Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1999 Nov;107(11):901–904. doi: 10.1289/ehp.99107901

Effects of electromagnetic fields on photophasic circulating melatonin levels in American kestrels.

K J Fernie 1, D M Bird 1, D Petitclerc 1
PMCID: PMC1566687  PMID: 10544158

Abstract

Birds reproduce within electromagnetic fields (EMFs) from transmission lines. Melatonin influences physiologic and behavioral processes that are critical to survival, and melatonin has been equivocally suppressed by EMFs in mammalian species. We examined whether EMFs affect photophasic plasma melatonin in reproducing adult and fledgling American kestrels (Falco sparverius), and whether melatonin was correlated with body mass to explain previously reported results. Captive kestrel pairs were bred under control or EMF conditions for one (short-term) or two (long-term) breeding seasons. EMF exposure had an overall effect on plasma melatonin in male kestrels, with plasma levels suppressed at 42 days and elevated at 70 days of EMF exposure. The similarity in melatonin levels between EMF males at 42 days and controls at 70 days suggests a seasonal phase-shift of the melatonin profile caused by EMF exposure. Melatonin was also suppressed in long-term fledglings, but not in short-term fledglings or adult females. Melatonin levels in adult males were higher than in adult females, possibly explaining the sexually dimorphic response to EMFs. Melatonin and body mass were not associated in American kestrels. It is likely that the results are relevant to wild raptors nesting within EMFs.

