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1 The combination of interleukin-2 (IL-2) and IL-4 reduces the inhibitory e�ects of glucocorticoids
on granulocyte-macrophage colony-stimulating factor (GM-CSF) production, in agreement with the
hypothesis that this combination causes glucocorticoid resistance. Whether a general cytokine
resistance to glucocorticoids is induced by IL-2 and IL-4 has not been reported.

2 Mononuclear blood cells from healthy individuals were pre-treated with IL-2, IL-4, or IL-2+
IL-4 (31.3 ± 500 U ml71) for 48 h, prior to lipopolysaccharide (LPS; 10 ng ml71; 20 h) and
budesonide addition. Cytokine levels in the supernatants were analysed using speci®c immunoassays.
DNA content was analysed to estimate cell numbers.

3 GM-CSF production was totally inhibited by budesonide at 1078
M in vehicle treated cultures,

while IL-10 was inhibited to 33.4+4.3% of control. IL-2, IL-4, or IL-2+IL-4 reduced the inhibitory
e�ects of budesonide on GM-CSF to similar levels (23.7+6.7, 31.6+8.5 and 35.1+4.3% of control,
respectively). IL-2, IL-4, or IL-2+IL-4 also reduced the inhibitory e�ects of budesonide on IL-10
production (46.5+6.6, 55.9+7.3%, and 68.3+9.9% of control, respectively). In contrast, IL-8,
IL-12 and TNF-a production did not become resistant to budesonide.

4 Thus, glucocorticoid resistance induced by IL-2 and IL-4 is not general at the cytokine
production level. While the glucocorticoid sensitivity of GM-CSF and IL-10 production decreased,
the sensitivity of IL-8, IL-12 or TNF-a production was unchanged. Also, the mixture of IL-2 and
IL-4 is not crucial for induction of glucocorticoid resistance of GM-CSF production.
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Introduction

Since the introduction of glucocorticoids for the treatment of

in¯ammatory and autoimmune diseases, increasing evidence
point to the existence of glucocorticoid resistance in some
patients (Schwarz et al., 1968; Chikanza & Panayi, 1993; Frieri

& Madden, 1993). Glucocorticoid resistance has mostly been
studied in asthmatics where it is characterized by failure of
glucocorticoids to suppress eosinophil numbers and activated

T cells (Schwarz et al., 1968; Carmichael et al., 1981; Leung et
al., 1995). Several investigators have also reported data on
defective glucocorticoid responses of mononuclear blood cells

which correlate with clinical glucocorticoid resistance (Kay et
al., 1981; Poznansky et al., 1984; Wilkinsson et al., 1989;
Corrigan et al., 1991; Alvarez et al., 1992).

Leung and colleagues recently proposed that increased

production of interleukin-2 (IL-2) and IL-4 causes glucocorti-
coid resistance. They reported increased expression of IL-2 and
IL-4 mRNA in bronchoalveolar lavage cells of glucocorticoid-

resistant asthmatics (Leung et al., 1995). In addition, increased
IL-2 and IL-4 mRNA expression was found in endomyocar-
dial biopsies of patients that developed glucocorticoid-resistant

cardiac allograft rejection (Bann et al., 1996). Furthermore,

there are several reports showing that the combination of IL-2
and IL-4 induces defective glucocorticoid receptor properties
in normal mononuclear blood cells, similar to those in cells of

glucocorticoid-resistant asthmatics (Kam et al., 1993; Sher et
al., 1994; Klemm et al., 1996; Spahn et al., 1996). The IL-2 and
IL-4 hypothesis is further supported by our previous data that

the combination of IL-2 and IL-4 induces resistance of
granulocyte-macrophage colony-stimulating factor (GM-CSF)
production to glucocorticoids (Larsson et al., 1997). We

demonstrated that the combination of IL-2 and IL-4 has
functional consequences at the cytokine level that might
contribute to the reduced anti-in¯ammatory e�ects of
glucocorticoids in glucocorticoid-resistant patients.

