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Abstract

The biologic aggressiveness of prostate tumors is an

important indicator of prognosis. Chromosome 7q32—

q33 was recently reported to show linkage to more

aggressive prostate cancer, based on Gleason score, in

a large sibling pair study. We report confirmation and

narrowing of the linked region using finer -scale

genotyping. We also report a high frequency of allelic

imbalance (AI) defined within this locus in a series of

48 primary prostate tumors from men unselected for

family history or disease status. The highest frequency

of AI was observed with adjacent markers D7S2531

(52%) and D7S1804 (36%). These two markers de-

lineated a common region of AI, with 24 tumors

exhibiting interstitial AI involving one or both markers.

The 1.1-Mb candidate region contains relatively few

transcripts. Additionally, we observed positive associ-

ations between interstitial AI at D7S1804 and early age

at diagnosis (P=.03) as well as a high combined

Gleason score and tumor stage (P=.06). Interstitial AI

at D7S2531 was associated with a positive family

history of prostate cancer (P=.05). These data imply

that we have localized a prostate cancer tumor

aggressiveness loci to chromosome 7q32–q33 that is

involved in familial and nonfamilial forms of prostate

cancer.
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Introduction

Prostate cancer is the most commonly diagnosed neoplasm

and the second leading cause of cancer mortality in men in

the USA, with 30,200 deaths predicted in 2002 [1]. Despite

this, little is known regarding the genetic etiology of this

disease or why some prostate tumors are biologically more

aggressive than others.

Studies to date indicate the presence of multiple prostate

cancer susceptibility loci including: HPC1 located on 1q24–

q25 [2], CAPB on 1p36 [3], PCAP on 1q42.2–q43 [4],

8p22–p23 [5], HPC2 on 17p [6], 16q23–q24 [7], 20q [8]

and HPCX on Xq27–q28 [9]. Whereas there is some

supporting evidence for many of these candidate loci [10–

18], several studies have failed to verify any linkage to these

regions [19–25]. These complex and apparently contra-

dictory linkage data strongly suggest a heterogeneous nature

of hereditary prostate cancer [26]. Four members of our

group (D.V.C., W.J.C., B.K.S. and J.S.W.) have recently

reported the identification of chromosomal regions at 5q31–

q33, 7q32–q33, and 19q12 that exhibit linkage to more

aggressive forms of prostate cancer [27], as determined by

Gleason score [28].

We chose to further examine chromosome 7q32–q33 as

reports indicate frequent deletions of the long arm of

chromosome 7 in prostate cancer [29,30] and many other

tumor types including breast [31], pancreas [32], stomach

[33], thyroid [34], and ovary [35]. Allelic imbalance (AI) of 7q

is also associated with poor outcome in patients with prostate

cancer [36]. Specifically, a significant correlation has been

reported between 7q AI and higher Gleason score, increased

mortality and systemic progression of disease at follow-up

[37], all considered markers of more aggressive disease.

Loss of heterozygosity (LOH) at 7q31 is the most commonly

reported alteration in many tumor types and is often observed

in early -stage cancers [29,34,35]. Recent evidence sug-

gests that ST7 is the tumor suppressor gene associated with

LOH at 7q31 [38].

The present study was designed to further characterize

the candidate prostate tumor aggressiveness locus on

7q32–q33 by utilizing linkage analysis and AI techniques.

In this report, we confirm and narrow the previously reported

linkage region on chromosome 7q32–q33 and report a high

frequency of AI within this region. The current study

provides strong evidence for the presence of a prostate

cancer aggressiveness gene mapping to 7q32–q33 that

may play a role in both familial and nonfamilial forms of

prostate cancer.
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Materials and Methods

