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The stimulation of cholinergic receptors in target cells during a critical developmental period
provides signals that influence cell replication and differentiation. Accordingly, environmental
agents that promote cholinergic activity evoke neurodevelopmental damage because of the
inappropriate timing or intensity of stimulation. Nicotine evokes mitotic arrest in brain cells
possessing high concentrations of nicotinic cholinergic receptors. In addition, the cholinergic
overstimulation programs the expression of genes that evoke apoptosis and delayed cell loss.
Effects of cholinesterase inhibitors exhibit many similarities to those of nicotine. Chlorpyrifos
administered to developing rats in doses that do not evoke signs of overt toxicity decreased DNA
synthesis and caused shortfalls in cell numbers in brain regions enriched in cholinergic
innervation. In embryo cultures, chlorpyrifos also evoked apoptosis during neurulation. However,
chlorpyrifos also evokes noncholinergic disruption of cell development by interfering with cell
signaling via adenylyl cyclase, leading to widespread disruption that is not limited to cholinergic
systems. We have tested this hypothesis in vitro with PC12 cells, which lack the enzymes
necessary to produce chlorpyrifos oxon, the metabolite that inhibits cholinesterase. Chlorpyrifos
inhibited DNA synthesis in undifferentiated PC12 cells, which have relatively few cholinergic
receptors. Furthermore, chlorpyrifos was more effective than nicotine and its effects were not
blocked by cholinergic antagonists. When cells were allowed to differentiate in the presence of
chlorpyrifos, cell replication was inhibited even more profoundly and cell acquisition was arrested.
At higher concentrations, chlorpyrifos also inhibited neuritic outgrowth. Thus, chlorpyrifos elicits
damage by both noncholinergic and cholinergic mechanisms extending from early stages of
neural cell replication through late stages of axonogenesis and terminal differentiation.
Accordingly, the window of developmental vulnerability to chlorpyrifos is likely to extend from the
embryonic period into postnatal life. - Environ Health Perspect 107(Suppl 1):71-80 (1999).
http.//ehpnetl.niehs.nih.gov/docs/1999/Suppl-1/71-80slotkin/abstract.html
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Neurotransmitters as
Trophic Factors
Nearly four decades ago, Buznikov (1,2)
demonstrated that neurotransmitters were

present in high concentrations during spe-

cific phases of early development in sea

urchin embryos, unrelated to their func-
tion in synaptic communication. Subse-
quently, transient expression of these
substances and their specific receptors has
been identified during ontogeny of the
mammalian nervous system, and it is now
certain that transmitters play essential
roles in the cellular and architectural
development of the brain (3,4). During
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this period, receptor stimulation uniquely
communicates with the genes that control
cell differentiation, changing the ultimate
fate of the cell (Figure 1). As these
changes are not typical for the mature
nervous system, the ontogenetic state of
the target cell is critical in determining
whether the outcome of receptor stimula-
tion is an effect on cell replication, differ-
entiation, growth, death (apoptosis), or
"learning," that is, determining the future
set-point for responsiveness of the cell. At
the same time, these multiple roles create
a wide window of vulnerability in which
exposure of the brain to neuroactive
chemicals that elicit or block neurotrans-
mitter responses can alter development.
Thus, unlike classical teratology, in which
the first trimester of fetal development is
the most sensitive target for adverse effects
of drugs or chemicals, brain development
is likely to be affected by exposures rang-
ing from the early embryonic stage
through adolescence (5).

This review will focus on disruption of
brain development elicited by agents
targeting cholinergic transmission. Two of

the most widespread chemical assaults on
the fetus are cholinergic: nicotine, a direct
cholinergic agonist delivered by maternal
cigarette smoking, and insecticides, which
enhance cholinergic effects through inhibi-
tion of cholinesterase, the enzyme that
hydrolyzes acetylcholine. A focus on
cholinergic mechanisms is also appropriate
given the critical role played by acetyl-
choline in brain maturation. Cholinergic
stimulation is essential for establishment of
cerebrocortical cytoarchitecture, and even
transient interference with cholinergic
input during development produces per-
manent structural and behavioral damage
(6-8). Similarly, cholinergic overstimula-
tion at an inappropriate time leads to
developmental anomalies. In the rat, the
peak of cholinergic tone in the cortex ordi-
narily occurs during the second postnatal
week (9). Administration of cholinergic
agonists before that time or dietary alter-
ations that evoke early onset of cholinergic
activity result in premature cessation of
neuronal mitosis, leading to shortfalls in
cell numbers and deficient synaptic activity
(9-12). Accordingly, it is important to
explore the mechanisms underlying the
actions of cholinotoxicants and their
impact on the developing brain.