However, there are several independent reports that IL-2
alone abrogates glucocorticoid inhibition of T cell prolifera-
tion (Walker et al., 1987; Hazcku et al., 1994). These results

suggest that IL-2 alone may cause glucocorticoid resistance.
Except for studies on glucocorticoid receptor a�nity there are
no further studies assessing whether a combination of IL-2 and

IL-4 is needed for induction of glucocorticoid resistance.
Hence, in the present study we have investigated the e�ects of
IL-2 or IL-4, alone or in combination, on GM-CSF
production and on its inhibition by budesonide. In order to

study whether a general glucocorticoid resistance at the
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cytokine level could be induced, we also compared the e�ects
of IL-2 or IL-4 alone, or in combination, on the production of
IL-8, IL-10, IL-12 and tumour necrosis factor-a (TNF-a).

Methods

Cell separation and culture

Cell separation and culture were performed as described

previously (Larsson et al., 1997). Brie¯y, venous blood was
collected from healthy volunteers into sterile EDTA-contain-
ing tubes. Erythrocyte sedimentation was increased by mixing

the blood 5 : 1 with saline containing 5% Dextran T500
(Pharmacia Biotech, Uppsala, Sweden) and glucose
(30 mg ml71; BDH Laboratory Supplies, Poole, U.K.). After

sedimentation for 30 min at room temperature the plasma
fraction was layered on Ficoll Paque-Plus (low endotoxin
grade; Pharmacia Biotech, Uppsala, Sweden) and mono-
nuclear cells were isolated. Cell viability was 495%, estimated

by the Trypan blue exclusion test. Granulocyte content was
52%, estimated by cell counts in TuÈ rks solution and later
con®rmed by May-GruÈ nwald-Giemsa staining of cytospin

cells. The cytospin preparations (n=17) contained 43.9+2.9%
monocytes and 53.5+3.0% lymphocytes. In the whole study
11 di�erent healthy blood donors were used, some of them

were used twice, i.e. a total of 17 cell separations were
performed. Cells from the same donor were not used twice in
the same type of experiment. In each experiment six di�erent

cell separations (from six di�erent blood donors) were used.
The mononuclear cells were washed with sterile phosphate

bu�ered saline (PBS) and resuspended in sterile RPMI 1640
with HEPES bu�er (25 mM) and L-glutamine (Gibco, Paisley,

U.K.). Foetal calf serum (1%, Gibco, Paisley, U.K.),
benzylpenicillin (0.1 mg ml71; Astra AB, SoÈ dertaÈ lje, Sweden)
and streptomycin sulphate (0.1 mg ml71; Sigma, St Louis MO,

U.S.A.) were added. Aliquots of 26106 were cultured in 24-
well culture plates at 378C, 5% CO2 98% rH in the presence
and absence of IL-2 and IL-4 (31.3 ± 500 U ml71; R&D

Systems Europe, Abingdon, U.K.). The cytokines were
reconstituted in sterile PBS with the addition of bovine serum
albumin (0.1%, low endotoxin BSA; Sigma, St Louis MO,
U.S.A.). After 48 h, lipopolysaccharide (10 ng ml71, LPS;

E. coli 0.26 : B6; Difco Laboratories, Detroit, U.S.A.) and
various concentrations of budesonide (10711 ± 1077

M; Astra
Draco AB, Lund, Sweden) were added as aliquots of 10 ml.
After another 20 h of incubation the whole culture plates were
centrifuged at 2006g for 10 min at 48C. The cell-free
supernatants were transferred to plastic tubes and stored at

7708C until analysis.

Cytokine analysis

GM-CSF, IL-8, IL-10 and IL-12 (p70) levels were assayed
using ELISA-kits (R&D Systems Europe, Abingdon, U.K.;
lower detection limit 1.5, 10, 1.5 and 5 pg ml71, respectively).