Radiation Hybrid Mapping

The order of the 11 microsatellite markers across 7q used

in the AI study was determined using the Genebridge 4

(GB4) low-resolution radiation hybrid panel (Research

Genetics, Huntsville, AL). The GB4 panel [39] contains

DNAs from 93 human fibroblast -derived human:hamster

hybrids. Individual PCR reactions were performed for each

hybrid with each of the 11 markers shown in Table 1. The

PCR reactions were performed using a PCR thermal cycler

(MWG Biotech, Highpoint, NC). Each 15-�l reaction

contained 2 �l of DNA, 1.25 mM of each deoxynucleotide

triphosphate, 0.5 �M reverse primer, 0.5 �M forward primer,

0.75 U of Taq DNA polymerase (Life Technologies, Rock-

ville, MD), 67 mM Tris–HCl (pH 8.8), 67 mM magnesium

chloride, 16.6 mM ammonium sulfate, 10 mM � -mercapto-

ethanol, and 10% DMSO. The DNA amplification cycle

comprised a 5-minute denaturation step at 948C, 35 cycles

of 948C for 45 seconds, annealing at the appropriate

temperature for 1 minute, and extension for 1 minute at

728C, followed by a final 5-minute extension at 728C. Ten

microliters of each PCR product was resolved on a 6%

nondenaturing polyacrylamide gel and visualized following

ethidium bromide staining. Each hybrid was scored for the

presence or absence of the PCR product with all 11 markers.

The results were analyzed using the Map Manager QT

program [40] to determine the relative order and distance

between markers (Table 1).

Genotyping Methods

A higher density linkage analysis across the 7q32–q34

region was performed on 513 men, from the equivalent of

326 concordant sibships, from the original sibling pair study

[27]. Five microsatellite markers were chosen; one of

these markers (D7S530) lies distal and the remaining four

(D7S2452, D7S640, D7S684, and D7S495) lie proximal to

the marker exhibiting the highest degree of linkage

(D7S1804) in the previous study [27]. PCR was carried

out for each marker using blood lymphocyte DNA from

each individual in the study. Each forward primer was

designed to include a fluorophore at the 50 end to enable

detection and analysis on an ABI 373 XL DNA sequencer.

Before loading onto a 6% denaturing polyacrylamide gel,

PCR products were diluted in water and multiplexed

according to marker size and fluorophore. One microliter

of multiplexed product was then added to 3 �l of formamide

loading dye, containing a 350 base pair 6-carboxytetra-

methylrhodamine size standard (Applied Biosystems,

Foster City, CA) and denatured at 958C for 5 minutes.

ABI Collection and ABI Genescan version 3.1 software

packages (Applied Biosystems) were used to process

each electrophoresis run. Marker allele sizes and intensity

for each sample was assessed using Genotyper software

(Applied Biosystems).

Patient Selection and Evaluation of Tissue

A consecutive series of 51 prostate patients, for whom

we had both tumor tissue and comprehensive clinical data

available, were identified through the tumor registry at the

Cleveland Clinic Foundation. This study was approved by

the Institutional Review Board of the Cleveland Clinic

Foundation. Each tumor was staged at the time of surgery

and graded, using the Gleason system, following assess-

ment of microscopic sections of the surgical specimen.

Normal and tumor tissue from each case was micro-

dissected from 5-�m unstained paraffin -embedded tissue

sections, as previously described [16], following the review

and annotation of a corresponding hematoxylin and eosin

stained section by a pathologist (H.L. ). DNA was extracted

from the microdissected tissue using the Qiagen Tissue Kit

(Qiagen, Valencia, CA) and eluted in 100 �l of Tris buffer

(pH 9). Final tumor DNA content was estimated to be at

least 70%. Three patients were subsequently removed from

the study due to insufficient DNA quality for PCR

amplification. A total of 48 patients were included in our

genetic analysis. Clinical information for all patients is noted

in Table 2.

AI Study

Eleven microsatellite markers were used in the AI study

(Table 3). Of these, three (D7S3061, D7S1804, and

D7S1824) had shown significant linkage to aggressive

disease in our prostate cancer sibling linkage study [27].

