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Statistical Methods for the fl-Binomial
Model in Teratology
by Eiji Yamamoto' and Takemi Yanagimoto2

The ,8-binomial model is widely used for analyzing teratological data involving littermates. Recent developments in
statistical analyses of teratological data are briefly reviewed with emphasis on the model. For statistical inference of the
parameters in the ,8-binomial distribution, separation of the likelihood introduces an innovation in likelihood inference.
This leads to reducing biases ofestimators and also to improvingaccuracy ofempirical significance levels of tests. Separate
inference of the parameters can be conducted in a unified way.

Introduction
Because teratological data include observations on fetuses

from the same litter, binary responses have litter effects that cause
overdispersion against the binomial model. By taking account the
litter structure, several statistical models have been introduced,
and many of their inference procedures have been proposed and
improved. Reviews of this subject were presented in Haseman
and Kupper (1) and in Krewski et al. (2). In the next section, we
give a brief review ofrecent developments for statistical inference
of the semiparametric model and the parametric model in the
teratological data analysis and especially that ofthe (3-binomial
model. Then we review our recent work on modifications for the
moment estimators of the parameters in the model.

Recent developments for likelihood inference emphasize ad-
vantages of separation of the likelihood (3). We will apply
separate likelihood inference for the (3-binomial population in the
third section ofthis paper for expectation ofimprovement ofthe
usual likelihood inference. A simulation study is conducted for
examining performance of the applied inference procedures. In
the final section, we discuss unsolved problems and future
studies on the (3-binomial model.

Review of Teratological Data Analysis
General View
For the test of the difference between prevalence rates in two

samples, Gladen (4) proposed the jackknife method. On the
assumption ofthe first two moments modeled on the litter struc-
ture, Williams (S) proposed the quasi-likelihood method for the
dose-response regression analysis. On the other hand, the
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binomial sampling error model was generalized for litter effects
as the following parametric models. Williams (6) introduced the
(3-binomial model in the teratological data analysis. He assumed
a (3 distribution between prevalence rates of litters. Kupper and
Haseman (7) introduced the correlated binomial model by con-
sidering the correlation between two binary responses within the
same litter. A different approach was used by Ochi and Prentice
(8). In their model, binary responses within the same litter are
defined according to whether the corresponding components of
a multivariate normal variate with common mean, variance, and
correlation exceed a common threshold. The usual likelihood
methods for inference of the parameters have been used in the
above models.
Among the existing models, the most important one is the

(3-binomial model. This model has been used widely in the
analysis of teratological data and has been studied by many
biostatisticians (9,10). Recent topics for the (3-binomial model
are concerned with the regression analysis and the incorporation
of historical control data.
Kupper et al. (11) considered the fitting of a logistic dose-

response curve to litter proportions in a (3-binomial sampling
error model. They showed from their simulation study that the
maximum likelihood estimates (MLEs) of regression coeffi-
cients are seriously biased ifthe intralitter correlation is falsely
assumed to be homogeneous across all dose groups. A simple ex-
planation of the source of these large biases was given by
Williams (12), and the theoretical aspect was discussed by
Yamamoto and Yanagimoto (13).

Incorporating historical controls to a current toxicological ex-
periment is another attractive topic. Throne (14) assumed that the
prevalence rate of the current control varies according to a (3
distribution. Hoel and Yanagawa (15) constructed a conditional
test given the fixed number of responses in the current control
group. In applications to actual data, estimates ofthe parameters
in the ( distribution are necessary, which might be obtained from
the historical control data distributed in a (3-binomial distribu-
tion. Recently, Prentice et al. (16) conducted a non-Bayes
approach to incorporating the historical control data. They
assumed that the historical controls follow a (3-binomial dis-
tribution and the current experiment data follow a binomial or a
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(3-binomial distribution. Inference of the parameters in an ap-
plied model is based on thejoint likelihood ofthe historical and
the current data.