TNF-a was analysed using an antibody pair (R&D Systems
Europe, Abingdon, U.K.; lower detection limit 5 pg ml71).
Brie¯y, MAB610 (4 mg ml71 in PBS) was coated overnight to

96-well ELISA-plates. The plates were washed three times in
PBS with 0.05% Tween-20, blocked with 1% BSA+5%
sucrose in PBS for 1 h and washed again. The plates were

incubated 2 h with 100 ml samples or recombinant standards,
washed and incubated 2 h with the biotinylated detection
antibody BAF210 (200 ng ml71 in Tris-bu�ered saline with
0.1% BSA). After washing, streptavidin-horse radish perox-

idase (Zymed Laboratories, San Francisco, CA, U.S.A.) and
tetramethylbenzidine-peroxidase substrate (Kirkegaard and
Perry Laboratories, Gaithersburg, MD, U.S.A.) were used for

detection. All values are expressed as mean+standard error of
the mean (s.e.mean). Cytokine (percent of control) was
calculated as percent cytokine in a culture with budesonide
addition compared with a similarly pre-treated culture without

budesonide. Thus, a `value of 0% of control' means total
inhibition by budesonide and a `value of 100% of control'
means that budesonide had no e�ect.

DNA-analysis

After the cell plates were centrifuged and the culture
supernatants collected, DNA-content was analysed using a
¯uorochrome protocol modi®ed from Blaheta (Blaheta et al.,

1991). Aliquots of 600 ml PBS and 400 ml Hoechst compound
33342 (10 mg ml71 in PBS; B-2261, Sigma, St Louis MO,
U.S.A.) were added to the culture wells. The plates were
covered and incubated for 30 min in a dark place, at room

temperature. Fluorescence was measured using a ¯uorometer
with a 360 nm excitation ®lter and a 460 nm emission ®lter
(Cyto¯uor 2350, Millipore, U.K.). DNA-content was calcu-

lated using a standard curve of calf thymus DNA in PBS.

Statistics

All values are expressed as means+standard error of the mean
(s.e.mean). Values were compared using analysis of variance

(ANOVA) with experiment and treatment as factors, followed
by pairwise comparisons. Parametric tests were used. P values
50.05 were considered signi®cant.

Results

E�ects of IL-2, IL-4, and IL-2+IL- 4 on GM-CSF
production

The vehicle used in all presented experiments was cell culture
medium RPMI 1640 supplemented with FCS (1%), benzylpe-
nicillin (0.1 mg ml71), streptomycin sulphate (0.1 mg ml71)
and LPS (10 ng ml71). The LPS was added ®rst after 48 h of

incubation as 10 ml aliquots of a stock solution in RPMI 1640
medium. No GM-CSF was detected in medium cultures in the
absence of LPS.

LPS-stimulated GM-CSF production in vehicle-treated
mononuclear cell cultures from six healthy individuals was
11.2+3.7 pg ml71 (Figure 1). Pre-treatment of mononuclear

blood cells with IL-2 (31.3-500 U ml71) for 48 h prior to LPS
treatment (10 ng ml71, 20 h) potently stimulated GM-CSF
production. Pretreatment with the combination of IL-2 and

IL-4 (31.3 ± 500 U ml71 of each) for 48 h prior to LPS
treatment (10 ng ml71; 20 h) also had stimulatory e�ects on
GM-CSF production (P50.01 for all doses compared with
vehicle). Pre-treatment with IL-4 (31.3 ± 500 U ml71) for 48 h

prior to LPS treatment (10 ng ml71; 20 h) had no e�ect on
GM-CSF production. No dose-response relationships were
observed. IL-2 alone stimulated GM-CSF production more

than IL-2 and IL-4 in combination.

Induction of glucocorticoid resistance on GM-CSF
production

Since new batches of IL-2 and IL-4 and LPS were used,
di�erent doses of a mixture of the cytokines were tested. A
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single, high dose of budesonide (1078
M), which normally

inhibits GM-CSF completely, was used in these experiments.
We found that all tested doses of IL-2+IL-4 partly reversed

the inhibitory e�ects of budesonide on GM-CSF production
(P50.01). A tendency for a dose-response relationship was
observed (Figure 2). Resistance of GM-CSF to budesonide
inhibition was inducible in all donors, but to a varying degree.

The maximal reversal of budesonide inhibition for each
individual was found after pre-treatment with 250 or
500 U ml71 each of IL-2+IL-4. Hence, in the following

experiments 500 U ml71 each of IL-2+IL-4 were used.