Information regarding primer sequence was obtained from

the Genome Database (http: / /www.gdb.org). Separate

PCR reactions were performed using DNA from micro-

dissected normal and tumor tissue. PCR conditions were as

described above, but using a � -32P end- labeled forward

primer. End- labeling with [� - 32P]dATP was carried out

using T4 polynucleotide kinase (USB, Cleveland, OH). Two

Table 1. Radiation Hybrid Map Order of 11 Microsatellite Markers on 7q.

Marker Intermarker Distance* ( cR -3000 )

D7S3061

34.44

D7S1875

27.44

D7S530

8.06

D7S2519

14.45

D7S2531

30.62

D7S1804

12.68

D7S2452

8.92

D7S640

63.15

D7S684

11.02

D7S495

28.44

D7S1824

*Map distances are based on D7S3061 as 0.
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microliters of PCR product was combined with 4 �l of 95%

formamide loading dye containing 20 mM EDTA, 0.5 mg/ml

bromophenol blue, and 0.5 mg/ml xylene cyanol. The

sample mixtures were denatured at 958C for 5 minutes and

immediately cooled on ice before loading onto a 6%

denaturing polyacrylamide gel. Gels were run for approx-

imately 3 hours at 65 W and analyzed following autoradio-

graphic band detection using a STORM phosphorimager

(Molecular Dynamics, Sunnyvale, CA). AI was determined

by visual examination by two investigators as previously

reported [41] and samples that defined AI breakpoints were

verified using PCR products from a separate PCR

amplification reaction.

Statistical Analyses

Linkage was statistically evaluated using a multipoint

generalized Haseman-Elston (HE) linkage test [42] as

described previously [27]. To determine whether AI at any

marker was associated with clinical characteristics of the

men with prostate cancer (e.g., high Gleason score)

Table 2. Selected Clinical Parameters for the 48 Prostate Cancer Patients in the Study.

Patient ID Age at

Diagnosis

Prostate Cancer

Family History

PSA at

Diagnosis

Pathology

Stage

Surgical

Grade

3 -104 63 Y 5.4 T2 6

3 -130 66 N 6.0 T2 5

3 -249 51 Y 5.0 T2 6

3 -342 64 N 5.0 T3 6

4 -188 54 Y 4.6 T3 7

5 -121 55 N 5.7 T3 7

5 -187 63 Y 5.7 T3 7

5 -189 62 N 3.5 T2 6

5 -350 60 Y 6.3 T2 6

5 -369 66 N 5.6 T2 7

5 -436 63 Y 6.0 T2 6

5 -665 65 Y 6.0 T3 5

5 -905 63 N 5.4 T2 6

6 -201 64 Y 5.4 T2 5

6 -322 56 Y 5.6 T2 6

6 -350 58 N 5.6 T2 7

6 -425 61 N 6.2 T2 6

6 -452 64 Y 6.3 T3 7

7 -155 65 Y 5.5 T3 7

7 -187 63 Y 5.3 T3 7

7 -206 71 Y 5.5 T2 7

7 -220 56 Y 6.0 T2 6

7 -286 57 N 7.2 T3 7

7 -293 62 N 5.9 T2 7

7 -297 57 N 10.9 T3 6

7 -309 68 N 4.4 T2 7

7 -310 63 N 7.1 T2 7

7 -311 62 N 6.1 T2 6

7 -324 58 N 8.0 T2 5

7 -341 62 N 12.9 T3 7

7 -348 60 Y 17.0 T3 7

7 -353 56 N 5.9 T2 7

7 -375 57 N 4.8 T2 6

7 -392 60 N 13.0 T2 9

7 -393 58 N 3.4 T2 7

7 -401 59 N 25.0 T3 7

7 -404 60 Y 8.0 T2 7

7 -410 73 N 5.0 T2 6

7 -433 66 N 9.8 T3 7

7 -441 69 N 10.0 T3 8

7 -451 68 N 5.3 T2 7

7 -475 55 Y 6.6 T2 6

7 -484 62 N 8.2 T2 7

7 -485 63 N 7.6 T2 7

7 -491 63 Y 4.3 T2 7

7 -684 48 Y 5.9 T2 7

7 -923 71 Y 5.0 T3 7

8 -501 47 N 18.2 T3 9
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Fischer’s exact �2 test was used. Analyses were carried

out using the statistical software SAS (SAS Institute,

Cary, NC).

