Ocular inflammation induced by electroconvulsive treatment:
contribution of nitric oxide and neuropeptides mobilized from contribution of nitric oxide and new epoperties mobilized from

*Zun-Yi Wang, †Kristian Waldeck, †Lars Grundemar & *,¹Rolf Håkanson
Departments of *Pharmacology and †Clinical Pharmacology, University of Lund, Lund, Sweden

1 Electroconvulsive treatment (ECT) of rabbits produced ocular inflammation consisting of conjunctival hyperaemia, miosis and protein extravasation into the aqueous humour, reflected by the so-called aqueous flare response (AFR); the maximal reduction in pupil size was 3.8 ± 0.1 mm (s.e. of so-called and approximate and approximate $\frac{1}{2}$. The maximal $\frac{1}{2}$ are response $n = 16$) while the maximal AFR was 28.1 ± 2.8 (arbitrary units).
2 ECT also caused release of substance P (SP), pituitary adenylate

 $\overline{2}$ ECT also caused release of substance P (SP), pituitary adenylate cyc 27, -38 and calcitonin gene-related peptide (CGRP). The concentrations 27, -38 and calcitonin gene-related peptide (CGRP). The concentrations of SP and CGRP in the aqueous humour of normal, untreated eyes were 10.6 ± 1.4 and 117.4 ± 12.4 pmol 1^{-1} , respectively, while the numour of normal, untreated eyes were 10.6 ± 1.4 and 117.4 ± 12.4 pmol 1 \degree , respectively, while the concentrations of PACAP-27 and -38 were below the detection limit. After ECT the concentrations of SP, PACAP-27, concentrations of PACAP-27 and -38 were below the detection limit. After ECT the concentrations of SP, PACAP-27, -38 and CGRP were 65.0 \pm 9.6, 46.9 \pm 8.4, 50.2 \pm 5.4 and 1109.9 \pm 133.1 pmol l⁻, respectively (s.e. of mean, $n=12$). Conceivably, ECT evoked an antidromic activation of sensory neurones in the trigemi neurones in the trigeminal ganglion with the consequent release of neuropeptides from C-fibres in the uvea and the development of neurogenic inflammation.

3 Rabbits received the nitric oxide (NO) synthase inhibitor, N^G -nitro-L-arginine methyl ester (L-NAME, 200 mg kg^{-1} , i.v.). This pretreatment inhibited the ECT-evoked conjunctival hyperaemia, NAME, 200 mg kg⁻, i.v.). This pretreatment inhibited the ECT-evoked conjunctival hyperaemia,
miosis and AFR; under these circumstances the maximal reduction in pupil size was 1.9 ± 0.1 mm while the maximal AFR was 2.7 ± 0.9 ($n=16$). L-NAME also inhibited the ECT-evoked release of SP, PACAP-27, -38 and CGRP into the aqueous humour; the concentrations of SP and CGRP were PACAP-27, -38 and CGRP into the aqueous humour; the concentrations of SP and CGRP were
13.2 \pm 1.5 and 204.8 \pm 33.5 pmol 1⁻¹, respectively, while PACAP-27 and -38 were below the detection 13.2 \pm 1.5 and 204.8 \pm 33.5 pmol l⁻¹
limit (*n* = 12).
4 The ECT-evoked miosis was also , respectively, while PACAP-27 and -38 were below the detection

 $D-Pal^9$ spantide II (90 nmol, intravitreal injection); under these circumstances the maximal reduction in pupil size was only 0.7 ± 0.03 mm, indicating an important role for SP in the miotic response. Pretreatment of the eye with capsaicin, which is known to cause functional ablation of C-fibres, inhibited the conjunctival hyperaemia, miosis and AFR by 40–50%; the maximal reduction in pupil size being 2.2 ± 0.2 mm and the maximal AFR 13.8 ± 2.1 (arbitrary units) $(n=8)$.

5 The results suggest (1) that ECT evokes ocular inflammation through antidromic C-fibre activation: (2) that SP contributes to the ECT-evoked miosis; and (3) that NO contributes to the antidromic C-fibre activation and possibly to the vascular responses mediated by the C-fibre transmitters.

Keywords: Nitric oxide; C-fibres; substance P; calcitonin-gene related peptide; pituitary adenylate cyclase activating peptide; electroconvulsive treatment; seizure; ocular inflammation; rabbit eve; transmitter release electroconvulsive treatment; seizure; ocular in¯ammation; rabbit eye; transmitter release

Introduction

The inflammatory response in the eye consists of miosis, la-
crimation, conjunctival hyperaemia and breakdown of the blood-aqueous barrier with consequent leakage of protein into the aqueous humour (for references, see Unger, 1990; Håkanson $\&$ Wang, 1996). Ocular C-fibres originate in the trigeminal ganglion (Butler & Hammond, 1980; Butler et al., 1980; Tervo *et al.*, 1981), and there is much evidence to suggest that C-fibre neurotransmitters, such as substance $P(SP)$ and calcitonin gene-related peptide (CGRP), play a key role in the ocular response to injury (Holmdahl et al., 1981; Wahlestedt et $al.$, 1986; Stone et al., 1987; Unger, 1990; Håkanson & Wang, 1996). Recently, pituitary adenylate cyclase activating peptide (PACAP) has been identified as yet another C-fibre neuropeptide, that takes part in the inflammatory responses of the rabbit eye (Wang et al., 1995). As there is no barrier separating the iris and the ciliary body from the anterior chamber, any transmitter that is released from local nerve fibres will diffuse into the anterior chamber, making the eye an excellent model for studies of transmitter release. for studies of transmitter release.