E�ects of IL-2, IL-4, and IL-2+IL- 4 on cell
proliferation

DNA-content in the cell cultures was assayed to study whether
IL-2, IL-4, or IL-2+IL-4 had any e�ects on cell proliferation.
DNA was analysed in cell cultures (n=6) which were
incubated with or without cytokines (500 U ml71) for 48 h

and then stimulated with LPS (10 ng ml71) for 20 h. DNA-
content after IL-2 pre-treatment was 106.3+7.4% of vehicle
treatment. DNA-content after IL-4 pre-treatment was

108.5+5.0% of vehicle treatment and DNA-content after
IL-2+IL-4 pre-treatment was 122.2+14.0% of vehicle
treatment. There were no signi®cant di�erences in the e�ects

of IL-2, IL-4, or IL-2+IL-4 on DNA-content.

Budesonide e�ects on GM-CSF production after IL-2,
IL-4, or IL-2+IL-4 pre-treatment

GM-CSF production in cultures without cytokine pre-
treatment was totally inhibited by budesonide (1078

M) (Table

1 and Figure 3). IL-2, IL-4, or IL-2+IL-4 pre-treatment
(500 U ml71) reduced the inhibitory e�ect of budesonide on
GM-CSF production (P50.01). GM-CSF production was

23.7+6.7% of control after budesonide addition to IL-2 pre-
treated cultures. In IL-4 or IL-2+IL-4 pre-treated cultures
GM-CSF production after budesonide treatment was

31.6+8.5 and 35.1+4.3% of control, respectively. IL-2 or
IL-4 alone counteracted the inhibitory e�ect of budesonide on
GM-CSF production without signi®cant di�erence compared

with the combination of IL-2 and IL-4 (Table 1 and Figure 3).

Budesonide e�ects on IL-10 production after IL-2, IL-4,
or IL-2+IL-4 pre-treatment

IL-10 was secreted at higher levels than GM-CSF in vehicle
treated cultures (Table 1). IL-2+IL-4 pre-treatment

(500 U ml71) inhibited IL-10 production (P50.01), while
IL-2 or IL-4 alone had no signi®cant e�ects compared with
vehicle. Budesonide (1078

M) decreased IL-10 production to

33.4+4.3% of control in vehicle treated cultures (Table 1,
Figure 3). As observed for GM-CSF production, budesonide
inhibition of IL-10 was signi®cantly reduced by IL-2+IL-4
pre-treatment (68.3+9.9% of control; P50.05). IL-2 or IL-4

pre-treatment also tended to decrease the budesonide
inhibition of IL-10 production (46.5+6.6% and 55.9+7.3%
of control, respectively).

Budesonide e�ects on IL-8, IL-12 and TNF-a production
after IL-2, IL-4, or IL-2+IL-4 pre-treatment

IL-8 was produced in nanogram levels in the cultures without
added cytokines (Table 2). Pre-treatment with IL-2 potently

stimulated IL-8 production (P50.01), while IL-4 did not show
any stimulating e�ect. In contrast, the combination of IL-2
and IL-4 reduced IL-8 production compared with vehicle
(P50.01) and compared with IL-4 pre-treatment (P50.01).

Pre-treatment with IL-2, IL-4, or IL-2+IL-4 did not reduce
the inhibitory e�ects of budesonide on IL-8 production (Table
2, Figure 3). Budesonide inhibited IL-8 production to

33.8+2.4% of control in cultures without cytokine pre-
treatment, to 29.4+6.6% of control after IL-2 pre-treatment,
to 36.9+4.0% of control after IL-4 pre-treatment, and to

43.3+3.8% of control after pre-treatment with IL-2+IL-4.
There were no signi®cant di�erences between the di�erent pre-
treatments. Thus, no resistance of IL-8 to budesonide was
induced.

Figure 1 GM-CSF production by mononuclear blood cells pre-
treated with IL-2, IL-4 or IL-2+IL-4 for 48 h prior to LPS-
stimulation (10 ng ml71 for 20 h). The vehicle was RPMI 1640
supplemented with FCS (1%), benzylpenicillin (0.1 mg ml71),
streptomycin sulphate (0.1 mg ml71) and LPS (10 ng ml71; 20 h).
Results are expressed as mean+s.e.mean of six separate experiments.
Mononuclear cells were isolated from six healthy blood donors.