Results

Radiation Hybrid Mapping of 7q Microsatellite Markers

To confirm the order of the 11 microsatellite markers used

in this study, the low-resolution GB4 radiation hybrid panel

[39] was used. We found the mapping order of the markers

to be in agreement with that given for the Marshfield linkage

map with the exception of marker D7S640, which our data

places distal to D7S2452, and marker D7S495, which lies

distal to D7S684 according to our study. The chromosomal

order of these markers, as determined by analysis with Map

Manager QT is shown in Table 1.

Linkage Analysis

Incorporating the data from the five additional markers

into our original linkage analysis strengthened evidence of

linkage (Figure 1 ). We observed a broad region of linkage for

which P<.005 between markers D7S3061 and D7S495.

Within this region, a 6-cM peak (P<.001) encompassing

markers D7S2452 and D7S640 was identified, supporting

the presence of a gene involved in the development of

aggressive forms of prostate cancer on 7q32–q33.

AI at 7q32–q33

Overall, 38 of the 48 (79%) samples studied showed AI

with at least one marker. The AI frequencies for each marker

are shown in Table 3. The highest frequencies of AI were

exhibited by adjacent markers D7S2531 (52%) and

D7S1804 (36%). Twenty-seven of the 48 samples studied

displayed AI involving D7S2531 and/or D7S1804, with 24

tumors showing interstitial deletions across this region

(Figure 2 ). Representative autoradiographs for four of the

samples showing interstitial AI across D7S2531/D7S1804

are shown in Figure 3.

Clinical Associations

We examined any potential clinical associations bet-

ween tumors showing interstitial AI involving D78S2531

and/or D7S1804 compared with 21 samples that showed

no AI at either marker. This analysis was designed to

remove any bias from surrounding unrelated AI. Parame-

ters such as family history (self - reported and defined as

having at least one first -degree affected relative), PSA at

diagnosis, Gleason score, and tumor stage were studied

(Table 2). A statistically significant association (P=.03)

was seen between early age at diagnosis ( <60 years of

age) and interstitial AI at marker D7S1804. A weaker, but

still noteworthy, association was observed between inter-

stitial AI involving D7S1804 and a high combined Gleason

score (>7) and tumor stage (�T2c) (P=.06). An

association between AI with marker D7S2531 and positive

Table 3. AI on Chromosome 7q31– q35 Loci in 48 Primary Prostate Tumors.

Marker Name AI/Informative

(% of AI)

Cytogenetic

Location*

D7S3061 CHCL.GGAA6D03 12/43 (28%) 7q31.32

D7S1875 AFMa345wc9 5/30 (17%) 7q31.33

D7S530 AFM249�f9 4/42 (10%) 7q32.1

D7S2519 AFMc024we9 7/35 (20%) 7q32.2

D7S2531 AFM338wd5 16/31 (52%) 7q32.2

D7S1804 CHCL.GATA43C11 12/33 (36%) 7q33

D7S2452 AFMa282wf9 7/39 (18%) 7q33

D7S640 sWSS1204 6/37 (16%) 7q33

D7S684 AFM312wb5 9/42 (21%) 7q34

D7S495 AFM168�c3 6/25 (24%) 7q34

D7S1824 CHLC.GATA32C12 8/41 (20%) 7q35

*According to the NCBI Entrez Genome web site

(http://www.ncbi.nlm.nih.gov).

Figure 1. Results from linkage analysis of prostate cancer aggressiveness on

chromosome 7. Broken lines indicate results from the original analysis; solid

line denotes results from new analysis. Values on the x - axis show marker

positions according to Marshfield Medical Research Foundation, Human

Genetics web site and our radiation hybrid mapping data.