Full text

PDF
901

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binkley S., Stephens J. L., Riebman J. B., Reilly K. B. Regulation of pineal rhythms in chickens: photoperiod and dark-time sensitivity. Gen Comp Endocrinol. 1977 Aug;32(4):411–416. doi: 10.1016/0016-6480(77)90222-2. [DOI] [PubMed] [Google Scholar]
  2. Daan S., Masman D., Groenewold A. Avian basal metabolic rates: their association with body composition and energy expenditure in nature. Am J Physiol. 1990 Aug;259(2 Pt 2):R333–R340. doi: 10.1152/ajpregu.1990.259.2.R333. [DOI] [PubMed] [Google Scholar]
  3. Grota L. J., Reiter R. J., Keng P., Michaelson S. Electric field exposure alters serum melatonin but not pineal melatonin synthesis in male rats. Bioelectromagnetics. 1994;15(5):427–437. doi: 10.1002/bem.2250150506. [DOI] [PubMed] [Google Scholar]
  4. Gupta B. B., Haldar-Misra C., Ghosh M., Thapliyal J. P. Effect of melatonin on gonads, body weight, and luteinizing hormone (LH) dependent coloration of the Indian finch, Lal munia (Estrilda amandava). Gen Comp Endocrinol. 1987 Mar;65(3):451–456. doi: 10.1016/0016-6480(87)90131-6. [DOI] [PubMed] [Google Scholar]
  5. Hau M., Gwinner E. Adjustment of house sparrow circadian rhythms to a simultaneously applied light and food zeitgeber. Physiol Behav. 1997 Nov;62(5):973–981. doi: 10.1016/s0031-9384(97)00199-6. [DOI] [PubMed] [Google Scholar]
  6. Kato M., Honma K., Shigemitsu T., Shiga Y. Circularly polarized 50-Hz magnetic field exposure reduces pineal gland and blood melatonin concentrations of Long-Evans rats. Neurosci Lett. 1994 Jan 17;166(1):59–62. doi: 10.1016/0304-3940(94)90840-0. [DOI] [PubMed] [Google Scholar]
  7. Kato M., Honma K., Shigemitsu T., Shiga Y. Effects of exposure to a circularly polarized 50-Hz magnetic field on plasma and pineal melatonin levels in rats. Bioelectromagnetics. 1993;14(2):97–106. doi: 10.1002/bem.2250140203. [DOI] [PubMed] [Google Scholar]
  8. Kato M., Honma K., Shigemitsu T., Shiga Y. Recovery of nocturnal melatonin concentration takes place within one week following cessation of 50 Hz circularly polarized magnetic field exposure for six weeks. Bioelectromagnetics. 1994;15(5):489–492. doi: 10.1002/bem.2250150511. [DOI] [PubMed] [Google Scholar]
  9. Lamosová D., Zeman M., Juráni M. Influence of melatonin on chick skeletal muscle cell growth. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1997 Nov;118(3):375–379. doi: 10.1016/s0742-8413(97)00159-x. [DOI] [PubMed] [Google Scholar]
  10. Liou S. S., Cogburn L. A., Biellier H. V. Photoperiodic regulation of plasma melatonin levels in the laying chicken (Gallus domesticus)1. Gen Comp Endocrinol. 1987 Aug;67(2):221–226. doi: 10.1016/0016-6480(87)90151-1. [DOI] [PubMed] [Google Scholar]
  11. Meyer W. E., Millam J. R. Plasma melatonin levels in Japanese quail exposed to dim light are determined by subjective interpretation of day and night, not light intensity. Gen Comp Endocrinol. 1991 Jun;82(3):377–385. doi: 10.1016/0016-6480(91)90313-u. [DOI] [PubMed] [Google Scholar]
  12. Miché F., Vivien-Roels B., Pévet P., Spehner C., Robin J. P., Le Maho Y. Daily pattern of melatonin secretion in an antarctic bird, the emperor penguin, Aptenodytes forsteri: seasonal variations, effect of constant illumination and of administration of isoproterenol or propranolol. Gen Comp Endocrinol. 1991 Nov;84(2):249–263. doi: 10.1016/0016-6480(91)90048-b. [DOI] [PubMed] [Google Scholar]
  13. Pang S. F., Lee P. P., Tang P. L. Sensory receptors as a special class of hormonal cells. Neuroendocrinology. 1991;53 (Suppl 1):2–11. doi: 10.1159/000125787. [DOI] [PubMed] [Google Scholar]
  14. Reiter R. J. Alterations of the circadian melatonin rhythm by the electromagnetic spectrum: a study in environmental toxicology. Regul Toxicol Pharmacol. 1992 Jun;15(3):226–244. doi: 10.1016/0273-2300(92)90035-8. [DOI] [PubMed] [Google Scholar]
  15. Reiter R. J. Static and extremely low frequency electromagnetic field exposure: reported effects on the circadian production of melatonin. J Cell Biochem. 1993 Apr;51(4):394–403. doi: 10.1002/jcb.2400510403. [DOI] [PubMed] [Google Scholar]
  16. Reiter R. J., Tan D. X., Cabrera J., D'Arpa D., Sainz R. M., Mayo J. C., Ramos S. The oxidant/antioxidant network: role of melatonin. Biol Signals Recept. 1999 Jan-Apr;8(1-2):56–63. doi: 10.1159/000014569. [DOI] [PubMed] [Google Scholar]
  17. Schneider T., Thalau H. P., Semm P. Effects of light or different earth-strength magnetic fields on the nocturnal melatonin concentration in a migratory bird. Neurosci Lett. 1994 Feb 28;168(1-2):73–75. doi: 10.1016/0304-3940(94)90419-7. [DOI] [PubMed] [Google Scholar]
  18. Schneider T., Thalau H. P., Semm P. Effects of light or different earth-strength magnetic fields on the nocturnal melatonin concentration in a migratory bird. Neurosci Lett. 1994 Feb 28;168(1-2):73–75. doi: 10.1016/0304-3940(94)90419-7. [DOI] [PubMed] [Google Scholar]
  19. Schneider T. Distribution of 2- J Exp Biol. 1995;198(Pt 9):1943–1949. doi: 10.1242/jeb.198.9.1943. [DOI] [PubMed] [Google Scholar]
  20. Schneider T, Thalau HP, Semm P, Wiltschko W. MELATONIN IS CRUCIAL FOR THE MIGRATORY ORIENTATION OF PIED FLYCATCHERS (FICEDULA HYPOLEUCA PALLAS) J Exp Biol. 1994 Sep;194(1):255–262. doi: 10.1242/jeb.194.1.255. [DOI] [PubMed] [Google Scholar]
  21. Schneider T, Thalau HP, Semm P, Wiltschko W. MELATONIN IS CRUCIAL FOR THE MIGRATORY ORIENTATION OF PIED FLYCATCHERS (FICEDULA HYPOLEUCA PALLAS) J Exp Biol. 1994 Sep;194(1):255–262. doi: 10.1242/jeb.194.1.255. [DOI] [PubMed] [Google Scholar]
  22. Stehle J., Reuss S., Schröder H., Henschel M., Vollrath L. Magnetic field effects on pineal N-acetyltransferase activity and melatonin content in the gerbil--role of pigmentation and sex. Physiol Behav. 1988;44(1):91–94. doi: 10.1016/0031-9384(88)90350-2. [DOI] [PubMed] [Google Scholar]
  23. Vakkuri O., Rintamäki H., Leppäluoto J. Plasma and tissue concentrations of melatonin after midnight light exposure and pinealectomy in the pigeon. J Endocrinol. 1985 May;105(2):263–268. doi: 10.1677/joe.0.1050263. [DOI] [PubMed] [Google Scholar]
  24. Vijayalaxmi, Meltz M. L., Reiter R. J., Herman T. S., Kumar K. S. Melatonin and protection from whole-body irradiation: survival studies in mice. Mutat Res. 1999 Mar 10;425(1):21–27. doi: 10.1016/s0027-5107(98)00246-2. [DOI] [PubMed] [Google Scholar]
  25. Zeman M., Výboh P., Juráni M., Lamosová D., Kostal L., Bilcík B., Blazícek P., Jurániová E. Effects of exogenous melatonin on some endocrine, behavioural and metabolic parameters in Japanese quail Coturnix coturnix japonica. Comp Biochem Physiol Comp Physiol. 1993 Jun;105(2):323–328. doi: 10.1016/0300-9629(93)90215-p. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES