaw & Hardwick 1989; Eshel &

Matessi 1998; Gibson & Wagner 2000; Schlichting &

Smith 2002). The idea that the extreme environments’

challenge to previously canalized systems is the source of

such hidden variation is corroborated by numerous

empirical observations of environment- and context-

dependency in expression of novel genetic variation

(table 1). However, it is not clear how genetic and

developmental systems can accumulate and store pheno-

typically neutral genetic variation while not expressing it

(Wagner & Mezey 2000; Hermisson et al. 2003; Masel &

Bergman 2003; Gibson &Dworkin 2004). Specifically, the

discussion has focused on the existence of ‘evolutionary

capacitors’ (Rutherford 2000) and ‘adaptively inducible

canalizers’ (Meiklejohn & Hartl 2002)—specific mecha-

nisms that buffer and accumulate developmental variation,

producing ‘hidden reaction norms’ of a phenotype under

stress. A debated question is whether these ‘evolutionary

capacitors’ are stressor-specific regulatory systems or

whether evolutionary capacity is a property of any complex

and locally adapted organismal system. Rutherford &

Lindquist (1998) found that mutations at the gene for the

stress-induced chaperone proteins harbours abundant but

normally unexpressed genetic variation, which, when

selected, leads to the appearance and assimilation of

novel phenotypes in the population (Queitsch et al. 2002;

Ruden et al. 2003; Rutherford 2003; Sollars et al. 2003).

However, other studies suggested that ‘evolutionary

capacity’ is a property of most locally adapted
Proc. R. Soc. B (2005)
developmental systems that, when challenged by a novel

environment, reveal large genetic variation (Kirschner &

Gerhart 1998; Rutherford 2000; Bergman & Siegal 2003).

Complex developmental processes and genetic networks

can constrain variation in individual traits (Rice 2004),

and phenotypically neutral genetic variation is commonly

accumulated in such systems given sufficient time and

population size (Hermisson & Wagner 2004).
3. EVOLUTION OF RESPONSE TO STRESS
Stress occurs when changes in the external or internal

environment are interpreted by an organism as a threat to

its homeostasis (e.g. Greenberg et al. 2001; McEwen &

Wingfield 2003). Thus, the ability of an organism to

mount an appropriate response to potentially stressful

environmental changes requires correct recognition of

environmental change and the activation of a stress

response (e.g. Johnson et al. 1992). However, it is unclear

how the ability to recognize and assess potentially stressful

environments can evolve. How can organisms judge the

appropriate reaction to a stressor, as is required in order to

select between stressor avoidance and stress tolerance? Are

the mechanisms of assessment and avoidance specific to a

particular stressor?

(a) Insights from cognitive and physiological

assimilations of a stressful event: what does not

kill you makes you stronger

Generally, repeated exposure to a particular stressor

favours the evolution of mechanisms that suppress an

organism–wide stress reaction and, instead, activate stress-

specific responses (Johnson et al. 1992; Barclay &

Robertson 2001; Veenema et al. 2003). For example, in

mammals and birds, stress-induced activation of the

neuroendocrinological system increases its reactivity to

internal and external stimuli, facilitates the processing of

sensory information, and ultimately enables the formation

of a behavioural or physiological strategy of dealing with a

stressor. Furthermore, stress-induced activation of neuro-

endocrinological systems facilitates long-term retention of

information about a stressful event and corresponding

organismal response. Once formed, the maintenance of

such ‘memory’ can be accomplished by periodic exposure

to different stressors. For example, hormones associated

with stress detection and avoidance also play a major role

in modifications of neural circuits (Gold & McGaugh

1978). Once the stress-avoidance strategy is formed,

exposure to even a low concentration of these hormones

maintains the strategy (McGaugh et al. 1982; for similar

examples, see Sockman et al. 2002, 2004).

Animal physiology studies show that the repeated

experience of successfully overcoming social stresses

during ontogeny is a prerequisite for the acquisition of a

normal repertoire of behavioural strategies (Huether

1996; e.g. Gans 1979). An insightful example is provided

by experiments that show that individuals exposed to

repeatable, but consistently unfamiliar (and thus

‘uncontrollable’ by an animal) stressors develop ‘stressful

helplessness’ (i.e. they lose their ability to react to any

stressor; Katz et al. 1981; Johnson et al. 1992; Avitsur et al.

2001). In contrast, individuals that were allowed to

develop a stress-avoidance strategy by exposure to a

previously encountered stressor not only developed stress
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tolerance to a particular stressor, but also actively sought

out other mild stressors. In the absence of other stressors,

their stress-avoidance abilities diminished (Katz et al.