Figure 2. Summary of 24 primary prostate tumor samples showing interstitial

AI on 7q involving D7S2531 and D7S1804. Markers are listed on the left;

sample numbers are shown across the top. (5 ) Informative samples with no

AI; (& ) informative samples demonstrating AI; (6� ) noninformative (homo-

zygous ) samples; ( — ) did not work. Boxes define maximum extent of AI for

each sample.
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family history for prostate cancer (P=.05) was also

observed.

Discussion

The first aim of this project was to provide further evidence

for a prostate cancer tumor aggressiveness locus on

chromosome 7q32–q33. In our original genome-wide multi-

point linkage study [27] we found three microsatellite

markers that defined linkage to Gleason score (P<.01)

across 7q31–q35 covering a 28 cM region. The linkage

region with P<.0001 spanned approximately 8 cM and

included the marker D7S1804. In the present study, we

undertook finer -scale genotyping in this region using five

additional markers (D7S530, D7S2452, D7S640, D7S684,

and D7S495) with the same sibling population used in the

original study. We found that linkage was maintained on

chromosome 7q32–q33, when data were analyzed with

respect to Gleason score (Figure 1 ) and strengthened

(P<.005) across the 28 cM region. Furthermore, the highest

linkage peak was reduced in size to approximately 6 cM

(P<.001) between markers D7S2452 and D7S684. These

data imply that this region harbors a gene involved in

increased risk for developing more aggressive forms of

prostate cancer.

Hereditary chordoma was recently mapped to this region

on chromosome 7q32–q33 [43]. Chordomas are rare,

locally invasive primary tumors of the bone believed to

develop from notochordal remnants. Although these tumors

are slow growing, they frequently recur following surgery or

radiotherapy [44], implying some aggressive biologic behav-

ior. Three families affected by chordoma showed linkage

between markers D7S512 and D7S684, which span the

region observed in the present study [43]. Furthermore,

another form of familial chordoma has been mapped to 1p36

[45], also reported as a prostate cancer susceptibility locus

CAPB [3 ]. Although there is a moderate male predominance

(1.7:1) for this disease [43], there are no reports of an

association with prostate cancer. Reported analysis of four

chordoma tumor samples from affected family members did

not reveal any LOH suggesting that this gene and the

prostate cancer aggressiveness gene may not be the same

[43] or do not undergo the same forms of gene inactivation.

However, additional studies would be needed to determine

this.

A second goal of the study was to provide evidence of a

tumor suppressor gene in this region by applying AI analyses

to 48 prostate tumors from patients unselected for family

history or clinical status of disease. These studies demon-

strated a high frequency of AI within this region. Overall, 79%

(38 of 48) of the tumors showed AI of at least one marker.

The highest frequency of AI was found at markers D7S2531

(52%) and D7S1804 (36%). Furthermore, 24 tumors (50%)

showed interstitial AI involving D7S2531 and/or D7S1804

(Figure 2 ) and defined a common region of deletion between

these two markers of approximately 	1.1 Mb in size, based

on build 28 of the public genome sequencing database at

NCBI. This pattern of interstitial AI also suggests that the

region we have defined in this study is distinct from that

containing the ST7 candidate tumor suppressor gene on

7q31.3 (Figure 4 ).

The common fragile site FRA7H maps between markers

D7S2519 and D7S2531 [46,47]. Fragile sites are regions of

the genome particularly prone to breakage and often are

associated with regions of AI. Several candidate tumor

suppressor genes have been mapped to fragile sites

including FHIT on 3p14.2 (FRA3B) [48], the multiple

candidate tumor suppressor ST7 on 7q31 (FRA7G)

[38,49] and the putative prostate cancer susceptibility locus

at 16q23 (FRA16D) [16,50,51].

We also investigated any clinical associations with

occurrence of AI at markers D7S2531 and D7S1804 by

comparing tumors with interstitial AI at D7S2531 and/or

D7S1804 and those without AI at either marker. A statisti-

cally significant association (P=.05) was observed between

AI at D7S2531 and positive family history. AI at D7S1804

was associated with early age at diagnosis (P=.03) and a

high combined Gleason score and tumor stage (P=.06). A

similar trend was seen when Gleason score (P=.14) or

tumor stage (P=.16) were analyzed separately. These data

strongly suggest that this region contains a gene associated

with prostate tumor aggressiveness that is implicated in the

Figure 4. Schematic representation of 7q32 – q33 region showing positions of

linked region, AI, fragile site and ST7 tumor suppressor gene. Not shown to

scale. ST7 = supression of tumorigenicity 7 gene; FRA7H = fragile site 7H;

AI = common region of allelic imbalance.

