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The variation in individual responses to exogenous agents is exceptionally wide. It is because of
this large diversity of responsiveness that risk factors to environmentally induced diseases have
been difficult to pinpoint, particularly at low exposure levels. Opportunities now exist for studies
of host factors in cancer or other diseases in which an environmental component can be
presumed. Many of the studies have shown an elevated disease proneness for individuals
carrying the potential at-risk alleles of metabolic genes, but a number of controversial results have
also been reported. This article is an overview of the data published to date on metabolic
genotypes related to individual susceptibility to cancer. — Environ Health Perspect 107(Suppl 1):

37-47 (1999).
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genetic polymorphisms

People living in industrialized countries
are exposed extensively to chemicals that
cause mutations, cancer, and birth defects.
It is well established that, e.g., lung
carcinogenesis in humans is caused mainly
by cigarette smoking. However, not all
smokers develop pulmonary cancers.
Cancer-causing chemicals, or chemical car-
cinogens, require metabolic activation to
react with cellular macromolecules.
Mutations in genes encoding enzymes or
proteins involved in cellular control such as
oncogenes and tumor-suppressor genes
result in uncontrolled cell growth and
cancer (1,2). Steps required for the car-
cinogenesis process include: 2) metabolic
activation of a carcinogen by cellular xeno-
biotic-metabolizing enzymes, &) binding of
the active metabolite to DNA to produce a
DNA adduct, ¢) faulty repair of the adduct
to produce a gene mutation, 4) cell repli-
cation to fix the mutation to the genome,
and ¢) progression to a full neoplasm of
the replicating cell containing the mutated
genes. This progression is often accompa-
nied by further genetic alterations in other

Manuscript received at EHP 8 July 1998; accepted 28
September 1998.

Address correspondence to A. Hirvonen,
Department of Industrial Hygiene and Toxicology,
Finnish Institute of Occupational Health,
Topeliuksenkatu 41 a A, FIN-00250 Helsinki, Finland.
Telephone: 358 9 4747 204. Fax: 358 9 4747 208.
E-mail: Ari.Hirvonen@occuphealth. fi

Abbreviations used: AHH, aryl hydrocarbon
hydroxylase; AHR, aryl hydrocarbon receptor; BaP,
benzolalpyrene; CYP, cytochrome P450; EPHX, mEH
gene; GST, glutathione Stransferase; mEH, microso-
mal epoxide hydrolase; MPO, myeloperoxidase; NAT,
N-acetyltransferase; PAH, polycyclic aromatic hydro-
carbon; PCR, polymerase chain reaction; PM, poor
metabolizer; RFLP, restriction fragment length poly-
morphism; UM, ultrarapid metabolizer; XME, xenobi-
otic-metabolizing enzyme.

cell-cycle control genes that occur through
gene mutations, gene rearrangements, and
gene/chromosome deletion (3,4). The
overall process can occupy a major portion
of the lifespan of an individual.

The paradigm for mechanism of action
of chemical carcinogens has been well
established in model cell culture and ani-
mal systems, and studies in humans appear
to support the possibility that most cancers
are initiated by chemical/dietary exposures
and proceed through various stages of pre-
neoplastic lesions consisting of partially
transformed cells to full metastatic cancers
(1). In rodent models, the progression
stage can be enhanced by treatment with
tumor promoters, which themselves do not
necessarily exhibit the properties of car-
cinogens (5). These chemicals are thought
to mediate cell proliferations that fix the
mutation in the genome. Another class of
chemicals called nongenotoxic carcinogens
has been described in rodent model sys-
tems (6-8). These agents are not metaboli-
cally activated to genotoxic derivatives but
presumably alter cell-cycle control. Many
nongenotoxic carcinogens are also tumor
promoters. However, their mechanisms of
action are not presently known.

It is widely held that humans differ in
their susceptibilities to cancer. Certain indi-
viduals may be more susceptible, whereas
others are more resistant to cancer. This
may be due to a number of factors includ-
ing health, nutritional status, and gender.
From what is known about the mechanism
of action of carcinogens, it is thought that
genetic background could play a significant
role. The obvious candidate genes are those
encoding the xenobiotic-metabolizing
enzymes (XMEs) that activate or inactivate
carcinogens (9,10). Variable levels of
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expression of these enzymes could result in
increased or decreased carcinogen activa-
tion. In fact, it is well established that
genetic differences occur in expression of
the XMEs. Scientists have been aware of
genetically based differences in sensitivity to
therapeutically used drugs for more than 30
years. This knowledge led to a field known
as pharmacogenetics (/7). Historically, this
term was used to describe genetic differ-
ences in drug metabolism, but the field
later expanded into the area of cancer
susceptibility (12).