Nicotine: Prototypic
Cholinotoxicant
The largest toxic assault on fetal develop-
ment is provided by maternal cigarette
smoking, which involves approximately
one-fourth of all pregnancies in the
United States (13,14). Epidemiologic
studies have established the tragic results:
tens of thousands of spontaneous abor-
tions and neonatal intensive care unit
admissions annually, thousands of perina-
tal deaths and deaths from Sudden Infant
Death Syndrome (crib death), and sub-
stantially increased incidence of learning
disabilities, behavioral problems, and
attention deficit/hyperactivity disorder
(14-20). These findings do not, however,
obligate an underlying cholinotoxic mech-
anism. Cigarette smoke contains thou-
sands of bioactive compounds, including
hydrogen cyanide and carbon monoxide.
In addition, the smoking "life style" is
associated with multiple risk factors
including poor prenatal care and low
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socioeconomic status. Accordingly, animal
models are needed to isolate the role of
nicotine from these confounding variables.

Unfortunately the design of animal
models of nicotine exposure has not proven
simple. Injection of nicotine into pregnant
rats does produce behavioral (21-23) and
cellular (24-26) abnormalities, but many
of these effects are caused by vasoconstric-
tor effects on uteroplacental circulation,
evoking episodic hypoxia (27-30).
Nicotine injections produce high peak
plasma levels of drug, inducing obvious
ischemic episodes (blanching, cyanosis)
with each dose (10,31). Accordingly, in the
mid-1980s, we developed the first animal
model of fetal nicotine exposure to make
use of continuous infusions delivered by
implantable osmotic minipumps (9,26,
31-34), a delivery route that avoids
hypoxia-ischemia, and that delivers a fixed
dose of drug simulating the steady-state
plasma levels seen in smokers or users of
transdermal nicotine patches (35,36).
Pharmacokinetic and pharmacodynamic
differences dictate the use of higher overall
doses in rats than in humans, so that the
critical end point is matching the plasma
concentrations and the corresponding phar-
macologic effects (36,37). Thus, in rats,
dose rates of 2 to 6 mg/kg/day are necessary
to reproduce the nicotine plasma levels
found in moderate (0.5 to 1 pack/day) to
heavy (2 packs/day) smokers.

With the infusion model, we have been
able to show definitive damage to develop-
ing rat brain by doses of nicotine that
reproduce the plasma levels found in
heavy smokers (26,31-34). Two indices
of these adverse effects are illustrated in
Figure 2. In animals exposed prenatally to
nicotine, ornithine decarboxylase activity,
a marker enzyme for cell damage, is ele-
vated during the postnatal period in both
early-developing (forebrain) and late-
developing (cerebellum) brain regions even
though nicotine exposure terminates at
birth. During the same period, deficits in
total cell number, as determined by DNA
content, worsen. Subsequently, we found
that genes associated with programmed
cell death (apoptosis) are constitutively
activated by prenatal nicotine exposure
(38,39), with effects persisting into the
period of maximal cell loss; direct mor-
phological assessment of nicotine-exposed
embryos confirmed the presence of
numerous apoptotic cells (40). Nicotine-
induced apoptosis in the developing brain
is in direct contrast to the observation that
nicotine exerts a neuroprotective effect in

the adult brain (41,42), induding protection
from injury-induced apoptosis (43,44).
Just as with c-fos itself (45-47), the devel-
opmental context in which nicotine expo-
sure occurs is likely to be critical for
determining whether apoptosis is evoked
or suppressed. Indeed, cholinergic agonists
and antagonists can both elicit apoptosis
depending on whether the context involves
active or desensitized receptors (48). In the

context of extended exposure to nicotine
during fetal development, persistent induc-
tion of c-fos clearly is associated with
enhanced cell death (31), most likely from
apoptosis (40).
We also identified a second mechanism

for cell deficits caused by nicotine expo-
sure (10): inhibition of DNA synthesis
(Figure 3). Administration of even a single
dose of nicotine to pregnant or neonatal