Figure 2 E�ects of IL-2 and IL-4 pre-treatment (48 h) on
budesonide (1078

M) inhibition of LPS-stimulated GM-CSF produc-
tion by mononuclear blood cells. The vehicle was RPMI 1640
supplemented with FCS (1%), benzylpenicillin (0.1 mg ml71),
streptomycin sulphate (0.1 mg ml71) and LPS (10 ng ml71 for
20 h). GM-CSF (percent of control) was calculated as percent GM-
CSF in a culture with budesonide addition compared with a similarly
pre-treated culture without budesonide. A `value of 0% of control'
means total inhibition by budesonide and a `value of 100% of
control' means lack of budesonide e�ect. Results are expressed as
mean+s.e.mean of six separate experiments. Mononuclear cells were
isolated from six healthy blood donors. All doses of IL-2+IL-4
counteracted the inhibitory e�ects of budesonide on GM-CSF
production (P50.01).
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IL-12 was not detected in cultures without cytokine pre-
treatment (Table 2). However, in the cultures pre-treated with
IL-4 low IL-12 concentrations were present. Interestingly, pre-

treatment with IL-2 potently stimulated IL-12 and the
combination of IL-2 and IL-4 tended to stimulate IL-12 even
more. Budesonide (1078

M) totally inhibited IL-12 production
in cultures pre-treated with IL-4 (Table 2, Figure 3). In cultures

pre-treated with IL-2, or IL-2+IL-4, budesonide inhibited
IL-12 to 4.5+1.2 and 10.3+4.6% of control, respectively. The
e�ect of IL-2 did not di�er signi®cantly from the e�ect of

IL-2+IL-4.
TNF-a production was potently stimulated by pre-

treatment with IL-2, IL-4, or IL-2+IL-4 (P50.01; Table

2). IL-2 stimulated TNF-a production more than IL-4
(P50.01) or IL-2+IL-4 (P50.01). IL-2+IL-4 stimulated
TNF-a production more than IL-4 alone (P50.01). Pre-

treatment with IL-2, IL-4 or IL-2+IL-4 did not reduce
the inhibitory e�ect of budesonide on TNF-a production
(Table 2, Figure 3). Budesonide decreased TNF-a
production to 21.5+3.7% of control in cultures without

cytokine pre-treatment. TNF-a production was reduced by
budesonide to 30.1+5.4% of control after IL-2 pre-
treatment, to 19.9+2.6% of control after IL-4 pre-

treatment, and to 29.7+2.1% of control after pre-
treatment with IL-2+IL-4. There were no signi®cant
di�erences between the di�erent pre-treatments. Thus, no

resistance of TNF-a production to budesonide was
induced.

Table 1 E�ects of IL-2, IL-4 and IL-2+IL-4 pre-treatment on budesonide inhibition of LPS-stimulated GM-CSF and IL-10
production by mononuclear blood cells from ®ve healthy blood donors

Pre-treatment*
Budesonide
(1078

M)
GM-CSF
(pg ml71)

GM-CSF
(% of control)

IL-10
(pg ml71)

IL-10
(% of control)

Vehicle{
Vehicle{

IL-2
IL-2

IL-4
IL-4

IL-2+IL-4
IL-2+IL-4

7
+

7
+

7
+

7
+

20.3+2.5
0

726.4+233.9
159.2+57.9

24.0+2.1
8.2+2.2

178.2+42.1
65.6+19.6

0

23.7+6.7

31.6+8.5

35.1+4.3

800.7+154.5
276+83.5

488.7+179
227.4+87.1

950.4+319.2
458.3+125.2

286.4+65.1
198.5+44.1

33.4+4.3

46.5+6.6

55.9+7.3

68.3+9.9

*500 U ml71 were used of IL-2 and IL-4. {Vehicle: RPMI 1640 supplement with 1% FCS, benzylpenicillin (0.1 mg ml71),
streptomycin sulphate (0.1 mg ml71) and LPS (10 ng ml71).