1981; Johnson et al. 1992; Avitsur et al. 2001). Similarly,

in insects, exposure to temperature stress facilitated not

only subsequent long-term tolerance of extreme tempera-

tures, but also performance under anoxia and various

motor stresses (Karunanithi et al. 1999; Ramirez et al.

1999; Wu et al. 2002). The interchangeability of distinct

stressors in maintaining and exerting organismal stress

response, and long-term persistence of stress effects, have

also been documented in the studies of amphibians, where

organismal stress from food deprivation and from a water

level reduction exerted similar endocrinological effects

during larval metamorphosis (Denver 1999; Boorse &

Denver 2004). These results suggest that, once originated,

a stress–response strategy can be maintained by other

environments, and adaptation to one type of stressor

facilitates adaptation to other stressors.

Phenotypic assimilation of the appropriate stress

response is further facilitated by a common involvement

of neural and endocrine pathways of the stress response in

other organismal functions (Aston-Jones et al. 1986;

Greenberg et al. 2001; Robertson 2004). In such cases,

even a single stressful experience during development is

often enough to induce changes that, in the future, will

prevent organism-wide stressful reactions and will instead

activate stress-specific behavioural and physiological

responses (Levine et al. 1967, 1989). Generally, stress-

induced reorganization of existing developmental path-

ways and organismal function, rather than the production

of novel stress-specific pathways, accounts for the ease

with which individuals and populations lose and gain the

ability to resist stress in laboratory settings (Chapin et al.

1993; Hoffmann & Merilä 1999).

(b) Stress-avoidance strategies

The ability actively to remove a stressor by either

relocation or avoidance requires an evolved ability to

detect or anticipate stressful changes and the ‘knowledge’

or ‘memory’ of stress avoidance strategies or adjustments

(Bradshaw&Hardwick 1989; Jablonka et al. 1995; Denver

1999). Therefore, the evolution of stress avoidance is more

probable when stressful events are predictable, prolonged

and frequent in relation to generation time (AncelMeyers &

Bull 2002). Alternatively, the short-term avoidance of a

frequent but mild stressor might be accommodated by

behavioural or physiological plasticity of an organism

(Schlichting & Smith 2002; Nicolakakis et al. 2003;

Piersma & Drent 2003; Wingfield & Sapolsky 2003). For

example, repeated challenges of an organism’s immune

system and challenges to skeletal tissues caused by

mechanical overload during growth lower developmental

errors and enable a more precise reaction to a specific

pathogen (e.g. Graham et al. 2000; Hallgrı́msson et al.

2004). Generally, organisms can activate stress reactions

when there is discordance between environments during

their development and their current external and internal

environments (Meaney 2001; Bateson et al. 2004). On the

longer time-scale, avoidance of a predictable stressor can

be accomplished by changes in an organism’s life history,

especially by altering the timing of reproduction or

duration of development. Common cases include stress-

induced modification of the timing of metamorphosis
Proc. R. Soc. B (2005)
in amphibians, changes in the duration of gestation in

mammals and the timing offlowering and seeding in plants

(e.g. Bradshaw & Hardwick 1989; Denver 1999; Stanton

et al. 2000; Boorse & Denver 2004).

In sum, initial behavioural accommodations of stress

(e.g. hiding, relocation, lowering metabolism) may set the

stage for the evolution of adaptive stress-avoidance

strategies (e.g. periodic hibernation, migration, torpor).

When a stressor is reliably preceded by other environ-

mental changes, their mutual recurrence facilitates the

establishment of stressor recognition, assessment and

avoidance strategies, such that an evolved stress-specific

strategy does not involve an activation of an organism-

wide stress response. When individuals vary in their

reaction to stress and when stress-induced strategies are

favoured by natural selection during and after a stressful

event, these strategies can become phenotypically and

genetically assimilated in a population (see below;

Baldwin 1896; Hinton & Nolan 1980; Oyama 2000;

West-Eberhard 2003).

(c) Stress buffering as a by-product

of developmental complexity

Organismal functions most closely related to fitness are

thought to be the most buffered against internal and

external stressors (Waddington 1941; Schmalhausen

1949; Stearns & Kawecki 1994). However, an organism’s

functioning in changing environments requires the ability

to track and respond to these environments, and evolved

buffering from stressors would also restrict an organism’s

ability and capacity to adapt to continuously changing

environments (Wagner et al. 1997; Eshel & Matessi 1998;