¹ Author for correspondence at: Department of Pharmacology, University of Lund, S-223 62 Lund, Sweden.

Nitric oxide (NO) is a short-lived molecule displaying numerous bioactivities (Moncada *et al.*, 1991; Snyder $\&$ Bredt, 1991). It is generated from L-arginine by the enzyme NO synthase (NOS), which can be inhibited by analogues of L-arginine, e.g. N^G -nitro-L-arginine methyl ester (L-NAME) L arginine, e.g. Ω and Ω -nitro-L-argin estervations suggest that NO may be of physiological and/or pathophysiological significance in the control of ocular functions. Thus, NOS activity has been demonstrated in the anterior uvea of the rabbit (Osborne et al., 1993) and NOS immunoreactivity has been detected by immunostaining of nerve fibres in the anterior uvea of the rat (Yamamoto et al., 1993). Intravenous injection of L-NAME was found to reduce the regional blood flow in the uvea of the rabbit (Seligsohn & Bill, 1993), suggesting a role for NO in the regulation of ocular blood vessels. Interestingly, NO seems to play a role in the activersion entertaingly, the seems to play a role in the action Wang & Håkanson 1995; Wang et al. 1996a). We decided to investigate whether NO plays a role in the ocular response to electrical stimulation of the trigeminal ganglion by electroconvulsive treatment (ECT), with an emphasis on the elationship between NO and sensory nerves $(C$ -fibres) in the relationship between NO and sensory nerves (C-®bres) in the uvea.

methods.

All experiments were carried out on adult pigmented rabbits $(1.5-2.5 \text{ kg})$ of mixed strain. The study was approved by the (11 = 2.5 ± 2.5 kg) of mixed strain. The study was approved by the study of the

ECT was performed by using round steel electrodes of 8 mm
diameter, attached bitemporally to shaved areas on the head of the rabbit. Standard conductive electrode jelly was applied on the skin to increase conductivity. Monophasic pulses, with an initial amplitude of 150 V followed by a sinusoidal decline during 5 ms, were applied with a frequency of 50 Hz for 5 s (Konvulsator 2077, Siemens, Germany). The amplitude of stimulation was determined in preliminary experiments in which voltage was increased progressively until reproducible seizures were observed. Pulse shape, pulse duration and frequency were chosen in accordance with those used in clinical therapy (Fink, 1987). The electrical stimulus was delivered twice with an interval of 5 min. Just before the first electrical stimulus was applied, the rabbits were given methohexitone sodium (5 mg $\vec{k}g^{-1}$) into an ear vein. The anaesthesia lasted sodium (5 mg kg⁻¹) into an ear vein. The anaesthesia lasted
for about 20 min, sufficient to prevent the discomfort associated with the treatment. Each rabbit was killed $1-3$ h after ated with the treatment. Each rabbit was killed 1 ± 3 h after

Measurements of ocular responses

ECT produced symptoms of ocular inflammation. The breakdown of the blood-aqueous barrier was determined by photoelectric measurement of the aqueous flare response (AFR) in the anterior chamber (Anjou & Krakau, 1961). This response is a Tyndall phenomenon in the anterior chamber reflecting protein leakage across the blood-aqueous barrier. Briefly, a narrow beam of light is passed through the anterior chamber. In the presence of large molecules (usually proteins) in the aqueous humour, light scattering (aqueous flare) occurs. A correlation between the AFR and the protein concentration has been established (Anjou & Krakau, 1961; Dyster-Aas & Krakau, 1964). The AFR is expressed in arbitrary units with reference to a standard (Dyster-Aas $\&$ Krakau, 1964). Conjunctival hyperaemia was assessed visually. The miosis was monitored by measuring the pupillary diameter with a transparent ruler under constant and uniform illumination.