Table 2 E�ects of IL-2, IL-4 and IL-2+IL-4 pre-treatment on budesonide inhibition of LPS-stimulated IL-8, IL-12 and TNF-a
production by mononuclear blood cells from ®ve healthy blood donors

Pre-treatment*
Budesonide
(1078

M)
IL-8

(pg ml71)
IL-8

(% of control)
IL-12

(pg ml71)
IL-12

(% of control)
TNF-a

(pg ml71)
TNF-a

(% of control)

Vehicle{
Vehicle{

IL-2
IL-2

IL-4
IL-4

IL-2+IL-4
IL-2+IL-4

7
+

7
+

7
+

7
+

38493+2270
13 087+1436

191 149+37 352
59 754+20 133

35 754+4756
12 462+604

21 085+4093
9179+1893

33.8+2.4

29.4+6.6

36.9+4.0

43.3+3.8

0
0

339.8+103
20.3+5.8

29.5+13.6
0

515.9+67.1
64.6+38.8

n.d.

4.5+1.2

0

10.3+4.6

1197+258
269+130

28446+9992
8612+4020

4624+1245
933+291

16727+7460
5138+2483

21.5+3.7

30.1+5.4

19.9+2.6

29.7+2.1

*500 U ml71 were used of IL-2 and IL-4. {Vehicle: RPMI 1640 supplemented with 1% FCS, benzylpenicillin (0.1 mg ml71),
streptomycin sulphate (0.1 mg ml71) and LPS (10 ng ml71). n.d., not detected.

Figure 3 E�ects of IL-2, IL-4, or IL-2+IL-4 pre-treatment (48 h;
500 U ml71) on budesonide (1078

M) inhibition of LPS-stimulated
GM-CSF, IL-8, IL-10, IL-12 and TNF-a production by mononuclear
blood cells. The vehicle was RPMI 1640 supplemented with FCS
(1%), benzylpenicillin (0.1 mg ml71), streptomycin sulphate
(0.1 mg ml71) and LPS (10 ng ml71 for 20 h). Results were
calculated as in Figure 2 and are expressed as mean+s.e.mean of
®ve separate experiments. Mononuclear cells were isolated from ®ve
healthy blood donors. Cytokine pre-treatment changed the sensitivity
of GM-CSF and IL-10 production to budesonide but not that of
IL-8, IL-12 or TNF-a production.
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Discussion

The present study indicates that IL-2 and IL-4 do not induce a

general glucocorticoid resistance at the cytokine production
level. Although IL-2, IL-4, or IL-2 and IL-4 in combination,
reduce the budesonide sensitivity of GM-CSF and IL-10
production, the budesonide sensitivity of TNF-a, IL-8 or IL-12
production does not change. The present study also indicates
that the combination of IL-2 and IL-4 is not crucial for
induction of glucocorticoid resistance of GM-CSF production.

Either IL-2 or IL-4 alone reduces the glucocorticoid sensitivity
of GM-CSF production to the same degree as IL-2 and IL-4 in
combination.

Previous reports indicated that a mixture of IL-2 and IL-4 is
necessary to mimic the reduced glucocorticoid receptor a�nity
and the reduced glucocorticoid anti-proliferative e�ects in

mononuclear blood cells of glucocorticoid-resistant asthmatics
(Kam et al., 1993; Sher et al., 1994). However, when binding
a�nity studies were repeated in glucocorticoid-resistant
asthmatics with the more potent glucocorticoid budesonide

instead of dexamethasone, no reduction of the glucocorticoid
receptor a�nity was observed (Spahn et al., 1996). Still,
lymphocyte proliferation was inhibited less by budesonide in

the glucocorticoid-resistant asthmatics than in the glucocorti-
coid-sensitive patients (Spahn et al., 1996). Mechanisms other
than decreased glucocorticoid receptor a�nity seem therefore

to be of more importance in glucocorticoid resistance.
We recently reported that IL-2 and IL-4 in combination

induce a functional resistance to glucocorticoids (Larsson et

al., 1997). GM-CSF production became resistant to three
glucocorticoids, which di�ered in structure as well as in
potency. DNA-measurements using a vital dye in the present
study, suggest that IL-2 and IL-4 indeed change the functional

cell response to glucocorticoids rather than in¯uence cell
growth. This is in agreement with data reported by Kam et al.
(1993). When using the [3H]-thymidine assay they could not

detect any e�ects of IL-2 and IL- 4 on proliferation of mitogen
stimulated mononuclear blood cells. Thus, the reduced anti-
in¯ammatory e�ects of glucocorticoids in the resistant patients

might be explained by a reduced functional cell response to
glucocorticoids, i.e. reduced cytokine glucocorticoid sensitiv-
ity, due to increased IL-2 and IL-4 production.