Ancel 1999; Schlichting & Smith 2002). For example,

suppression of stress-induced activation of the sensory

systems limits an organism’s ability to acquire and retain

the sensory cues and behavioural strategies necessary for

stress avoidance (Huether 1996). On the one hand, a lack

of phenotypic plasticity results in population extinction

under stress (Gavrilets & Scheiner 1993; Ancel 1999). On

the other hand, extensive phenotypic variability in

organismal functions weakens the effects of directional

selection imposed by stressful environments, and thus

lessens the opportunity for genetic assimilation and

evolution of adaptations to stress (Fear & Price 1998;

Ancel 2000; Huey et al. 2003). Recent studies suggest that

buffering is an emerging property of developmental

complexity rather than an evolved stress-resistance

mechanism (see above). The increasing complexity of

developmental pathways and networks leads directly to

environmental and genetic stability and canalization

(Baatz & Wagner 1997; Rice 1998, 2004; Waxman &

Peck 1998; Meiklejohn & Hartl 2002; Siegal & Bergman

2002; Ruden et al. 2003). Complex genetic and develop-

mental networks can accommodate the effects of stressful

perturbations without the loss of function or structure,

while building up neutral genetic variation (Rutherford

2000; Bergman & Siegal 2003; Masel 2004).

(d) Accommodation of stress-induced variation

by changes in an organism’s integration

Organisms might accommodate stress-induced variation

without the loss of function by lessening homeostasis of

individual systems. For example, individual hormonal

systems have a far greater potential range of performances



Table 2. Empirical patterns of the relationship between stress and homeostasis.

general
phenomenon

specific pattern references

stress increases
homeostasis

stress-induced increase in resource exchange leads to a greater
developmental integration among normally independent
organismal components in animals raised under stress

Sciulli et al. (1979), Schandorff (1997)
and Klingenberg et al. (2001)

exposure to stress prevents the expression of deleterious
mutations in Escherichia coli

Kishony & Leibler (2003)

increased homeostatic interactions within reproductive
systems counteracts the stress effects on the organism
when breeding opportunities are limited

Wingfield & Sapolsky (2003)

stress decreases
homeostasis

increase in developmental noise and variation in numerous
organismal traits

Parsons (1990), Hoffmann & Parsons
(1997), Møller & Swaddle (1997),
Polak (2003) and Badyaev (2004)

destruction of the nest site leads to temporary breaking of
the strict hierarchical social structure and rapid
proliferation of random individual search routes that
facilitate finding of a new nest site in social ant species

Britton et al. (1998) and Couzin &
Franks (2003)
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and can remain functional under a wider range of

environments than is allowed by homeostasis under a

normal range of environments (Dickinson 1988; Johnson

et al. 1992; Greenberg et al. 2001; Robertson 2004;

Romero 2004). Frequently documented suppression of

immunocompetence under stressful conditions might

facilitate novel adaptations to a stressor by realizing full

capabilities of individual immune systems (Råberg et al.

1998). When stress is associated with damage of tissues,

suppression of immunological functions enables individ-

ual organismal systems to respond to a stressor without

activation of organism-wide autoimmunological response

(Dickinson 1988; Råberg et al. 1998; Avitsur et al. 2001).

Examples of stress-induced increases in organismal

integration, mostly in response to mild stressors, and

corresponding suppression of random developmental

variation under stress are shown in table 2.

The importance of the timing of stress for directing the

evolution of morphological traits is well documented.

When stressors are mild and occur during ontogeny,

individual organismal systems often accommodate stress-

induced variation without the reduction in functionality

(Bradshaw & Hardwick 1989; Herring 1993; Huether

1996; Schandorff 1997; Hallgrı́msson 1999; Badyaev &

Foresman 2004). For example, when components of

foraging structures differ in patterns of ossification,

morphological variation in later ossified components can

be directed by stress-induced modifications of earlier

ossified components (Mabee et al. 2000; Badyaev et al. in

press). In addition, when stress occurs early in ontogeny,

accommodation and channelling of stress-induced vari-

ation by existing organismal structures causes similar

reorganization in many individuals simultaneously (Roth &

Wake 1985; Chapin et al. 1993), thus facilitating adaptive

evolution (Goldschmidt 1940; West-Eberhard 2003).

(e) Channelling of stress-induced variation

Natural selection favours organismal homeostasis that

maintains some degree of developmental variation neces-

sary for adjustment of the organism to its environments

(Simons & Johnston 1997; Wagner et al. 1997; Eshel &

Matessi 1998; Emlen et al. 2003; Nanjundiah 2003).

Stressful conditions can increase this variation, and
Proc. R. Soc. B (2005)
differences among organismal systems in their reaction

to a stressor might bias the introduction and expression of

variation available for selection and, thus, ultimately,

affect evolutionary change (Bonner 1965; Roth & Wake

1985; Jablonka & Lamb 1995; West-Eberhard 2003).