The same neurotransmitter may be used for multiple decisions

Figure 1. Cholinotoxicant targeting of cell development. Abbreviations: AChE, acetylcholinesterase; CPF, chlorpyri-
fos; Nic, nicotine. During development, neurotransmitters, through their receptors and associated signaling cas-
cades, control the genes that influence differentiation. Depending on the context in which stimulation occurs, the
same neurotransmitter can promote cell replication, can elicit a switch from replication to differentiation, can pro-
mote or arrest cell growth, can evoke apoptosis, or can program the genes that determine the future responsive-
ness of the cell to external stimulation. Nicotine targets nicotinic cholinergic receptors located on target cells,
directly evoking changes in gene expression. Presynaptic nicotinic receptors that modulate release of other neuro-
transmitters produce secondary alterations of target cell development through the actions of these other transmit-
ters on their respective receptors, signaling cascades and gene expression (39). Chlorpyrifos through its active
oxon metabolite inhibits acetylcholinesterase, preventing the breakdown of acetylcholine and thus enhancing
cholinergic activity. In addition, chlorpyrifos can exhibit agonistlike properties, opening and then desensitizing
nicotinic cholinergic receptor/ion channels (81), can interact with signaling intermediates such as G-proteins and
adenylyl cyclase (80,82,83), or can produce oxidative damage to DNA (84,85).
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Fiure Effects of nicotine on biomarkers of cell damage (omithine decarboxylase activity) and cell number (DNA
content), evaluated in postnatal rat brain (32). Abbreviation: ODC, omithine decarboxylase. Nicotine exposure elic-
its persistent damage (elevated omithine decarboxylase activity) and cell loss (decreased DNA) despite discontinu-
ing nicotine exposure at birth. Effects are discernible in both an early-developing region (forebrain) and
late-developing region (cerebellum). Data represent means and standard errors obtained from 8 pups in each group

at each age for each determination, with ANOVA main treatment effect indicated within the panels.
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rats elicits a precipitous and persistent
(several hours long) decline in DNA synthe-
sis, with specific targeting of brain regions
with the highest concentrations of nicotinic
cholinergic receptors. The same effects are
obtained when minute amounts of nicotine
are introduced directly into the brain,
bypassing any systemic drug effects (10).

Simply losing cells or preventing acqui-
sition of the correct number of cells does
not inherently account for neurobehavioral
disruption by nicotine exposure; instead it
is necessary to demonstrate that synaptic
function is affected. Because nicotine
works through cholinergic receptors, we
first evaluated effects on cholinergic trans-
mission (9,49). Using biochemical indices
of neuronal impulse activity, we found that
prenatal nicotine exposure blunted the
ontogenetic rise of synaptic activity in the
forebrain and produced persistent deficits
in the hippocampus (Figure 4). However,
adverse functional effects are not limited to
cholinergic neurotransmission. Nicotinic
receptors also play a prominent role in the
activity of catecholaminergic systems, and
we found that fetal nicotine treatment had
adverse effects on these synapses as well,
again with the effects appearing well after
termination of nicotine exposure. Cate-
cholaminergic function showed two phases
of synaptic hypoactivity, one in the imme-
diate postpartum period and another
emerging with the onset of puberty (33),
accompanied by behavioral anomalies
(36,50,51). In the intervening stages, even

though basal activity was within normal
limits, the reactivity of noradrenergic sys-
tems to acute nicotine challenge was
obtunded in the prenatal nicotine group
(Figure 4): doses of nicotine that evoked
norepinephrine release in brain regions of
control animals were unable to do so in
the group exposed to nicotine prenatally
(52). Thus, fetal exposure to nicotine has
lasting adverse effects on synaptic perfor-
mance, effects that may not emerge fully
until adolescence.
We also have identified numerous