3-Binomial Distribution
Let ni denote the size of the ith litter (i = 1, * m, i), and let

xi denote the number of affected fetuses. The number xi is
assumed to be distributed in a binomial distribution Bi(ni, pi)
for a fixed prevalence rate, pi. In addition, the prevalence rate,
pi, is assumed to follow a A distribution, say BB(ni, ir, 4), which
has the following probability function:

, r,0)=(&\ fl0I(7r +r0flr(= - +G

(1-1) Hr=(1 + rO)

wherex = 0,1, .*,n; O= 0/(1-)),0 . < 1,0 <ir < 1. The
mean, i, and the variance, a, ofthe distribution arenr and n7r(1
- 7r) [1 + (n - 1))], respectively. The parameter w represents
the incidence rate of binary responses, and the parameter 4
represents the positive correlation coefficient between two binary
responses. The marginal point 4 = 0 means the binomial
distribution so that 4 is regarded as an index of overdispersion
against the binomial model. Prentice (17) noted that the (3-
binomial distribution formally covers underdispersion to a
limited extent.
Here we note that the (3-binomial distribution does not have

favorable analytical properties. The distribution has the antimode
when 4 is large. Explicitly, when (n + 1)7r-(n - 1)0 - 1 < 0
and (n + l)7r- (n -1)(1- f) - 1 > 0, the point [(n+l)(r-0)/
(1-20)] is the antimode, where [ ] is the Gauss symbol.
Classification in various shapes of the probability function by
fixed-parameter values are illustrated in Figure 1. The distribu-
tion is not a member ofthe exponential family nor the exponen-
tial dispersion model (18). The parameters Tr and 4 are not ortho-
gonal (19), except when 4 = 0. It is not reproductive; that is, the
sample sum has a complex probability function. The MLE ofthe
mean, A, is not the sample mean and cannot be expressed in a
closed form.
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FIGURE 1. Division ofthe parameter space corresponding to classification in
the four shapes of the probability function in the ,-binomial distribution.

Statistical Inference of (wr,4)
Let us consider statistical inference ofthe parameters (7r,4).

For simplicity we assume that the number of fetuses, ni, is com-
mon among litters. Because ofthe above unfavorable properties,
the two traditional estimation methods, the method ofmoments
and the maximum likelihood method, have been used routinely.
A few attempts to improve estimators have been made. Kleinman
(20) claimed the superiority ofthe moment estimator of ir with
proper weights. Tamura and Young (21) proposed the use of a
stabilizer for the usual moment estimator of 4. Crowder (22)
suggested good performance ofthe conditional MLE of fixed
the sample mean, xi, where he approximated the distribution
of xi by a normal distribution.

For the test ofthe null hypothesis = 0, the traditional asymp-
totic likelihood ratio test (LRT) theory has been falsely applied
in spite of the fact that = 0 is the marginal point of the
parameter range. Paul etal. (23) claimed that the LRT statistic
is asymptotically distributed in the 50:50 mixture of the
degenerate distribution at zero and the chi-square distribution
with 1 degree of freedom (df) under the null hypothesis. The
C(a)-test proposed by Tarone (24) and recommended by Paul et
al. (23) is able to test this marginal point without any difficulty.
Accuracy ofthe empirical significance level can be improved by
using an alternative asymptotic distribution of the test statistic
under the assumption of large litter sizes proposed by Kim and
Margolin (25). As Prentice (17) noted, in the extended (3-

binomial distribution, the point zero can be treated as an inner
point of the parameter range so that the traditional LRT theory
can be applied correctly.

Method of Moments
The moment estimator of wr is i = xi In, which is unbiased and

has a potential efficiency (20). The moment estimator of is
denoted by

ns2 (n-

(n- 1)(n -a)

where = 2(x,-x )2/(m-1), which is known to have an
asymptotic positive bias. The estimator ),,0 is given as the root
of the estimating equation (26)

9b(x; k) = ns2 _ -(n--)-(n-1)i(n-x) = 0,

which is not unbiased, that is, E[gb(x; 4) ] * 0. This comes
from the fact thatix (n- xi ) is not an unbiased estimator ofn2w
(1-4v). Yanagimoto and Yamamoto (27) claimed that removing
the bias from an estimating equation for a usual moment
estimator leads to better performances in many examples appear-
ing in the actual statistical analyses. An unbiased estimating
equation for 4

g(x; )=(mn - 1)s2
Mi(n- i)- n-)(mi(n- ) + -a') = OX

gives a moment estimator
- (mn-1)s2-m_ (n-x)

(n- 1)(mi(n-x) + t9(1)

26



STATISTICAL METHODS FOR (-BINOMIAL MODEL

This treatment reduces the bias and the mean square error.
Yamamoto and Yanagimoto (28) made an extensive comparison
of performance of 4 and )mo.