Figure 3. Examples of autoradiographs from AI studies on matched normal

( N ) and prostate tumor (T ) pairs. Samples 7 – 286 and 7– 393 both exhibit AI

at markers D7S2531 and D7S1804 but retain D7S2519 and D7S2452. Tumor

7– 220 shows AI at D7S2531 but no AI at any neighboring marker. Sample

7– 310 demonstrates AI at D7S1804 but not at any flanking marker. (& ) AI;

(5 ) no AI; arrows indicate AI.
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etiology of both hereditary and nonfamilial forms of prostate

cancer.

Sequence coverage of the chromosome 7q32–q33

region is almost complete with three small gaps in the NCBI

database. The region contains relatively few transcripts, but

contains some intriguing candidates for a prostate cancer

tumor aggressiveness gene, including two known genes,

muskelin-1 (MKLN1 ) [52] and podocalyxin- like protein

(PODXL ), and four hypothetical genes, KIAA1550,

LOC91583, LOC91584 (similar to mouse plexin 3), and

LOC96016 (similar to Eukaryotic Translation Elongation

Factor 1 Beta 2).

Muskelin-1 is a novel intracellular protein that acts as a

positive mediator of cell -spreading, adhesion, and cytoske-

letal responses to the extracellular matrix component

thrombospondin-1 (TSP-1) [53]. TSP-1 is a potent

antiangiogenic molecule [54] and has been shown to inhibit

tumor growth and metastasis [55]. TSP-1 is upregulated by

p53 and depleted in primary prostate tumors that express

mutant p53 [56]. Evidence suggests that muskelin (MKLN1)

is required for cellular responses to TSP-1 [53], implying a

role for this protein in the regulation of the biologic

aggressiveness of tumors.

Podocalyxin- like protein is a transmembrane sialomucin

involved in adhesion in renal glomerular podocytes and

vascular endothelium [57]. PODXL was recently shown to

be identical to the testicular germ cell tumor marker, gp200,

which is associated with highly malignant tumors [58].

Several regions of homology to both mouse and human

plexins are identified within the hypothetical genes including

PSI (domain found in plexins, semaphorins, and integrins)

and IPT ( immunoglobulin- like fold shared by plexins and

transcription factors) domains common to the plexin family of

proteins [59]. Plexins have been reported to act as cell

surface receptors for semaphorins [60], and are implicated

in axon repulsion, angiogenesis regulation, and tumor

growth and metastasis [61]. The PSI domain found within

the extracellular regions of both plexins and semaphorins

shows homology to part of the oncoprotein MET. MET and

other scatter factor receptors have been shown to play a role

in cell motility and invasion [62].

To provide evidence of a role in prostate tumor aggres-

siveness, we are currently performing germline mutation

analyses of candidate genes in men with prostate cancer that

show linkage to this region. In addition, we hope to identify

more linked families for which there is tumor tissue available

and perform AI studies to further confirm and narrow this

region.

In summary, we have further refined a region of linkage

on chromosome 7q32–q33 associated with prostate cancer

tumor aggressiveness. We have also demonstrated a high

frequency of AI within this region and have mapped the

smallest region of AI to approximately 1.1 Mb between

markers D7S2531 and D7S1804. Furthermore, we found

that AI at marker D7S1804 was associated with early age of

onset of prostate cancer and high combined Gleason

score/ tumor stage and that marker D7S2531 was asso-

ciated with family history of prostate cancer in an unselected

series of prostate cancer patients. These data support the

mapping of a gene to 7q32–q33 associated with aggressive

forms of both familial and nonfamilial prostate cancer.
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