Pretreatment with L-NAME, capsaicin and tachykinin $r_{\rm r}$ and antagonist

L-NAME (200 mg kg \rightarrow , in 3 mi saline) was given by intrave-
nous injection 30 min before the ECT. The rabbits were divided into two groups: one group received L-NAME, the other group received vehicle (0.9% saline). Each group included eight rabbits. The dose of L-NAME was chosen from earlier studies, showing that L-NAME $(10-200 \text{ mg kg}^{-1})$ inhibits studies, showing that L-NAME (10–200 mg kg⁻) inhibits
NOS in a dose-dependent manner and that 30 mg kg⁻¹ lowered the regional blood flow in rabbit uvea for a short period of time only (<20 min) (Persson et al., 1991; Seligsohn & Bill,

1993; Wang & Håkanson, 1995; Wang et al., 1996a).
Capsaicin acts on C-fibres to release C-fibre transmitters (Holzer, 1991). Retrobulbar injection of 0.5 ml of 1% capsaicin solution to one eye was given under pentobarbitone anaesthesia (Bynke, 1983; Wang et al., 1996b). The contralateral eye received vehicle. ECT was applied 4 days after treatment with capsaicin when the capsaicin-induced responses had subsided.

The tachykinin receptor antagonist, D-Pal⁹ spantide II, was given by intravitreal injection (90 nmol in 30 μ l) into the corpus vitreum, $3-4$ mm posteriorly to the limbus; the contralpus vitreum, 3 ± 4 mm posteriorly to the mileting, the contralateral eye received the same volume of saline (Holmdahl et al.,

1492 149

1981). D-Pal⁹ spantide II is a specific and potent tachykinin receptor antagonist with pA_2 values of 7.5 for NK_1 receptors and 6.5 for NK_2 receptors (Wang et al., 1994a). ECT was applied 3 h after the injection. applied 3 h after the injection.

Radioimmunoassay (RIA) of neuropeptides in the aqueous humour a_numour humour hu

Samples of aqueous humour were collected from the anterior chamber of both eyes 1 h after ECT (usually the AFR had reached maximum at this time). Each group included six rabbits. The samples were frozen on dry ice and stored at -80° C until assayed.
SP-, PACAP-27- and PACAP-38-like immunoreactivity

(LI) were measured by RIA kits from Peninsula (Merseyside, St. Helens, U.K.). Briefly, aqueous humour samples or standard solution of each peptide in RIA buffer (19 mM $NaH₂PO₄$, 81 mm $Na₂HPO₄$, 50 mm NaCl, 0.1% Triton X-100, 0.01% sodium azide, pH 7.4) were incubated with their respective antiserum at a final dilution of 1:120,000 at 4° C for 24 h. Then iodinated tracer ($\approx 10,000$ c.p.m.) in RIA buffer was added. The mixture was incubated for another 24 h at 4° C. Antibody-bound tracer was separated from free tracer by addition of goat anti-rabbit IgG serum and of 24 h at 4° C. Antibody-bound tracer was separated from free tracer by addition of goat anti-rabbit IgG serum and of normal rabbit serum. After incubation at room temperature for 90 min, 500 μ l of cold RIA buffer was added, and the samples were centrifuged at $1700 \times g$ for 30 min. The tubes were gently aspirated and the radioactivity of the precipitates was measured. The IC_{50} values are about 27, 4 and 4 pmol 1^{-1} for SP, PACAP-27 and PACAP-38, respectively. The detection limits for all three peptides are about 1 pmol 1^{-1} . The PACAP-27 antiserum cross-reacts 1% with 1 pmol 1 °. The PACAP-27 antiserum cross-reacts 1% with
PACAP-38 and does not recognize vasoactive intestinal pentide (VIP) \overline{SP} neurokinin \overline{A} (NKA) and CGRP. The PACAP-38 antiserum cross-reacts 0.01% with PACAP-27 and does not recognize VIP, SP, NKA and CGRP. The SP antiserum does not cross-react with either NKA or neuro- $\frac{1}{2}$ kinin B (Wang & Håkanson, 1995; Wang *et al.* 1995; 1996a k inin B (Wang θ Haekanson, 1995; Wang et al., 1995; 1995; 1996

b). (Tyr⁻) CGRP (rat) (Peninsula) was radioiodinated by con-
itional chloramine-T oxidation and used as a tracer after purification by high performance liquid chromatography. The specific radioactivity of the tracer was $1000-2000 \mu \text{Ci} \text{ nmol}^{-1}$. specific radioactivity of the tracer was 1000 = 2000 μ CI nmol¹¹.
Aqueous humour samples or standard solutions of rat CGRP were incubated with $200 \mu l$ antiserum (at a final dilution of 1:40,000) for 24 h at 4°C. Then, tracer (\approx 10,000 c.p.m.) was added and the mixture was incubated for another 24 h. Free
tracer was separated from bound by adding 100 μ l solid phase second antibody coated cellulose suspension. After incubation at room temperature for 30 min, 500 μ l cold redistilled water was added and the mixture was centrifuged at $1700 \times g$ for 20 min. The radioactivity of the precipitates was measured. The detection limit is about 100 pmol $\hat{1}^{-1}$ and the interassay variation is less than 10% in the $100-1250$ pmol 1^{-1} range. CGRP variants (human CGRP I and II) cross-react with the antiserum better than 100% on a molar basis, but there is no cross-reaction with calcitonin, katacalcin, C-terminal adjacent peptide, tachykinins, neuropeptide $Y(NPY)$ and VIP (Grunditz et al., 1986; Wahlestedt et al., 1986; Wang et al., 1995). Concentrations are expressed as pmol rat CGRP equivalents Concentrations are expressed as pmol rat CGRP equivalents $1 - 1$

Capsaicin and L-NAME were purchased from Sigma (St. Louis, MO, U.S.A.). D-Pal⁹spantide II, a specific tachykinin Louis, MO, U.S.A.). D-Pal spantide II, a specific tachykinin
receptor antagonist (Wang *et al* 1994a) was a kind gift from Dr Karl Folkers (Austin, TX, U.S.A.). The capsaicin solution (1%) was prepared by dissolving 100 mg capsaicin in 150 μ l of 99.5% ethanol; then 850 μ l of Tween 80 was added, followed by 9 ml of 0.9% saline (Bynke, 1983). D-Pal⁹ spantide II was by 9 ml of 0.9% saline (Bynke, 1983). D-Pal spantide II was
dissolved in 0.1 M acetic acid (Wang *et al.* 1994a). I-NAME was dissolved in 0.9% saline. was dissolved in 0.9% saline.

Analysis of results

Data are expressed as mean \pm s.e. of mean. Student's *t* test (two-tailed) for unpaired groups were used for statistical analysis and difference between samples was considered significant when $P < 0.05$. ni®cant when P50.05.

Results

All rabbits exposed to ECT responded with seizures, lasting for $10-12$ s, manifested in an initial rigid extensor spasm followed by a series of jerks and occasionally defaecation and micturition. Upon awakening they appeared normal; 46 rabbits were exposed to ECT, 2 of them died, probably due to an over-dose exposed to ECC, 2 of them died, probably due to an over-dose

$\sum_{i=1}^{n}$

ECT induced a prompt miosis which lasted about 1 h (Figure 1a). A moderate AFR was noted after $15-30$ min, reaching maximum after 1 h (Figure 1b). The conjunctiva displayed mammum after 1 h (Figure 1b). The conjunctiva displayed
moderate hyperaemia which lasted for 2–3 h moderate hyperaemia which lasted for 2 ± 3 h.

E_y . E_y = E_z in Eq. induced on E_z

Pretreatment with L-NAME (200 mg kg⁻⁻, i.v.) inhibited the
ECT-evoked miosis (Figure 1a). The AFR (Figure 1b) and the conjunctival hyperaemia (not shown) were virtually abolished conjunctival hyperaemia (not shown) were virtually abolished \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b}

$\frac{1}{2}$ induced ocular responses $\sum_{i=1}^{n}$

Pretreatment with $D-PaI^9$ spantide II (90 nmol, intravitreal injection) inhibited the miosis induced by ECT (Figure 2a), while leaving the AFR and the conjunctival hyperaemia unwhile the conjunction of the area in the conjunction hyperature and the conjunction \mathbb{R}^n \overline{a}

Effects of capsaicin on ECT -induced ocular responses

Capsaicin (0.5 ml of 1% solution, retrobulbar injection) itself and conjunctival hyperaemia and swelling. These responses subsided gradually over a period of $1-3$ days. In the contralateral eye, injected with the vehicle, conjunctival hyperaetraince in type, injected with the vehicles, conjunctive hyperate m_g and a single-see also also also m_g were noted (see also Bynke, 1983).
Capsaicin pretreatment inhibited the miosis, AFR and

conjunctival hyperaemia induced by ECT, applied 4 days after capsaicin (Figure 3a and b). ϵ and ϵ and ϵ and ϵ and ϵ

Release of neuropeptides into the aqueous humour

SP and CGRP occurred in measurable amounts in the aqueous
humour of the untreated rabbit eye, while PACAP-27 and -38 were below the level of detection.

ECT raised the concentrations of the neuropeptides in the aqueous humour (Table 1). Pretreatment with L-NAME (200 mg kg⁻¹, i.v.) before ECT inhibited the concentration increase (Table 1).

In another series of experiments, the rabbits were treated with L-NAME and the aqueous humour samples were collected after 1 h. Treatment with L-NAME did not affect the concentrations of CGRP and SP in the aqueous humour and $PACAP-27$ and -38 remained undetectable (data not shown) PACAP-27 and -38 remained undetectable (data not shown).

Discussion

ECT is used to treat severe depression and other affective disorders. Although the mechanisms behind the beneficial efdiscussion continuous the mechanisms behind the benefiting to fects of F are poorly understood, recent studies have re-

Figure 1 ECT (appears there, at arrows) induced missis and $(200 \text{ mg } \text{kg}^{-1})$ inhibited the ECT-evoked miosis (a) and the AFR (200 mg kg⁻), inhibited the ECT-evoked miosis (a) and the AFR
(b) (\bullet). (C) Rabbits not pretreated with L-NAME (controls). Means \pm s.e. of mean (vertical lines) of eight rabbits in each group, statistical difference when compared to controls (ECT alone) indicated by $***P<0.001$ at corresponding time points. $\frac{1}{2}$. The state of corresponding time points.

vealed a dramatic increase in neuropeptide expression in sion of mRNA coding for NPY in the pyriform cortex and the dentate gyrus (Mikkelsen et al., 1994) and of mRNA coding for tachykinins and cholecystokinin in the ventral periaqueductal gray (Lindefors et al., 1991). In addition, the conducting gray (Elizabeth 11 and NKA were increased in the centrations of NPY and NPY and NRY and NKA were in the NRY and N

hippocampus (Stenfors *et al.*, 1992). Interestingly, the expression of peptide-processing enzymes was also increased (Bhat *et* al., 1993). These findings favour the view that electrical stimulation causes release of neuropeptides; the accelerated expression of mRNA for various neuropeptides may be viewed as a means to replenish the stores of these transmitters. as a means to replenish the stores of these transmitters.

1494 1494 1494 1494 1494 1494 1494 1494 1494 1494 1494 1494

a

Neuropeptides from C-fibres play an important role in in-
flammation. C-fibres in the anterior uvea derive from neurones in the trigeminal ganglion (for review, see Håkanson & Wang, 1996). Our results suggest that these neurones are activated by ECT, leading to the release of transmitters from their terminals. In support of this view, ECT was found to be associated with a rise in the concentrations of SP, CGRP and PACAP in the aqueous humour. The ECT-evoked miosis was blocked by a tachykinin receptor antagonist, while all ECT-evoked ocular a tachymical comparison antagonist, while all ECT-evoked occurs \mathbf{r}_r is a constant with capsaicing with capsaicing with capsaicing with capsaicing \mathbf{r}_r

Figure 2 D-Pal⁹ spantide II (90 nmol, intravitreal injection), a specific and potent tachykinin receptor antagonist, inhibited the miosis (a) induced by ECT (applied twice, at arrows), while leaving the AFR unaffected (b) \odot). \odot) Represent untreated eyes (controls). Means \pm s.e. of mean (vertical lines) of eight rabbits in each group, statistical difference when compared to controls (ECT alone) indicated by $*P<0.05$, and $***P<0.001$ at corresponding time points. indicated by *P<0.05, and ***P <0.001 at corresponding time points. $\sum_{i=1}^{n}$ points.

Figure 3 Capsaicin (0.5 ml of 1% solution, retrobulbar injection) pretreatment inhibited the ECT-evoked miosis (a) and AFR (b) (\bullet). (\bigcirc) Represent untreated eyes (controls). Means \pm s.e. of mean (vertical lines) of eight rabbits in each group, statistical difference when compared to control group indicated by $*P<0.05$, $*P<0.01$ and *** $P=0.001$.

$Z \sim W_0$. We also also also also and NO μ

release of neuropeptides into aqueous humour $(pmol⁻¹)$

Means \pm s.e. of mean of 12 samples. ECT: electroconvulsive treatment. ND: Not detectable. Normal means that the aqueous humour samples were collected from the eye of untreated control animals. "Significant difference $(P < 0.001)$ untreated control animals. "Significant difference (P<0.001)
when compared to normal and 1-NAME-treated rabbits where compared to normal and L-NAME-treated rabbits, respectively.
pared to norm $\sum_{n=1}^{\infty}$ cant die rence (PCC) when computed $\sum_{n=1}^{\infty}$ pared to normal rabbits.

is known to cause functional ablation of C-fibres (Holzer, 1991). Thus, ECT generates prompt inflammation in the eve (miosis occurs within seconds), probably through antidromic stimulation of ocular C-fibres (neurogenic inflammation). An alternative, but less likely, interpretation is that ECT causes release of mediators into the systemic circulation which evoke release of neuropeptides from C-fibres in the eye.

The effectiveness of capsaicin in depleting neuropeptides from C-fibres depends on age, strain and species (Holzer, 1991). The rabbit is less sensitive to capsaicin than the rat. Also, adult animals are more resistant to capsaicin than young (Holzer, 1991). Systemic treatment of adult rats reduces, but does not eliminate, the SP-immunoreactive nerve fibres in the eye (Terenghi et al., 1985; Moller et al., 1993). Thus, although capsaicin was found to mobilize neuropeptides from ocular Cfibres of the adult rabbit, it has not been possible to deplete neuropeptides from the uvea in this way (Wang $\&$ Håkanson, unpublished observations). Our previous studies have shown that exposure to capsaicin inhibits the contractions induced by other C-fibre excitants, such as bradykinin and resiniferatoxin, on the rabbit iris (Wang & Håkanson, 1992b), it could be shown by radioimmunoassay that approximately 70% SP and CGRP remained in the iris after exposure to capsaicin (100 μ M) in vitro (Håkanson et al., 1987). Also, pretreatment with capsaicin reduced the ocular response to noxious stimulation (Bynke, 1983). It appears reasonable to assume that the reduced ocular response to ECT following capsaicin pretreat r_{cent} reflects the partial depletion of neuropentides from ment recent the partial dependent of neuropeptides from ocular C-fibres.
It is reasonable to assume that different C-fibre neuropep-

tides may play different roles in the ocular responses to noxious stimuli. Tachykinins are likely to be responsible for the ECT-evoked miosis. Since the ECT-evoked AFR was unaffected by treatment with the tachykinin receptor antagonist, tachykinins are less likely to play an important role in the tachykinins are less likely to play an important role in the