Empirical studies show that the coordinated development

of morphological traits often leads to their similarity

in expression of stress-induced developmental variation

(Leamy 1993; Badyaev & Foresman 2000, 2004;

Klingenberg et al. 2001; Badyaev et al. in press). These

examples not only confirm a strong effect of functional

complexes on directing and incorporating stress-induced

variation during development, but might also explain the

historical persistence of complex groups of traits through

stressful environments.
4. INHERITANCE OF STRESS-INDUCED VARIATION
For a stress-induced modification to be preserved in a

lineage, it needs to be accommodated by an organism and

transmitted between generations (i.e. inherited). This

presents two problems. First, how can environmentally

induced effects become inherited? Second, if each orga-

nism accommodates a stressor by different adjustments,

then how can this diversity enable directional evolution of

a stress–response strategy?

Stress-induced phenotypic changes commonly persist

across several generations. Such across-generation carry-

over effects (sensu Jablonka et al. 1995) can be a result of

the transfer of physical substances, inheritance and

developmental incorporation of a stressor, hormonal

effects that influence expression of genetic variance in

subsequent generations, epigenetic inheritance of stress-

induced variation and structures, as well as behavioural

effects ( Jablonka & Lamb 1995; Rossiter 1996; Oyama

2000; Odling-Smee et al. 2003; West-Eberhard 2003).

For example, inheritance of dominant–subdominant

relationships in groups of many social mammals is

accomplished by mechanisms different from original

stressful encounters that established the dominance

structure (Creel et al. 1996; Fairbanks 1996). Similarly,

maternal care often sets the stage for a lifelong reaction to

stressors by offspring by modifying the expression of
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genes that regulate behavioural, physiological and endo-

crinological responses to stressors (Mousseau & Fox

1998; Meaney 2001; Badyaev in press). At the individual

level, stress-induced changes in neuroendocrinological

systems often occur with significant delay after the

exposure to stress, and persist for a long time. This

observation led to the suggestion that the primary

function of such delayed changes is integration of past

stress-induced responses and sensitization of the organism

to future occurrences of similar stressors (Huether 1996;

Ramirez et al. 1999; Romero 2004). In turn, within-

and between-generation maintenance of stress-induced

changes in neurophysiological systems is accomplished by

similar hormonal mechanisms (see above; McGaugh et al.

1982; Meaney 2001). More generally, short-term

and non-genetic inheritance might be beneficial when

the frequency of stress recurrence is greater than the

generation time, but shorter than is necessary for

the spread and fixation of adaptive mutation (i.e. the

evolution of genetic adaptation; Levins 1963; Ancel

Meyers & Bull 2002; Gavrilets 2004).

In sum, accommodation of stress-induced variance by

an organism can be facilitated by recurrent developmental

stressors and genetic assimilation replaces stress-induced

developmental modification if this modification has a

fitness advantage in both stressful and post-stress environ-

ments (Schmalhausen 1949; Waddington 1953). Even

when the short-term organismal responses to a stressor are

not genetically heritable, differences among organisms in

their ability to survive stress and the recurrence of stressful

environments will canalize stress-induced responses devel-

opmentally (Baldwin 1896; Schlichting & Pigliucci 1998;

Ancel 1999; West-Eberhard 2003). An excellent example

is a recent comprehensive review by Palmer (2004), where

he shows that genetic assimilation enables the evolution-

ary establishment of environmentally induced novelty—

directional asymmetry (for other examples of genetic

assimilation of stress-induced developmental variation see

Ho et al. 1983; Chapman et al. 2000; Heil et al. 2004).
5. STRESS-INDUCED EVOLUTION VERSUS
STRESS-INDUCED STASIS
Only a subset of stressful environments—narrowly fluctua-

ting and slowly changing in relation to generation time—

are thought to be associated with a rapid evolutionary

change, whereas extreme and rapidly changing environ-

ments might result in morphological stasis because of the

costs associated with stress tolerance (Parsons 1994).

Furthermore, only stressors specific to an organismal

system are expected to enable phenotypic assimilation and

evolutionary persistence of stress-induced adaptations

because a more general stressor favours stress tolerance

by increasing homeostasis, which, in turn, leads to a

reduction in organismal metabolism and fitness. Thus,

among the array of organismal responses to stressful

environments reviewed above, only accommodation of

stress-induced variation and stress avoidance are expected

to lead to significant evolutionary change (Parsons 1993).

On the contrary, because of its association with lower

metabolism and stronger regulatory systems, stress

tolerance is unlikely to be associated with greater

organismal plasticity, and instead, leads to stasis under
Proc. R. Soc. B (2005)
extreme environments which is observed in ‘living fossils’

(Parsons 1993, 1994).
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