XME Polymorphisms and
Cancer Susceptibility

Cytochromes P450s

The cytochrome P450 (CYP)-dependent
monooxygenases represent the first line of
defense against toxic lipophilic chemicals
because they catalyze reactions involving
incorporation of an atom of molecular
oxygen into the substrate (13). The result-
ing increase in hydrophilicity facilitates
further metabolic processing and excre-
tion. Unfortunately, certain chemicals are
activated to their ultimate carcinogenic
form rather than being detoxified. Most
carcinogen activation occurs through
generation of epoxides or N-hydroxy
intermediates that are further metabolized
by transferases.

The main CYPs in humans that metab-
olize carcinogens are CYP1A1, CYP1A2,
CYP1B1, CYP2A6, CYP2E1, CYP3A4,
and CYP3A5 (14). These enzymes have
specificities for various classes of carcino-
gens and genetic polymorphism has been
identified for most of them (13-16). CYPs
are most extensively expressed in the liver
although their levels of expression vary
depending on the P450 form (17). These
interindividual differences in expression
may be due to the genetic polymorphisms
or the extent of induction. Certain forms
are also expressed in lung, gastrointestinal
tract, kidney, and larynx/nasopharangeal
tissue. In nonhepatic epithelial tissues, acti-
vation of carcinogens probably occurs
directly in the cells being transformed
although arylamines and heterocyclic
amines are partially activated in the liver
and transported to extrahepatic target sites
where they undergo full activation.
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Expression of certain forms of CYP
depends on their induction. Induction of
CYP1I genes is mediated by the transcription
factor called the aryl hydrocarbon receptor
(AHR), a member of a small family of
proteins called the basic-helix-loop-helix
transcription factors (18,19).

The first CYP polymorphism was
identified for CYP2DG6 based on the occur-
rence of adverse drug reactions to the
cardiovascular drugs debrisoquine and
sparteine and aptly termed the debriso-
quine/sparteine polymorphism (20).
Individuals who are metabolically compe-
tent are referred to as extensive metabo-
lizers, and those who are incapable of
metabolism of these drugs are poor metabo-
lizers (PMs). Over 40 drugs are known to
be substrates for CYP2D6 (20). This poly-
morphism exhibits marked ethnic differen-
ces in its frequency; 5 to 10% of Caucasians
but < 1% of Asians lack expression of active
enzyme because of deficient CYP2D6 alle-
les. More than 10 partially or totally inac-
tive variant alleles of CYP2DG6 have been
characterized (21,22).

The most common defective CYP2D6
allele among Caucasians is CYP2D6*4,
which is characterized by a base substitu-
tion in the splice site at the intron 3/exon 4
boundary that leads to a frameshift (21,22).
This allele was previously called CYP2DGB
and accounts for more than 70% of all the
inactivating alleles in Caucasian popula-
tions. Another variant allele, CYP2D6*3
(previously called CYP2DG6A), consists of a
single base pair deletion in the coding
sequence in exon 5 and also causes a
frameshift. This allele accounts for approxi-
mately 5% of the alleles and leads to a loss
of CYP2DG6 enzyme activity (21,22). The
third loss of enzyme activity (-10-15% of
the inactivating alleles) is caused by the
deletion of the entire CYP2DG gene
(CYP2D6*5, previously called CYP2D6D).
By analyzing these three polymorphic sites,
it is possible to identify at least 95% of
European PMs (23,24). More recently an
allele representing amplification/duplica-
tion of the gene (CYP2DG*2XN) has been
described (25). Individuals who inherit
more than two copies of the CYP2D6 gene
have been found to have very high
CYP2D6 enzyme activity and consequently
are designated ultrarapid metabolizers
[UMs; (26)]. The frequency of the dupli-
cated allele seems to vary widely between
populations of different ethnic origins.
About 1% of the Swedish, Germans,
Chinese, and black Zimbabweans are UMs
(27-30). Among Spaniards, however, the
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frequency is 7% (31), and a very high
prevalence has been observed among Saudi
Arabians [21%; (32)] and Ethiopians
[29%; (33)].

Many studies have been conducted,
with conflicting results, on the potential
association between polymorphic expres-
sion of CYP2D6 and the incidence of vari-
ous types of cancer (34,35). However, the
combined results of several studies in vari-
ous parts of the world suggest a significant
but small decrease in risk of lung cancer for
individuals with the CYP2D6 PM geno-
type (36). In keeping with this, an excess
risk of lung cancer was recently associated
with high CYP2D6 activity in heavy smok-
ers only, a finding that may partly explain
the inconsistent findings (37).