References

- content in the anterior chamber of normal rabbits' eyes. Acta $Onbthalmol$ **39**, 95–101
- BEDING-BARNEKOW, B., BRODIN, E. & HÅKANSON, R. (1988). Substance P, neurokinin A and neurokinin B in the ocular response to injury in the rabbit. Br. J. Pharmacol., 95 , $259 - 267$.
- BHAT, R.V., TAUSK, F.A., BARABAN, J.M., MAINS, R.E. & EIPPER, B.A. (1993). Rapid increases in peptide processing enzyme B_{B} . For the processing increases in perthermore processing B_{B} . The procession in hinnocampal peurons I . Neurochem 61, 1315– expression in hippocampal neurons. J. Neurochem., 61, 1315 ± 1322.
BUTLER, J.M. & HAMMOND, B.R. (1980). The effects of sensory
- denervation on the responses of the rabbit eye to prostaglandin E_2 , bradykinin and substance P. Br. J. Pharmacol., 69, 495 – 502
- BUTLER, J.M., UNGER, W.G. & COLE, D.F. (1980). Axon reflex in ocular injury: sensory mediation of the response of the rabbit eye to laser irradiation of the iris \ddot{Q} *L Exp. Physiol* 65, 261-272 $t_{\rm r}$ is the irradiation of the iris. χ , ϵ , $\Xi_{\rm r}$, ϵ , η , μ , ϵ , η , ϵ ,

breakdown of the blood-aqueous barrier. CGRP and PACAP are known to be quite powerful in this respect (Wahlestedt *et* al., 1986; Wang et al., 1995).

The inhibition of the ECT-evoked miosis by a tachykinin receptor antagonist is in line with our view that tachykinins are responsible for the miotic response to noxious stimuli (Håkanson & Wang, 1996). The rabbit iris is known to possess NK_1 and NK_2 but not NK_2 receptors (Hall *et al.*, 1991; 1993; Wang & Håkanson, 1992a; 1993; Wang et al., 1994a, b). While both SP and NKA have been demonstrated in the rabbit iris, there is no convincing evidence for the presence of neurokinin B (Beding-Barnekow et al., 1988). Since the electrically evoked, noncholinergic and nonadrenergic contractions of the rabbit iris sphincter can be abolished by selective NK_1 receptor antagonists (Hall et al., 1993; Wang & Håkanson, 1992a; 1993; Wang et al., 1994a, b), it is unlikely that $NK₃$ receptors are involved in the Cfibre-evoked, tacahykinin-mediated contractions. Hence, we suggest that the receptor involved in ECT-evoked miosis belongs to the NK₁ type (Hall *et al.*, 1991; 1993; Wang & Håkanson, 1992a; 1993; Wang et al., 1994a, b).

The demonstration of NOS-like immunoreactivity in neurones and fibres of the dorsal root ganglia (Morris et al., 1992) has stimulated the idea that NO may have a signalling function within the sensory nervous system. The present study demonstrates that L-NAME inhibits ocular responses to ECT, partly by inhibiting the release of neuropeptides from the Cfibres. This is in line with our previous findings, indicating that NO plays an important role in the ocular responses to a minor injury (infrared irradiation of iris) (Wang $\&$ Håkanson, 1995) and to intravitreal injection of endotoxin (Wang et al., 1996a) by activating C-fibres, causing release of C-fibre neuropeptides into the aqueous humour. NO is claimed to increase guanosine 3':5'-cyclic monophosphate (cyclic GMP) formation in its target cells (Moncada *et al.* 1991). Whether the stimulating target cells (Moncada et al., 1991). Whether the stimulating effect of NO on sensory neurotransmitter release reflects increased cyclic GMP levels remains to be clarified.

In summary, ECT evoked ocular responses that probably reflect the excitation of C-fibres in the anterior uvea. SP (and NKA) seem to contribute to ECT-evoked miosis but not to ECT-evoked aqueous flare and conjunctival hyperaemia. NO probably plays an important role in the ECT-evoked ocular inflammation, since ECT-evoked ocular responses (miosis, AFR, conjunctival hyperaemia) were inhibited by pretreatment with the NOS inhibitor L-NAME. From our previous findings, it seems that NO stimulates the release of C-fibre neuropeptides (Wang & Håkanson, 1995; Wang et al., 1996a). In addition, NO mediates the vascular effects of CGRP and partly, those of PACAP (Wang $\&$ Håkanson, 1995; Wang et partly, there is become (while ϵ is defined by ϵ is ϵ), while ϵ al., 1996a).