In the present study we found that either IL-2 or IL-4 alone

reduce the glucocorticoid sensitivity of GM-CSF production
to the same degree as IL-2 and IL-4 in combination. There are
several independent reports supporting our data indicating

that IL-2 alone may cause glucocorticoid resistance. Exogen-
ous IL-2 counteracted glucocorticoid inhibition of T cell
proliferation in mononuclear blood cells as well as glucocorti-

coid mediated apoptosis in a cell line (Walker et al., 1987;
Hazcku et al., 1994; Guizani et al., 1996). In this cell line
(MLA-E7T; gibbon ape T cell line), the IL-2 induced

glucocorticoid resistance correlated with induced expression
of the transcription factor activator protein-1 (AP-1).
Interestingly, AP-1 levels were increased in mononuclear blood
cells of glucocorticoid-resistant asthmatics and the binding of

the glucocorticoid receptor to DNA was reduced (Adcock et
al., 1995a,b). Adcock and colleagues therefore suggested that
increased levels of AP-1 cause glucocorticoid resistance by

interfering with the glucocorticoid receptor and thereby reduce
glucocorticoid repression of cytokine genes. A similar
reduction of the glucocorticoid receptor-DNA binding was in

fact induced by IL-2 and IL-4 (Leung et al., 1997). However,
IL-2 or IL-4 were not studied separately nor were e�ects on
transcription factors (Leung et al., 1997). In the present study,
IL-4 alone also reduced budesonide inhibition of GM-CSF

production. However, in the cell line (MLA-E7T) discussed
above, IL-4 did not induce expression of AP-1 or rescue the
cells from glucocorticoid mediated apoptosis (Guizani et al.,

1996). The similar e�ects of IL-2, IL-4, or IL-2 and IL- 4 on
GM-CSF production in the present study might possibly
depend on shared signalling elements of the IL-2 and the IL-4
receptors (Kondo et al., 1993).

The combination of IL-2 and IL-4 reduced IL-10
production in the present study, as previously reported by
Irusen (Irusen et al., 1998). Also the budesonide sensitivity of

IL-10 production was reduced by IL-2, IL-4 or IL-2 and IL-4
in combination, as observed for GM-CSF production. To our
knowledge, e�ects of IL-2, IL-4, or IL-2+IL-4 on budesonide

sensitivity of IL-10 production have not been described
previously. IL-10 levels in glucocorticoid-resistant asthmatics
have neither been reported. However, the present study

together with the reported increase in expression of IL-2 and
IL-4 mRNA in glucocorticoid-resistant asthmatics (Leung et
al., 1995) might suggest reduced IL-10 production in these
patients, caused by increased IL-2 and IL-4 production.

We also investigated the glucocorticoid e�ects on TNF-a,
IL-8 and IL-12 production for comparisons with ®ndings in
glucocorticoid-resistant asthmatics. In glucocorticoid-resistant

and glucocorticoid-sensitive asthmatics the in vitro glucocorti-
coid sensitivity of TNF-a production by monocytes does not
di�er (Lane et al., 1993). In agreement, the glucocorticoid

sensitivity of TNF-a production did not change with IL-2,
IL-4, or IL-2 and IL-4 pre-treatment in the present study. In
contrast, IL-8 mRNA in mononuclear blood cells of

glucocorticoid-resistant asthmatics was resistant to in vitro
glucocorticoid treatment (Adcock et al., 1995b) while IL-8
production in the present study did not become glucocorticoid-
resistant with IL-2, IL-4, or IL-2 and IL-4 treatment. This

discrepancy between our in vitro model and the glucocorticoid
resistant patients could possibly depend on methodological
di�erences. In the asthmatic patients IL-8 was studied at the

mRNA level while we measured secreted IL-8 protein. It is also
possible that the glucocorticoid resistance induced by IL-2,
IL-4, or IL-2 and IL-4 in vitro di�ers from the resistance in