The CYPIA gene family has two mem-
bers: CYPIAI, which is predominantly
expressed in extrahepatic tissues such as the
lung, and CYPIA2, which is concentrated
in the liver (22). CYPIAI and CYPIA2
have overlapping catalytic activity and are
both thought to play an important role in
carcinogen activation. CYPIAI is involved,
e.g., in the metabolic activation of poly-
cyclic aromatic hydrocarbons (PAHs) to
their carcinogenic metabolites in the lung
(22). As an example, CYPIAI-dependent
aryl hydrocarbon hydroxylase (AHH)
activities in human lung tissue (micro-
somes) correlate with activation of benzo-
[a]lpyrene 7,8-diol to the ultimate
carcinogen (38,39). Furthermore, the
AHH activities correlated with the
benzo[a]pyrene 7,8-diol-9,10-epoxide
(BaPDE) DNA adduct levels in human
lung tissue (40).

Interindividual variations in the
CYP1AI-mediated AHH activity appear to
have an as yet unknown genetic basis.
Using mitogen-stimulated peripheral blood
mononuclear cells, Kellerman and co-
workers (41) observed a trimodal distribu-
tion of AHH induction consistent with a
codominant inheritance at a single genetic
locus segregating for a more common allele
conferring low inducibility and a rarer
allele conferring high inducibility. At a
later time two closely linked genetic poly-
morphisms were detected within the
CYPIAI gene. The first polymorphism
detected was a point mutation in the 3’
flanking region of the gene, a restriction
fragment length polymorphism (RFLP)
detected by Mspl restriction enzyme (42).
Another polymorphic site was found to be
located in exon 7, where a nucleotide sub-
stitution causes an Ile-to-Val amino acid
change in the heme-binding region of the

enzyme (43). Both the CYPIAI Mspl and
Ile/Val variant alleles are much more preva-
lent in Asians than in Caucasians. More
recently a third polymorphism has been
reported in exon 7 (44). However, the
effects of these genetic polymorphims on
CYP1A1l enzyme activity thus far have
remained obscure (44—47).

The expression of CYP1A1 is regulated
by the cytoplasmic AHR, together with
AHR nuclear translocator and several other
regulatory proteins (48,49). Because no
clear correlations have been observed
between CYPIAI allelic variants and lung
cancer incidence in Caucasians, it has been
suggested that variations in susceptibility to
lung cancer may in fact be attributed to
polymorphisms in these genes affecting the
CYP1A1 inducibility rather than the
CYPIAI gene itself.

Subsequent to the report suggesting
that the extent of inducibility of CYP1A1
was increased in lymphocytes from lung
cancer patients compared to controls (47),
a number of attempts were made to con-
firm these findings [reviewed by d’Errico et
al. (50)]. Strong correlations between lung
cancer risk and homozygosity for the
CYP1AI variant alleles have been reported
in several Japanese studies (42,43,51,52).
However, although a similar association
was also reported in an American popula-
tion (53), no such association was found in
Europeans (54-58). Recent reports that
suggest an association between increased
risk for breast cancer (59) and endometrial
cancer (60) among Caucasian females also
remain unconfirmed.

CYP1A2 metabolizes aflatoxin B, var-
ious heterocyclic and aromatic amines,
and certain nitroaromatic amines (G/).
No genetic polymorphism has yet been
characterized in the CYPIA2 gene, but
considerable individual variations have
been reported both in the level of expres-
sion in the human liver (62) and in the
rate of metabolism of CYP1A2 substrates,
including aromatic amines (61,63,64).
CYPI1A2 polymorphism, therefore, may
well be an important modifier of individ-
ual susceptibility to environmentally
induced cancers.

CYP2AG is subject to genetic poly-
morphism that is detected by an inability
of certain people to carry out the 7-
hydroxylation of coumarin (65-68). Only
three variant alleles have been found that
encode inactive CYP2AG6 (null alleles)
(66,69). It has recently been suggested
that individuals carrying the CYP2A46-null
alleles are less susceptible to develop
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tobacco-related cancers because they have
decreased risks of becoming addicted to
smoking (70). Moreover, if they do
become dependent, they seem to smoke
less than those without impaired nicotine
metabolism. Because tobacco smoke con-
tains nitrosamines that can be activated to
carcinogens by CYP2AG, these individuals
may also be less efficient in activating the
tobacco smoke-derived procarcinogens.

In addition to CYP1A1l and CYP1A2,
CYP2C9 also appears to play a role in the
oxidative metabolism of benzo[4]pyrene
(BaP). Allelic variants of CYP2C9 with
functional repercussions have been identi-
fied (71). Recently a slight increased risk of
lung cancer was associated with CYP2C9*2,
which is the most common variant allele in
Caucasians (72), but contradictory findings
have also been reported (73).

Inactive CYP2C19 alleles result in poor
metabolism of S-mephenytoin, which has
been shown to be more prevalent in Asians
than in Caucasians (74). The latter have
approximately 1 to 2% PMs, whereas the
former have up to 25% PMs. Interestingly,
this is opposite for the findings on
CYP2D6 polymorphism. The CYP2C19
polymorphism is thought to be of little
clinical significance because of the large
therapeutic indices of the drugs currently in
use that are metabolized by CYP2C19.

Several base changes distinguishable by
RFLP analyses have been found in
CYP2EI gene (75-79). Although these
polymorphisms do not appear to alter the
primary sequence of the enzyme, an effect
on gene transcription has been suggested
(80). However, no correlation has been
found between the variant alleles of
CYP2E] and its expression in vitro or in
vivo (81-87). In a Japanese study, individ-
uals homozygous for the variant Dral
alleles of CYP2EI were reported to have
decreased lung cancer risk, especially indi-
viduals with high cumulative smoking
doses (88,89). This genotype was found
less frequently in the Finnish than in the
Japanese population (90). Moreover, no
differences were observed in the frequency
of this genotype between lung cancer
patients and controls, a finding that agreed
with Swedish observations (91). Also, the
variant Rsal allele was extremely rare
among Scandinavians (90,91). However, a
Swedish study suggested that homozygos-
ity for the Rsal allele poses an increased
risk of lung cancer (91), whereas a
Taiwanese study suggested that this allele
was associated with increased risk of
nasopharyngeal carcinoma (92).

Epoxide Hydrolase

Microsomal epoxide hydrolase (mEH) is an
enzyme involved in the first-pass metabo-
lism of highly reactive epoxide intermedi-
ates. It catalyzes, with broad substrate
specificity, the conversion to less toxic trans-
dihydrodiols of highly reactive, cytotoxic
arene oxides and aliphatic epoxides (93).
The enzyme acts coordinately with, for
example, CYP1A1 and CYP1A2 to inacti-
vate deleterious polycyclic hydrocarbon
oxides and epoxides. Further epoxidation of
the diol group can convert inactive diols to
highly toxic, mutagenic, and carcinogenic
polycyclic hydrocarbon diol epoxides (94).
Thus, epoxide hydrolase exhibits the same
dual role of procarcinogen detoxification
and activation found in some CYPs and,
consequently may also play an important
role in epoxide toxicity.

The mEH enzyme is expressed in all
tissues thus far examined, with highest lev-
els in the liver, kidney, and testis, and 10-
to 100-fold lower levels in the lung and
lymphocytes (95-97). Within cells, mEH
is localized mainly to the endoplasmic
reticulum where it can transiently associate
with the CYP mixed-function oxygenase
system (98). Endogenous substrates for
mEH have not been readily identified.
However, the high degree of mEH struc-
tural conservation between several mam-
malian species and apparent ubiquitous
tissue expression imply that mEH has an
important role in cellular metabolism (96).

Interindividual differences in mEH
activity ranging from several- to 40-fold
have been reported in various human tissue
types (96). The molecular basis for vari-
ation in mEH activity has not yet been
characterized completely. Genetic poly-
morphisms have, however, been identified
within exons 3 and 4 of the mEH gene
(EPHX) (99,100), which results in His 3.
Tyr and Arg;3oHis amino acid substitu-
tions, respectively. In vitro expression
analyses indicated that the corresponding
mEH activities decrease approximately
40% (Tyry,3) or increase by at least 25%
(His,39). The activity level observed in the
presence of both variations approximates
that observed for the wild-type genotype
(100). Recently a genetic variation in the
5’ flanking sequence of EPHX was
observed. This may be an additional
contributing factor to the range of func-
tional mEH expression existing in human
populations (101).

Data from the few studies addressing a
possible association between EPHX
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polymorphisms and cancer support a dual
role for the mEH in the carcinogenic
process. It has been suggested that the
EPHX His 3 variant allele increases the
risk of aflatoxin-associated hepatocarci-
noma (102) but decreases the risk of ovar-
ian cancer (103). With regard to lung
cancer, no significant association was

found to the EPHX genotypes (104).
Glutathione S-Transferases

Among the detoxification systems, the
glutathione S-transferases (GSTs) play a
critical role in providing protection against
electrophiles and products of oxidative stress
(105). GSTs are a superfamily of enzymes
that have broad and overlapping substrate
specificities. Four families of cytosolic solu-
ble GSTs have so far been identified in
humans and are referred to as alpha, mu, pi,
and theta (105). The known substrates for
GSTs in cigarette smoke are those derived
from in bioactivation from PAHs, namely,
PAH diolepoxides. The most studied car-
cinogenic PAH diolepoxide, BaPDE, is a
good substrate for many GST isoforms like
GSTM2, GSTM3, and especially for
GSTM1 and GSTP1 (105,106). In general,
class mu enzymes show highest activities
with most epoxides.

To date, genetic polymorphism has been
found in four of the GST genes. One of
these is GSTM1, which is expressed in only
about half of Caucasians because of a
homozygous deletion (null genotype) of the
gene in the other half (107). In addition to
the null genotype, two functional alleles
denoted as GSTMI1*A and GSTM1*B have
been described. These alleles differ by a base
substitution (Cs34G) in the latter, which has
not been shown to affect GSTM1 activity.

In several recent studies an increased
risk of cancer has been observed among
GSTM1 null smokers, but several conflict-
ing reports also exist (50,108-110). In light
of the compiled data it has been estimated
that 17% of both lung cancers (110) and
bladder cancers (111) may be attributable
to GSTM1 genotypes. Although these val-
ues provide only a crude measure of the
potential population impact of these genes,
they suggest that GSTM1 deficiency could
contribute to a substantial incidence of
cancer at the population level. In contrast,
at the individual level the risk associated
with the GSTM1I null genotype may be
smaller than has been anticipated.

GSTM3 is one of the most abundant
GSTs in human lungs (112-114). As a
deviation from the wild-type GSTM3*A
allele, the variant allele GSTM3*B carries a
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deletion of three base pairs in intron 6,
which results in the generation of a recog-
nition sequence for the YYI transcription
factor. The functional consequence of this
is still unclear, but both negative and
positive regulatory effects have been
suggested (112,115).

People with low expression of GSTM3
were previously observed to be at increased
risk of developing adenocarcinoma of the
lung (114). Recent genotyping studies indi-
cate that individuals who are homozygous
or heterozygous for the GSTM3*B alleles
have lower risk of cancers of the larynx
(116) and lung (117,118) than individuals
with the homozygous wild-type genotype.

The third polymorphic GST gene
GSTPI encodes an isoform that is known to
metabolize many carcinogenic compounds,
among them BaPDE. Given that GSTP1 is
the most abundant GST isoform in the
lungs (113), it is thought to be of particular
importance in the detoxification of inhaled
carcinogens. Two variant alleles, GSTPI*B
and GSTPI*C, have been detected in addi-
tion to the wild-type allele GSTPI*A.
GSTPI1*B has an A3;3G transition in exon
5, causing Ile;4Val amino acid change. In
addition to this base substitution, GSTP1*C
allele has a C4;T transition, resulting in a
Ala;;3Val amino acid change. Both of the
affected codons are in the electrophile-bind-
ing site of the GSTP1 enzyme (119).
Compared to GSTPI*4, proteins encoded
by GSTP1*B and GSTP1*C have been
shown to have decreased enzyme activity
when expressed in Escherichia coli (119,
120). Individuals homozygous for the
GSTPI*B alleles have been suggested to
detoxify the ultimate carcinogen of BaP, i.e.,
(+)-anti-BaPDE, more efficiently than het-
erozygotes or wild-type homozygotes (121).
Hence, they could also be less susceptible to
the carcinogenic effects of BaP.

In a recent study, a 3-fold increased risk
of bladder and testicular cancer was
observed for individuals homozygous for
the GSTPI low-activity alleles (GSTPI*B
and GSTPI1*C alleles not differentiated)
compared to controls (122). A similar asso-
ciation was also reported for cancers of the
larynx (123) and lung (124), followed by
both supporting and contrasting findings
(73,118,125,126).

A deletion polymorphism similar to that
observed for GSTM1 has also been discov-
ered for the GSTTI gene (127). The preva-
lence of GSTT1 null individuals shows a
wide variation among ethnically different
populations; in Caucasians the prevalence is
10 to 20% (108). GSTT1 participates in

detoxification of potentially carcinogenic
monohalomethanes (728) and reactive epox-
ide metabolites of butadiene (129,130),
both of which are constituents of tobacco
smoke. The GSTTI null genotype has been
associated with increased risk of lung (137)
and larynx cancers (132), but like the
GSTM1I null genotype, controversial reports
also exist (125,133-135).

Because different GST isoenzymes have
overlapping substrate specificities (105),
deficiencies of GST isozymes may be com-
pensated for by other isoforms and use of
alternative metabolic pathways. This may
be one reason for the abundance of contro-
versial data on GST polymorphisms and
cancer proneness (136).

N-Acetyltransferases

N-Acetylation polymorphism causes
individual variations in biotransformation
of various xenobiotics with primary aro-
matic amine or hydrazine structures
(137,138). The NAT2 (139), which was
until recently thought to be the only poly-
morphic N-acetyltransferase (NAT), is
responsible for the well-known inherited
interindividual variation in the ability to
acetylate substrates such as the arylamine
drugs procainamide and sulfamethazine,
the arylamine carcinogen benzidine, and
some hydrazine drugs such as isoniazid and
hydralazine (137,138). Recently another
human N-acetyltransferase, NAT1 (138),
which is widely expressed in tissues (/40)
and cultured cells (141), has also been
found to be polymorphic (142).

These findings may be of great clinical
and toxicologic importance because certain
chemicals may be N-acetylated to a signifi-
cant degree by both NAT1 and NAT2.
These include the carcinogenic aromatic
amines 2-aminofluorene, benzidine, 4-
aminophenyl, 4,4-dichloroaniline, and 2-
naphthylamine (7143-148), and the cancer
chemotherapeutic agent dinaline (4-
amino-N-[2"-aminophenyl] benzamide)
(149). They are encoded at two distinct
loci on chromosome 8p21.3-23.1 along
with NATP, a pseudogene that does not
encode a functional protein (150). The
new nomenclature of NATI and NAT2
alleles used henceforth in this review is
based on the consolidated classification
system of Vatsis et al. (151).

Seven NATI alleles in human popula-
tions have been reported in the literature
(150). The NAT1*4 allele is denoted as the
wild type. A prominent change in one of
the variants (NAT1*10), which has an
alteration of the consensus polyadenylation

signal (142), was recently reported to be
associated with both higher NAT1 activity
in bladder and colon tissue and DNA
adduct levels in the colon tissues
(152,153). Given that NATI has been
reported to be primarily responsible for the
NAT activity in the human uroepithelium
(154), these findings are of special interest
in studies on bladder cancer risk. The asso-
ciation between the NAT1*10 allele and
NAT1 activity in vivo has not been con-
firmed in subsequent studies. This may be
partly explained by previous misclassifica-
tions of a recently described NAT1*14
allele having Gs60A base substitution
(Arg,37Gln) in combination with the
T088A and CyggsA substitutions present in
NATI1*10 allele. This allele produces a
defective NAT1 protein, which leads to
functional impairment in the metabolism
of NAT1-selective substrates both in vitro
and in vivo (150). In the NAT1*3 allele
only the latter substitution is present in
contrast to the wild-type NAT1*4 allele,
whereas in the NATI1*11 allele, several
changes are found in addition. Recently an
allele (NAT1*17) was reported that was
suggested to differ from the NAT1*11
allele in that it also has a G445A base
substitution (Val;4olle). Subsequently,
however, researchers have agreed that
NATI*11 also contains this substitution
and that the NAT1*17 designation will be
used for some future new alleles (155).
Consequently, it is now thought that the
previous findings that the Val4olle amino
acid change correlates with increased N-
acetylation activity (156) applies to the
NATI*11 allele. In the NAT1*15 allele,
CssoT substitution (Arg;g,Stop) results in
truncated protein and total loss of NAT1
activity. The functional repercussions of
two additional variants, NATI*5 and
NAT1*16, remain to be determined (150).
With regard to the NAT2 gene, in
addition to the wild-type allele NAT2*4, at
least 23 different NAT2 mutations have
been found to date [for additional refer-
ences, see Grant et al. (150)]. Seven of the
nine observed nucleotide transitions lead to
amino acid changes, whereas the remaining
two base substitutions exert no influence
on the amino acid sequence (150). Several
allelic variants of NAT2 reportedly result
from certain combinations of these nine
base substitutions. Rapid acetylators have
at least one wild-type NAT2*4 allele,
whereas slow acetylators have inherited two
slow acetylation-associated alleles.
Investigators have reported a wide
range of values for acetylation activity in
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different groups (157). From the few
population studies currently completed on
NATI, it appears that the NATI putative
fast acetylator alleles are found in frequen-
cies ranging from 15 to 25% in Caucasians
to 50% in Asians; NAT1*4 and NAT1*10
are the most prevalent alleles in Caucasians
(158-160). The predominance of the
putative NATI slow acetylator status-
associated genotype (homozygous or het-
erozygous for NAT1*10) has been reported
to be about 70% among British Caucasians
(158), 61% among French Caucasians
(160), and 50% among an American pop-
ulation consisting of Caucasians, African
Americans, and Latinos (159).

The frequencies of NAT2 slow acetyla-
tor alleles range from 5% in Japan to 90%
in Egypt (150,161). The predominance of
the NAT2 slow acetylator genotype has
been reported to be about 60% among
Germans (162,163), 53% among American
Caucasians (163), 63% among Poles (164),
and 50% among Finns (165). In contrast,
in the Japanese or Chinese populations, the
rapid genotype is largely overrepresented
(92 and 80%, respectively) (166,167).