adverse effects of prenatal nicotine exposure
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on postsynaptic signaling mechanisms, all
of which are potential participants in
neurobehavioral abnormalities. These
entail lasting changes in the expression of
cell signaling intermediates (53,54),
uncoupling of receptors and second mes-
senger systems from downstream cellular
events (55,56), and alterations in the
expression of receptor proteins themselves
(26,53,55-57). Developmental disrup-
tion by nicotine thus occurs at numerous
loci and ranges from outright cell loss to
specific alterations of neural activity to
misprogramming of receptor signaling
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dayl Podtal PdyOa1l Figure 4. Synaptic hypoactivity elicited by prenatal nicotine exposure. (A) In the forebrain, the ratio of choline
uptake to choline acetyltransferase activity (a biochemical marker of impulse activity in cholinergic projections)

Figure 3. Inhibition of DNA synthesis in rat brain shows a naturally occurring peak at postnatal day 10; nicotine blunts activity before and during the developmental
regions after a single dose of nicotine (10,31,106). spike (9). (B) In the hippocampus, [3H]hemicholinium-3 binding to the high-affinity choline transporter, which is
Measurements of PHithymidine incorporation into DNA regulated by nerve impulse activity, shows both initial postnatal deficits and a later-emerging, permanent deficit in
were made in the first 30 min after nicotine administra- the nicotine group (49). (C) Noradrenergic hypoactivity is also elicited by prenatal nicotine exposure.
tion. Susceptibility is directly related to the concentra- Norepinephrine content and turnover are suppressed in the forebrain during both the initial postnatal period, and
tion of nicotinic cholinergic receptors in each region, more persistently with the onset of puberty (33). (D) Before the reemergence of deficits in the measures of basal
namely brainstem > forebrain > cerebellum. Data rep- activity, the nicotine group shows a subnormal responsiveness to acute challenges. A single injection of nicotine,
resent means and standard errors obtained from 1B--30 which releases norepinephrine in the control group, fails to do so in the nicotine group (52). Data represent means
rats at each age in each treatment group. ANOVA and standard errors obtained from 7-10 animals in each group at each age, for each type of determination.
across all ages and regions is shown within the panel; ANOVA is shown within the panels and asterisks (*) denote individual ages at which the nicotine group differs
asterisks (*) denote values that differ significantly from from the corresponding control. Individual tests were not run for acute norepinephrine release because of the
the corresponding control. absence of a significant interaction of treatment x region.
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mechanisms. In trying to determine
whether these various outcomes all reflect
a similar underlying basic mechanism,
two interrelated questions emerge. First,
are the effects present at doses cor-
responding to moderate smoking (one-
half pack to one pack per day), where
growth impairment, which can lead to
nonspecific alterations, is absent? If so,
this would imply a specific mechanism
targeting the developing brain rather than
effects secondary to a more general fetal
insult. Selectivity for the developing brain
would then raise the second question: Is
stimulation of nicotinic cholinergic recep-
tors the underlying target for the effects?
The first question can be answered defini-
tively. Lowering the dose of nicotine in
rats to the point at which growth impair-
ment vanishes and plasma levels match
those of moderate smokers still produces
all the signs of fetal brain damage that
were seen at higher doses (34,39): ele-
vated ornithine decarboxylase activity,
progressive cell loss, and deficits of synap-
tic activity (Figure 5). These results are
opposite from nonspecific insult, where
brain development typically is spared rela-
tive to all other growth components
(58-60). The most likely explanation for
the exquisite sensitivity of the developing
brain to nicotine-induced damage is the
targeting of specific proteins, namely
nicotinic cholinergic receptors, that have
the ability to respond to nicotine at
extremely low (nanomolar) concentrations
(26,61-63). Nicotinic receptors originate

.,Body and. tissue weights

in the fetal brain during neurulb
rise dramatically in late gestation
birth (26,62-65). We have bee
show that these receptors are
stimulated by fetal nicotine exp
evidenced by receptor upregulati
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(34). Specific tests of each comf
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the long temporal separation
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quences. However, just as for i
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originating during and immedia
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Figure 5. Nicotine damages the developing brain at doses that do not compromise growth
Abbreviation: ODC, ornithine decarboxylase. Administration of 2 mg/kg/day to pregnant rats, whic
plasma levels of nicotine found in moderate smokers, results in normal body and brain region weight
spring. Nevertheless, cell damage (elevated ODC activity), cell loss (reduced DNA content) and synaptii
ity (subnormal norepinephrine turnover) are still fully evident. Data represent means and standard em
from 5-10 animals in each group at each age for each type of determination. Differences for weights
nificant (ANOVA), but effects on biomarkers are (main treatment effect, p < 0.0001 across all three bior
for each biomarker taken individually).