This work was supported by the Swedish MRC (04X-1007).

- BYNKE, G. (1983). Capsaicin pretreatment prevents disruption of the blood-aqueous barrier in the rabbit eve. *Invest. Ophthalmol. Vis.* $Sci., 24, 744 - 748.$
- DYSTER-AAS, H.K. & KRAKAU, C.E.T. (1964). Aqueous flare determination in the rabbit by means of a minimal eye trauma. Invest. Ophthalmol., 3 , $127 - 134$.
- FINK, M. (1987). Convulsive treatment in affective disorders. In Psychopharmacology: The Third Generation of Progress, ed. Psychopharmacology: The Third Generation of Trog.
Meltzer, H.Y. pp. 1071–1076. New York: Raven Press.
- GRUNDITZ, T., EKMAN, R., HÅKANSON, R., RERUP, C., SUNDLER, F. & UDDMAN, R. (1986). Calcitonin gene-related peptide in the thyroid nerve fibres and C cells: effects on thyroid hormone t_{c} and t_{c} cerretion and response to hypercalcemia $Fndocrinaloov$ 119 secretion and response to hypercalcemia. Endocrinology, 119, $2313 - 2324.$

HÅKANSON, R., BEDING, B., EKMAN, R., HEILIG, M., WAHLES-TEDT, C. & SUNDLER, F. (1987). Multiple tachykinin pools in sensory nerve fibres in the rabbit iris. Neuroscience, $21, 943 - 950$.

- HÅKANSON, R. & WANG, Z-Y. (1996). Sensory neuropeptides in the eye. In Neurogenic Inflammation, ed. Geppetti, P. & Holzer, P. pp. $131 - 140$. Boca Raton: CRC Press Inc.
- HALL, J.M., MITCHELL, D. & MORTON, I.K.M. (1991). Neurokinin receptors in the rabbit iris sphincter characterised by novel agonist ligands. Eur. J. Pharmacol., 199, 9-14.
- HALL, J.M., MITCHELL, D. & MORTON, I.K.M. (1993). Tachykinin receptors mediating responses to sensory nerve stimulation and exogenous tachykinins and analogues in the rabbit isolated iris sphincter. Br. J. Pharmacol., 109 , $1008 - 1013$.
- HOLMDAHL, G., HÅKANSON, R., LEANDER, S., ROSELL, S., FOLKERS, K. & SUNDLER, F. (1981). A substance P antagonist, $D-Pro²$, $D-Trp^{7,9}-SP$, inhibits inflammatory responses in the D-Pro⁻, D-Trp²-SP, inhibits innammatory responses in the
rabbit eve *Science* 214, 1029–1031
- HOLZER, P. (1991). Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol. $Rev.$, 43, 143-201.
- LINDEFORS, N., BRODIN, K., STILLER, C.-O., PERSSON, H. & BRODIN, E.R. (1991). Repeated electroconvulsive shock increases tachykinin and cholecystokinin mRNA expression in ventral periaqueductal gray. Neuroscience, 45 , $73-80$.
- MIKKELSEN, J.D., WOLDBYE, D., KRAGH, J., LARSEN, P.J. & BOLWIG, T.G. (1994). Electroconvulsive shocks increase the expression of neuropeptide Y (NPY) mRNA in the piriform cortex and the dentate gyrus. Mol. Brain Res., 23, 317-322.
- MOLLER, K., ZHANG, Y.-Z., HÅKANSON, R., LUTS, A., SJÖLUND B., UDDMAN, R. & SUNDLER, F. (1993). Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunocytochemical and immunochemical evidence. Neuroscience, $57, 725 - 732$.
- MONCADA, S., PALMER, R.M.J. & HIGGS, E.A. (1991). Nitric oxide: Monthstand, S., Princesse, E. Princesses 20, 2001, 2003, 2004, 2006, 2007, 2006, 2007, 2007, 2007, 2007, 2007, 200 p_{ev} 43 109 – 142 Rev., 43, 109-142.
MORRIS, R., SOUTHAM, E., BRAID, D.J. & GARTHWAITE, J. (1992).
- Nitric oxide may act as a messenger between dorsal root ganglion neurones and their satellite cells. Neurosci. Letts., 137, 29-32.
- OSBORNE, N., BARNETT, N.L. & HERRERA, A.J. (1993). NADPH diaphorase localization and nitric oxide synthetase activity in the diaphoralization and nitric other symmetric activity in the retina and anterior uvea of the rabbit eye. Brain Res., 610, 194 ±
- PERSSON, M.G., WIKLUND, N.P. & GUSTAFSSON, L.E. (1991). Nitric oxide requirement for vasomotor nerve-induced vasodilatation and modulation of resting blood flow in muscle microcirculation. Acta Physiol. Scand., $14\overline{1}$, $49-56$.
- SELIGSOHN, E.E. & BILL, A. (1993). Effects of N^G -nitro-L-arginine methyl ester on the cardiovascular system of the anaesthetized rabbit and on the cardiovascular response to thyrotropinreleasing hormone. Br. J. Pharmacol., 109 , $1219 - 1225$.
- SNYDER, S.H. & BREDT, D.S. (1991). Nitric oxide as a neuronal messenger. Trends Pharmacol., 12 , $125 - 128$.
- STENFORS, C., SRINIVASAN, G.R., THEODORSSON, E. & MATHE. A.A. (1992). Electroconvulsive stimuli and brain peptides: effect of modification of seizure duration on neuropeptide Y, of modificial contract duration of modificial P , P and P , P and P , P neuronin A, substance P and neurotensin. Brain Res., 596,
252–258 $252 - 258.$

1496 1496 1496 1496 1496 1496 1496 1496 1496 1496 1496 1496

- STONE, R.A., KUWAYAMA, Y. & LATIES, A.M. (1987). Regulatory peptides in the eye. *Experientia*, **43**, 791 800.
- TERENGHI, G., POLAK, J.M., GHATEI, M.A., MULDERRY, P.K., BUTLER, J.M., UNGER, W.G. & BLOOM, S.R. (1985). Distribution and origin of calcitonin gene-related peptide (CGRP) immuno reactivity in the sensory innervation of the mammalian eye. J . Comp. Neurol., 233 , $506 - 516$.
- TERVO, K., TERVO, T., ERÄNKÖ, O. & CUELLO, A.G. (1981). Immunoreactivity for substance P in the Gasserian ganglion, ophthalmic nerve and anterior segment of the rabbit eye. $Historem. J., 13, 435-443.$
- UNGER, W.G. (1990). Mediation of the ocular response to injury. J. Ocul. Pharmacol., $6, 337-353$.
- WAHLESTEDT, C., BEDING, B., EKMAN, R., OKSALA, O., STJERNSCHANTZ, J. & HÅKANSON, R. (1986). Calcitonin generelated peptide in the eye: release by sensory nerve stimulation related peptide in the eye: release by sensory nerve summarized $\frac{1}{2}$ Pent 16. 107 – 115 Pept., 16, 107–115.
WANG, Z.-Y., ALM, P. & HÅKANSON, R. (1995). Distribution and
- effects of pituitary adenylate cyclase-activating peptide in the rabbit eye. Neuroscience, 69 , $297 - 308$.
- WANG, Z.-Y., ALM, P. & HÅKANSON, R. (1996a). The contribution of nitric oxide to endotoxin-induced ocular inflammation: interac- $\frac{1}{100}$ with sensory nerve fibres \overline{Br} *I Pharmacol* 118 1537 tion with sensory nerve more $\mathcal{L}(1, 1, 1)$ is maximized, 118, 1537 $\mathcal{L}(1, 1, 1)$
- WANG, Z.-Y., FENG, D.-M., WANG, Y.-L., TUNG, S.R., WONG, K., STRICHARTZ, G.R., FOLKERS, K. & HÅKANSON, R. (1994a). Pharmacological assessment of spantide II analogues. Eur. J. Pharmacol., 260 , $121 - 128$.
- WANG, Z.-Y. & HÅKANSON, R. (1992a). The electrically evoked, tachykinin-mediated contractile response of the isolated rabbit iris sphincter muscle involves $N\hat{k}_1$ receptors only. Eur. J. $Pharmacol., 216, 327 - 329.$
- WANG, Z.-Y. & HÅKANSON, R. (1992b). Effect of resiniferatoxin on the isolated rabbit iris sphincter muscle: comparison with capsaicin and bradykinin. Eur. J. Pharmacol., 213 , $235 - 241$.
- WANG, Z.-Y. & HÅKANSON, R. (1993). The rabbit iris sphincter contains NK_1 and NK_3 but not NK_2 receptors: a study with selective agonists and antagonists. Regul. Pept., 44 , $269 - 275$.
- WANG, Z.-Y. & HÅKANSON, R. (1995). Role of nitric oxide (NO) in ocular inflammation. Br. J. Pharmacol., 116 , $2447 - 2450$.
- WANG, Z.-Y., MONSTEIN, H.-J. & HÅKANSON, R. (1996b). Release of preprotachykinin-A mRNA from rabbit iris upon C-fibre stimulation. Eur. J. Pharmacol., 297 , $157-163$.
- WANG, Z.-Y., TUNG, S.R., STRICHARTZ, G.R. & HÅKANSON, R. $(1994b)$. Investigation of the specificity of FK 888 as a tachykinin NK_1 receptor anatagonist. Br. J. Pharmacol. 111, 1342 – 1346.
- YAMAMOTO, R., BREDT, D.S., SNYDER, S.H. & STONE, R.A. (1993). The localization of nitric oxide synthase in the rat eye and related C cranial ganglia *Neuroscience* $\overline{54}$ 189 – 195 cranial ganglia. Neuroscience, 54, 189 ± 195.

(Received September 30, 1996 Accepted January 20, 1997) Accepted January 20, 1997)