Previous phenotyping studies as well as
subsequent genotyping studies have
suggested a modifying role for NAT geno-
types in all major cancer sites. Two main
types of biologic mechanisms could
explain these findings (168). First, CYP-
mediated N-hydroxylation of arylamines
yields electrophilic intermediates that are
inactivated by conjugation with glu-
curonide or acetylation by NATSs (161,
169). In urinary bladder carcinogenesis,
N-acetylation of arylamines is a competing
pathway for N-oxidation. The unconju-
gated N-hydroxy metabolites can enter the
circulation, undergo renal filtration, and
be transported to the urinary bladder
(170). A number of previous phenotyping
studies provided evidence that the NAT2
slow acetylator phenotype is a significant
risk factor for the occurrence of bladder
cancer, particularly for individuals occu-
pationally exposed to arylamines. Sub-
sequent genotyping studies supported the
important role of NAT2 slow acetylation
status as a risk factor for arylamine-
induced bladder cancer (168,171,172).
There is, however, also the possibility that
slow acetylators survive longer than rapid
acetylators in patients with bladder cancer
(173). Recent data suggest that a promi-
nent variant allele of NAT1 (NAT1*10)
associated with increased enzyme activity
is also a risk factor for smoking-related
bladder cancer (174).

Another area of research is based on the
hypothesis that fast acetylators are at
increased risk for cancers at sites other than
the bladder because of the activation of
procarcinogens such as heterocyclic
amines. Exposure to heterocyclic amines is
fairly common; these potent mutagens and
rodent carcinogens are formed when meat
and fish are cooked at household tempera-
tures. The heterocyclic amines are poor
substrates for N-acetylation in human liver,
but they readily undergo hepatic N-oxida-
tion and subsequent N-glucuronidation,
which results in conjugated N-hydroxy
metabolites that can be transported to the
colonic lumen (175). In colonic mucosa,
the N-hydroxy derivatives are good sub-
strates for O-acetylation, which results in
reactive N-acetoxyarylamines capable of
forming covalent DNA adducts (170). The
association between the NAT1 fast acetyla-
tor trait and colorectal tumors could be
due to enhanced O-acetylation of aromatic
amines in cigarette smoke or to hetero-
cyclic amines in cooked meat because both
smoking and high intake of red meat have
previously been associated with colorectal
cancer (176,177). The role of NATT1 activ-
ity is less clear if heterocyclic amines are
the aromatic amine compounds of primary
relevance to human colorectal cancer.
Some data indicate that among the acetyl-
transferases, NAT2 is more important than
NAT1 for bioactivation of heterocyclic
amines in vitro (178—181).

Several previous phenotyping studies
(168) suggest that rapid acetylators are at
higher risk to develop cancer of the colon.
Several recent genotyping studies have
reached a similar conclusion (168).
Moreover, preliminary data suggest that
the NATI*10 allele is also a risk factor in
smoking-related colon cancer (158,182).

The N-acetylation phenotype also has
been widely studied in relation to suscepti-
bility to breast and lung cancer. Several
case—control studies compared the preva-
lence of the slow acetylator phenotype in
breast cancer patients with the prevalence
found in controls; their outcomes were
mixed (/68). Similarly, a recent genotyp-
ing study indicated an increased risk of
breast cancer for slow NAT2 acetylators
who smoked 20 or more cigarettes per day
(183). However, two subsequent studies
provided little evidence of an association
between the NAT2 genotypes and breast
cancer (184,185).

Other studies have evaluated the utility
of acetylation as an indicator of risk for
pulmonary malignancies and liver cancer.
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A set of four phenotyping studies yielded
inconclusive results about the potential
association between the NAT?2 acetylator
status and lung cancer risk [for a review,
see Hirvonen (168). Subsequent genotyp-
ing studies also did not give any conclusive
evidence (186-188). However, the poten-
tial role of NAT genotypes as modifiers of
individual responses to environmental
agents is supported in three recent studies
that found that the NAT2 slow acetylator
genotype posed an increased risk of
mesothelioma (789) and hepatocellular
carcinoma (190), whereas the NAT/ high-
activity allele increased risk of smoking-
related lung cancer (160).

It is possible that N-acetylation is an
important detoxification step in environ-
mental exposures. The combination of the
NATI and NAT2 susceptible genotypes
possibly is a particularly unfavorable geno-
type composition in arylamine exposures.
In support of this possibility, Bell et al.
(158) recently observed that the association
between increased risk of colorectal cancer
and the fast NAT1 acetylator allele
(NAT1*10) was most apparent among fast
NAT2 acetylators. Moreover, this genotype
combination together with high red meat
intake caused a remarkably increased risk of
colon cancer (182). Further addressing the
potential importance of individual acetyla-
tion capacity, Badawi et al. (753) found
that the carcinogenic DNA adduct levels in
the mucosa of the urinary bladder were
highest in arylamine-exposed individuals
who had inherited both the slow NAT2
acetylator genotype and the rapid NATI
acetylation-associated (NAT1*10) allele.