ation and neurotransmitter systems including
and after acetylcholine, catecholamines (norepineph-
n able to rine, dopamine), and excitatory amino
tonically acids, which are themselves potentially
osure, as neurotoxic. Evoked release of other trans-
ion (26), mitters that alone exert neurotrophic con-
ir growth trol of their own targets thus is likely to
ponent of produce disruption in all the sites "down-
nicotine stream' from nicotinic receptor activation.
nicotinic One issue for further consideration is
of DNA whether a specific receptor subtype is

f damage involved in nicotinic cholinergic neu-
apoptosis rotrophic actions, and by implication,
ielae such mediating the disruptive effects of prenatal
synaptic nicotine exposure. Indeed, based on in
ecause of vitro studies, specific roles have been pos-
between tulated for control of synaptogenesis by
e conse- nicotinic receptor subtypes containing the
the more a7 subunit and for adverse effects of nico-
nage, the tine (71). It is also apparent that develop-
ral effects ing neurons show distinct ontogenetic
h impair- profiles for expression of the genes encod-
emically ing the individual subunits of nicotinic
,68-70). receptors (72,73). Nevertheless, some key
ffects are elements are missing in the current under-
receptor- standing of the role of receptor subtypes in
:lopment the developmental effects of nicotine, as
Ltely after nearly all studies of subtypes in vivo have

been conducted at the level of mRNA but
ptors can not receptor protein. Accordingly, it is
re of the unclear as to which subtypes are actually
zic activity expressed at the cell surface and whether
osure. As specific subtypes are linked differentially
eptors are to neurotrophic stimuli. Nevertheless, this
sites but absence of knowledge concerning receptor

it at the subtypes does not obviate the clear-cut
variety of effects of nicotine on cell development and

the linkage of these effects to nicotinic
cholinergic receptors.

Our findings indicate conclusively that
nicotine is a neuroteratogen, evoking cell
damage and reducing cell numbers,
impairing synaptic activity and behavioral
performance, and eliciting these changes at
doses commensurate with moderate smok-
ing, below the level at which fetal growth
is impaired. The underlying mechanisms
are receptor mediated, accounting for
selective effects on the brain at low-dose
thresholds and for the involvement of
brain regions and transmitter systems that
have prominent cholinergic inputs.
Receptor stimulation leads to two distinct
errors in the program of cell development,

.hsimulates a premature change from cell replication
s in the off- to differentiation, and after a delay, initia-
ic hypoactiv- tion of the program for cell damage andirs obtained apoptosis. The next issue, then, is whether
are not sig- other potential cholinotoxicants, especially
markers and insecticides, share the same mechanisms

and outcomes.
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Developmental Neurotoxicity
of Chlorpyrifos in Vivo
Increasing use is being made of the long-
lasting organophosphorus insecticide chlor-
pyrifos, largely because this agent does not

elicit organophosphate pesticide-induced
persistent neuropathies until the dose is
raised above the threshold for lethality
(74). Nevertheless, recent concern has
arisen over domestic application, which
can lead to infant exposures well above
acceptable levels (75,76). Animal studies
indicate that immature animals are far
more susceptible to acute toxicity of chlor-
pyrifos (77-79) despite the fact that they
recover from cholinesterase inhibition
more quickly than adults (78-80). As with
other organophosphate insecticides, chlor-
pyrifos, via its reactive metabolite, chlor-
pyrifos oxon, inhibits cholinesterase and
prevents the breakdown of acetylcholine.
An initial view of the potential impact of
chlorpyrifos on signaling targets in brain
development thus could resemble that of
nicotine (Figure 1), with promotion of
cholinergic signaling as the primary target.
However, chlorpyrifos also exhibits direct
cholinergic agonistlike properties, opening
and then desensitizing nicotinic cholin-
ergic receptor/ion channels (81); it inter-
acts with signaling intermediates such as

G-proteins and adenylyl cyclase (80,82,
83); and it may produce oxidative damage
to DNA (84,85).

If the primary effect of chlorpyrifos on
the developing brain is a reflection of its
general mode of toxicity as seen in mature
animals, namely cholinesterase inhibition,
then the net effects during development
should bear a strong resemblance to those
of nicotine, which also elicits cholinergic
hyperstimulation. When we administered
chlorpyrifos to neonatal rats (Figure 6), we
obtained acute inhibition of DNA synthe-
sis (77). However, at 1 day of age, there
was no regional selectivity to the effect:
regions with low cholinergic innervation
(cerebellum) were affected just as much as
cholinergically enriched regions (brain-
stem, forebrain). Regional selectivity then
emerged by the end of the first postnatal
week, at which point cholinergic antago-
nists could block the effect. Thus, chlor-
pyrifos affects DNA synthesis by at least
two different types of mechanisms, an ini-
tial, noncholinergic effect, and subse-
quently, actions mediated through
cholinergic activity. In support of the
unexpected finding of noncholinergic
contributions to effects on DNA synthe-
sis, we obtained the same inhibitory
actions when minute amounts of chlor-
pyrifos were injected directly into the
brain, bypassing hepatic activation to
chlorpyrifos oxon, the metabolite that
inhibits cholinesterase. The contributions
of noncholinergic mechanisms to the net
adverse effect on brain development are
readily demonstrable. With repeated
chlorpyrifos administration, we obtained
persistent inhibition of DNA synthesis
(86), leading to deficits in cell number

(87) and suppression of macromolecular
constituents (88). These effects were seen
at chlorpyrifos exposure levels that were
devoid of any overt toxicity and that
reduced cholinesterase activity by only
20% (80), a degree of inhibition insuffi-
cient to produce signs of systemic toxicity.

Some of the postulated, noncholinergic
effects of chlorpyrifos involve cell signaling
intermediates common to multiple neu-
ronal and hormonal inputs, especially the
adenylyl cyclase transduction pathway
(82,83,89). Cyclic AMP is universally
involved in the control of cell replication
and differentiation in virtually all prokary-
otic and eukaryotic cells (90-94), so that
perturbation of this pathway during devel-
opment would be expected to have a signif-
icant impact on brain cell development.
When we examined the effects of otherwise
subtoxic doses of chlorpyrifos on adenylyl
cyclase activity in the developing brain
(80), we found profound effects on G-
protein-mediated signaling, including that
operating through neurotransmitter recep-
tors known to play neurotrophic roles in
cell replication/differentiation patterns
(Figure 7). Importantly, low doses of
chlorpyrifos administered early in develop-
ment, with minimal cholinesterase inhibi-
tion, had a much greater effect on adenylyl
cyclase activity than larger doses given
later in development, even though the lat-
ter treatment produced much greater inhi-
bition of cholinesterase. Again, this
indicates that noncholinergic mechanisms
play critical roles in the adverse effects of
chlorpyrifos on brain development. Thus,
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conversion of chlorpyrifos to its oxon
metabolite and the consequent inhibition
of cholinesterase may not be the essential
factors in determining neurobehavioral ter-
atology by this compound or potentially
for other insecticides as well.

Developmental Neurotoxicity
of Chlorpyrifos Modeled
in Vitro
A definitive demonstration that chlorpyrifos
exerts direct effects on neurodevelopment
requires control over the cellular environ-
ment, as provided by in vitro models. We
have used PC12 rat pheochromocytoma
cells, a cloned cell line that initially resem-
bles sympathetic neuronal precursor cells
but that differentiates to resemble sympa-
thetic neurons morphologically, physiologi-
cally, and biochemically (95,96). The onset
of differentiation is initiated by nerve
growth factor after which the cells develop
the appearance and function of cholinergic
target neurons, including increased expres-
sion of cholinergic receptors, choline acetyl-
transferase, and acetylcholinesterase (97,98).
Equally important, these cells lack cyto-
chrome P450 (99), the enzyme that con-
verts chlorpyrifos to its oxon, the metabolite
that inhibits cholinesterase. Thus, if the
actions of chlorpyrifos seen for brain devel-
opment in vivo are paralleled by similar
actions on PC12 cells in vitro, the effects
cannot be secondary to cholinesterase
inhibition, the standard biomarker of
organophosphate-induced toxicity.

Using undifferentiated PC12 cells, we
obtained immediate (1 hr) inhibition of
DNA synthesis (Figure 8); effects on RNA
or protein synthesis were much less notable,

indicating a selectivity toward replicating
cells (100). The effect on DNA synthesis in
undifferentiated PC12 cells could not be
blocked by cholinergic receptor antagonists,
confirming that chlorpyrifos itself produces
effect without a requirement for cholin-
esterase inhibition and its resultant cholin-
ergic hyperstimulation. When PC12 cells
were allowed to differentiate in the contin-
uous presence of chlorpyrifos, the inhibi-
tion of DNA synthesis intensified and
persisted throughout the period of cell
development (Figure 9). As a consequence,
acquisition of new cells (DNA level) was
severely curtailed, or at the highest concen-
trations, completely arrested, replicating the
effects found for chlorpyrifos in vivo. In
contrast to the profound effects on DNA
synthesis and cell acquisition, neurite exten-
sion, as measured by the increase in mem-
brane surface area (protein/DNA ratio), was
inhibited only at high chlorpyrifos concen-
trations. These results confirm a targeted,
primary effect of chlorpyrifos on cell repli-
cation, with other developmental abnor-
malities requiring higher exposure levels.
Just as was found for in vivo treatments, the
progression of cell differentiation increases
the sensitivity to chlorpyrifos, representing
emergence of the cholinergic target pheno-
type; at that point, both direct and cholin-
ergically mediated effects become additive
(77), whereas only the direct effects can be
expressed in the undifferentiated state.
We have also carried out in vitro

studies in rat embryo cultures (67). Using
chlorpyrifos concentrations that showed
no evidence of growth reduction or dys-
morphogenesis, we found clear-cut abnor-
malities of mitosis in the developing brain
at the neural tube stage. Embryos were
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Figure 8. Inhibition of DNA synthesis by chlorpyrifos in undifferentiated PC12 cells ( 100). Abbreviations: ATR,
atropine; CPF, chlorpyrifos; MEC, mecamylamine. Inhibition shows an immediate onset of action and is not medi-
ated by cholinergic hyperstimulation, as receptor blocking agents for muscarinic (atropine) or nicotinic (mecamy-
lamine) receptors do not prevent the effect. Data represent means and standard errors obtained from 6-17
determinations for each treatment and time point. ANOVA across all treatments and time points appear within
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incubated with chlorpyrifos for 48 hr
beginning on embryonic day 9.5 (Figure
10). Examination of the forebrain and
hindbrain regions revealed reduced and
altered mitotic figures with dispersion and
disorientation of the mitotic layer. In
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fos on PC12 cells during differentiation (100).
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synthesis is intensified and maintained throughout the
developmental period, leading to reduced or arrested
cell acquisition (DNA level). At the highest concentra-
tion, neurite extension (as measured by the protein/
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Figure 10. Effects of chlorpyrifos on brain development in cultured rat embryos (67). Abbreviations: bv, blood vessel; CPF, chlorpyrifos; m, mitotic figure; n, inactive hete-
rochromatin. (A) Forebrain neuroepithelium in control embryos at embryonic day 11.5, showing a bipolar pseudostratified epithelium: apical and basal processes contain a
granular nucleus and inactive heterochromatin. Mitotic figure can be seen toward the internal limiting membrane. Mesenchyme around the germinal epithelium shows blood
vessel. (B) Neuroepithelium from an embryo exposed to chlorpyrifos (50 pg/mI). Note the extensive vacuolation of the cytoplasm of the epithelial cells (arrowheads). (C)
Forebrain neuroepithelium from a chlorpyrifos-exposed embryo showing extensive cell death (b) and extracellular bodies (arrowheads). A large cell (a) with multiple apoptotic
condensations is also visible. Scale bar = 20 pm. For semi-quantitative measurements (table at bottom of figure), evaluations were made in numerous sections obtained from
four otherwise morphologically normal embryos in each treatment group. Over a much larger cohort (>40 embryos per treatment), there was no evidence of gross dysmorpho-
genesis or of changes in developmental landmarks aside from the disruption of cell development in the neuroepithelium.

addition, cytotoxicity was evidenced by
cytoplasmic vacuolation, enlargement of
intercellular spaces, and the presence of a
significant number of apoptotic figures.
Significant effects were found even at
concentrations as low as 0.5 pg/ml.

Our results with PC12 cells or rat
embryo cultures support the idea that
chlorpyrifos specifically targets brain devel-
opment. However, a major problem is how
to compare exposures in vitro with those
likely to be experienced with environmental
contamination. Certainly, the concentra-
tion and exposure period necessary to affect
brain cell development in vitro lie well
below those necessary for dysmorphogene-
sis, for chromosome damage (101) or for
general cytotoxicity (101,102). Although
scant information is available concerning
the actual levels of chlorpyrifos achieved in
fetal brain, we have already demonstrated
that doses that cause only 20% cholin-
esterase inhibition nevertheless depress
mitosis in neonatal rat brain in vivo
(77,80,86), leading to deficiencies in cell
numbers (87). A preliminary report on
pregnant rats (103) found that a compara-
ble degree of cholinesterase inhibition,
which is well below the threshold for any
observable signs of cholinergic hyperstimu-
lation, produces peak fetal brain concen-
trations of the major metabolite of
chlorpyrifos of approximately 0.25 pg/g,

which on a molar basis, corresponds to the
lowest concentration of chlorpyrifos used
in our studies with embryos in vitro (67).
On a body weight basis, the doses of chlor-
pyrifos needed for adult or developmental
toxicity in rats range up to tens to hundreds
of mg/kg (78,79,104,105) and certainly no
lower than 2 mg/kg (77). Mitotic arrest in
vivo occurs with brain concentrations of 2
i'g/g (77), again well within the concen-
tration range needed for in vitro effects.
The likely acute exposure level for infants
after home application of chlorpyrifos is
also above this range: 350 pg/kg/day for a
2-week period, for a total of 5 mg/kg
(76). Although there are clear limitations
of extrapolation across species and bet-
ween cultures and intact systems, in vitro
evaluations nevertheless can point the way
to likely mechanisms and adverse out-
comes, and are likely to be within the
range of relevant exposure levels in vivo.

Conclusions and Future
Directions
Drugs or chemicals that target cholinergic
neurotransmission probably represent the
largest source of neurobehavioral teratoge-
nesis. Nicotine exposure involves one-
fourth of all pregnancies in the United
States, and exposure to insecticides that
target cholinesterase is ubiquitous. Estab-
lishing the underlying mechanisms, and

hence safety thresholds, for these compounds
must represent a major focus of future work.
We have shown that nicotine damages the
developing brain at concentrations achieved
in moderate smokers or with nicotine
replacement therapies such as the transder-
mal patch. The sequelae of maternal smok-
ing are already well established (14) and
include high rates of miscarriage, fetal death,
intrauterine growth retardation, deaths in
the postnatal period, and behavioral and
learning disturbances. The finding that a
specific substance in tobacco (nicotine) is a
major contributor to adverse outcomes pro-
vides the first definitive proof that tobacco is
a direct cause of these problems, not simply
a covariable with other components of the
smoking life style. In the case of chlorpyri-
fos, our findings indicate that inhibition of
cholinesterase, the standard biomarker for
organophosphate toxicity, is inadequate to
explain the effects of this compound on
brain development. The uncovering of alter-
native mechanisms indicates the need for
research on screening methods that empha-
size unique attributes of developing systems
such as DNA synthesis, cell acquisition,
apoptosis, and cytoarchitectural modeling of
specific brain regions. In vitro systems such
as neural cell lines or embryo cultures can
play key roles in elaborating these mecha-
nisms and in establishing new safety
thresholds for insecticide exposure during
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development. Finally, it should not be over-
looked that unlike standard teratogens,
agents that target specific cell populations
in the nervous system rather than general
organogenesis, can be expected to have
adverse effects that extend to the final stages
of development: childhood and adoles-
cence. In the future, we will need to acquire
new ways of evaluating potential postnatal
effects of environmental contaminants.
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