asthmatic patients. Furthermore, in glucocorticoid resistant
asthmatics the number of cells in bronchial biopsies expressing
mRNA of the IL-12 subunit p40 was increased and did not
decrease after glucocorticoid therapy (Naseer et al., 1997). In

the present study, we also demonstrated IL-12 stimulation by
IL-2, IL-4 or the combination of IL-2 and IL-4. Although
IL-12 was not detected in vehicle treated cultures, we

demonstrated in a previous study that IL-12 production is
totally inhibited by budesonide (Larsson & Linden, 1998).
Thus, it seems as if IL-2, IL-4 or IL-2 and IL-4 in combination

did not induce resistance of IL-12 production to budesonide.
In the present study, bioactive IL-12 protein (heterodimeric
p70) was studied while only mRNA of one IL-12 subunit (p40)

was studied in the asthmatics (Naseer et al., 1997). Monitoring
p40 mRNA following corticosteroid therapy might not re¯ect
the actual change in production of bioactive IL-12 and may
explain the discrepant results. Still, IL-12 is one of the key

cytokines in the Th1-Th2 balance and a possible increase of
IL-12 in glucocorticoid-resistant asthma is intriguing and
needs to be studied further.

IL-2 and IL-4 had di�erent e�ects, alone and in
combination, on the various cytokines assayed in the present
study. While IL-2 potently stimulated GM-CSF, IL-8, IL-12

and TNF-a production, IL-10 was weakly decreased. IL-4
alone had no e�ects on GM-CSF, IL-8 and IL-10 production
but stimulated IL-12 and TNF-a production. As in the present
study, stimulation of IL-12 and TNF-a production by IL-4 has
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been observed when mononuclear cells were pretreated with
IL-4 for more than 20 h before LPS-stimulation. (D'Andrea et
al., 1995). The combination of IL-2 and IL-4 stimulated IL-12

production even more than IL-2 alone, while IL-8 and IL-10
production was decreased. GM-CSF and TNF-a production
was more stimulated by the combination than with IL-4 alone,
but less than with IL-2 alone. The present results are in

agreement with previously reported data on inhibitory e�ects
of IL-4 on IL-2 stimulated cytokine production by mono-
nuclear blood cells (Bello-Fernandez et al., 1991). Of the two

cytokines that became glucocorticoid resistant, GM-CSF was
stimulated by IL-2 and IL-4 while IL-10 was decreased. Of the
non-resistant cytokines, IL-8 was decreased and both IL-12

and TNF-a were stimulated. Thus, the induced resistance
seemed not to depend on the level of cytokine stimulation.

To our knowledge there is no information on IL-2 and IL-4

protein levels in the airways of glucocorticoid-resistant
asthmatics, only information on increased IL-2 and IL-4
mRNA expression (Leung et al., 1995). Studies in glucocorti-
coid-sensitive asthmatics show however that mononuclear

blood cells have the capacity to produce high local
concentrations of both IL-2 and IL-4 (Nimmagadda et al.,

1997). Thus, the reduced anti-in¯ammatory e�ects of
glucocorticoids in the glucocorticoid-resistant asthmatics
might possibly be explained by reduced glucocorticoid

sensitivity of key cytokines such as GM-CSF, due to increased
IL-2 and IL-4 production.

In conclusion, the present study indicates that the
glucocorticoid resistance of cytokine production induced by

IL-2, IL-4, or IL-2 and IL-4 in combination, is not general at
the cytokine production level. GM-CSF and IL-10 production
became resistant to budesonide inhibition, while the gluco-

corticoid sensitivity of TNF-a, IL-8 and IL-12 production did
not change. Further, we found no evidence that the
combination of IL-2 and IL-4 is needed for induction of

glucocorticoid resistance of GM-CSF production. Either IL-2
or IL-4 alone counteracts the inhibitory e�ect of budesonide
on GM-CSF production to the same degree as the

combination of IL-2 and IL-4.

We thank Suzanne Glans and Inger Forsbrant for the blood
sampling and Per Larsson for the statistical analysis. We also thank
the Swedish Heart and Lung Foundation for grants.
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