NAD(P)H:Quinone Oxidoreductase

NAD(P)H:quinone oxidoreductase reduces
quinones to dihydroquinones, a reaction
considered to be critical in the detoxification
of these highly reactive metabolites (191). It
is an important enzyme in both activation
and detoxification pathways known to pro-
tect against the carcinogenicity and muta-
genicity of quinone compounds and their
metabolites and to activate procarcinogenic
compounds (192). A polymorphic allele of
the human NQO! gene, with an amino acid
change causing low catalytic activity
(193-195), recently was associated with
increased susceptibility to malignancies such
as colon and lung cancer (195-198).

Other Potentially Relevant
Xenobiotic-Metabolizing Enzymes

A number of polymorphic metabolic
enzymes other than those previously
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mentioned exist that may also be important
in individual variations of susceptibility to
cancer. Myeloperoxidase (MPO) is an
enzyme found primarily in the lysosomes of
neutrophils. Exposure to a variety of pul-
monary insults such as cigarette smoke stim-
ulates recruitment of neutrophils into
human lung tissue (199) and local release of
MPO (200,201). MPO activates carcino-
gens such as BaP and aromatic amines in
tobacco smoke (170,202). An allelic variant
with a G to A base substitution in the pro-
moter region of the MPO gene recently has
been shown to result in reduced gene tran-
scription. Homozygotes for the variant allele
recently have been suggested to be less
susceptible to lung cancer (203).

Sulfotransferases, which exist as a super-
family, can participate in the metabolic
activation of arylamine and heterocyclic
amine carcinogens (204).

The uridine diphosphate (UDP)-
glycosyltransferases (UGTs) conjugate
active metabolites of carcinogens and multi-
ple forms are expressed in liver and extra-
hepatic tissues (205-207). UGTs can also
participate in the metabolism of arylamines
and heterocyclic amines. Although genetic
defects in a form of UGT that conjugates
bilirubin have been described, genetic dif-
ferences in their expression have not been
demonstrated (208).

The flavin-containing monooxygenases
(FMOs) are a superfamily of xenobiotic-
metabolizing enzymes that oxidize numer-
ous nucleophilic compounds (209,210).
These enzymes primarily carry out the
inactivation of drugs and do not activate
the common classes of carcinogens (209).
A low-frequency polymorphism was
found in FMO Al. This gives rise to a
condition called trimethylaminurea or Fish
Odor Syndrome, which is due to an indivi-
dual’s inability to carry out the N-oxida-
tion of tertiary aliphatic amines found in
foodstuffs (210).

The serum paraoxonase/acetylesterase
catalyzes the hydrolysis of organophos-
phate pesticides such as paraoxon, carba-
mates, and carboxylic acid esters. It also
hydrolyzes mustard gas and Sarin. A
genetic polymorphism resulting in a high-
activity and a low-activity allele has also
been found in this enzyme (211,212).

Future Directions

It is anticipated that rapid advances will be
made in methodology to determine poten-
tial metabolic at-risk genotypes. These
advances may include less invasive collection
methods for test samples (e.g., buccal cell
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and urinary cell samples), automated DNA
extraction combined with robotic sample
handling, and high-density oligonucleotide
array-based genetic test methods. At present,
many research laboratories are conducting
association studies and contradictory reports
are emerging inpthe literature. Several
sources of potential bias exist that partly
account for these divergent findings, usually
an initial small study showing a positive
association. This raises the important
issue of power calculations in planning
subsequent studies. High profile reporting
to the public of results of studies that may
ultimately turn out to be erroneous is also
problematic in this context. Also, there
recently has been debate about publica-
tion bias—selective publishing of only
positive associations.

If the potential biases mentioned above
are carefully controlled, genetic screening
studies may in the near future help us iden-
tify susceptible individuals and subgroups
in environmentally exposed populations.
Companies offer gene tests to individuals
and employers. As long as this testing is
not scientifically and ethically above
reproach, it can benefit only companies
selling the tests. There is an urgency to
address several important ethical questions
with regard to societal and public health.
For instance, should insurance companies
and employers be allowed to use genetic
testing to discriminate against people based
on their genotypes? Although such testing
undoubtedly would be beneficial if used to
ensure that the workplace is safe for every-
one, including the most sensitive individu-
als, it might also be used for denial of
employment, health insurance coverage, or
life insurance policies. Social and ethical
problems encountered in using genetic
susceptibility information must be antici-
pated and rational schemes devised to cir-
cumvent the potential misuse of our
abilities to identify at-risk individuals.
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