Until now the method ofmoments focuses only on the estima-
tion procedure and consequently does not attract our attention
to the test procedure. By using an unbiased moment estimating
equation g( x ;0) = 0. we can produce a following test statistic
for the null hypothesis 0 = 0o defined by

Tmo f;. g(x; 0)dO
Est. of E(fe g(x; 0)dO)

where 0 is the unbiased moment estimator given by g(x ;0) = 0
and the denominator is an unbiased moment estimator for the ex-
pectation of l g(x ;0)d0. Note that the test statistic T,m,, can be
explained as a signal-noise ratio under the hypothesis. Apply-
ing this test procedure to the (3-binomial case, the test statistic for
the null hypothesis ir = -ro is given by

i0 - n7ro)2
TM =

s2/M

which is the square ofthe well known t-test statistic. The test for
4 needs complicated calculations of the third and the fourth
moments, so we do not pursue the moment test procedure for 4
any further.

Innovation in Likelihood Inference
Outline of Principle

Recent developments for likelihood inference ofthe mean, IL,
and the dispersion parameter, 0, put emphasis on the advantage
of separation of the likelihood (3), which is based on factoriza-
tion of the density function of a sample x;

f(X; Ad ) = fm(t;Ii,0)fc(Z, 0I1t), (2)

where t is the sample sum or the sample mean. The marginal
density is used as the likelihood for inference ofA, and the con-
ditional density is used as the likelihood for 0. The maximum
likelihood estimation procedure gives the marginal MLE i and
the conditional MLE 0. In this factorization (Equation 2), y is
also the usual MLE. Yanagimoto and Yamamoto (29) propos-
ed a modified likelihood ratio test statistic for the null hypothesis
A = yas

Tm = 21n fm(t; a,6)
fm (t; Po,0X)

Note that the conditional MLE 0 is used both in the numerator
and the denominator, and the test statistic is compared exactly
or approximately with the F distribution with appropriate
degrees of freedom. We will call Tm the marginal LRT for I
hereafter. In the normality case, Tm is just equal to the square of
the t-test statistic. On the other hand, the usual LRT statistic in
this case is expressed as nlog [1 + Tm(l(n- 1)]. Favorable per-

formances and many successful examples of the marginal LRT
were presented in Yanagimoto and Yamamoto (29).

Inference Procedures
Though the (3-binomial distribution cannot be factored into the

form ofEquation 2, we can expect that the application of separa-
tion of the likelihood leads to improving usual likelihood in-
ference. Inference of w is based on the marginal density of the
sample sum (t = E xi) and that of 4 is based on the conditional
density fixed t. Following the principle outlined above, thejoint
density ofx is separated in

f(X; Ir, d) = fm(t; Ad9!)fc(X;7rqSt)
Unfortunately, the marginal densityfm is of a complicated form,
and also ir remains in the conditional densityfi. Therefore, we
will evaluate the former by the following approximation:
The first and second moments of t are given by

At = E(t) = N7r
a 2 = V(t) = N7r(1 - 7r)(1 + (n -1)()

= N7r(1 - 7r)(1 + (N - 1)qY)

whereN = mn and (N - 1)4)' = (n - 1)0. Crowder (22) ap-
plied a normal distribution for a candidate ofthe approximated
distribution of t. We propose here the use of a (3-binomial
distribution as a more reasonable candidate, because the
distribution of t is skewed. Especially the (3-binomial approx-
imation has merits such that the sample distribution is discrete
and closed in the (3-binomial family. Fixing the first two
moments of t, the above two approximated distributions have the
following probability density and function:

fm(t;ir, ) = 1 exp 2-
t

fm(t; 7rx ) =

{N 1nr-(7r + rO') r=o(1 - 7r + rO')
tv = / o(l4)') +o lt)i

(3)

(4)

respectively, with O' = OV (I -¢0). Consequently, the condi-
tional density is approximated by

fc(X;7r, Olt) = fm(t; r, P)

wherefm(t; r,o) is the density (Equation 3 or 4).
By using the above approximations to the marginal likelihood

for wrand the conditional likelihood for 4, we will introduce the
following combination of estimators and test procedures in a
unified way. a) Estimation of r: we use the moment estimator
i = x In. b) Estimation of 4: the conditional MLE 4 is given
by the approximated conditional likelihood fixed t defined by

Ic(o) = fc(x; *,O1t). (5)
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c) Test of ir: the marginal LRT for the hypothesis ir = 7ro( > 0)
is proposed as

Tm = 21n f I

fm(t;7ro,0X)

Table 1. Median biases of estimators for the parameter 4

(litter size = 10, number ofanimals = 20, number of iterations = 10,000).

X 10 MLE ON 4B'

0.05 0.01
0.02
0.04
0.08

which is compared with the F distribution with df (1,m - 1). u.O
d) Test of 4: the conditional LRT for the hypothesis 4 = )o 0.2 0.01
(> 0) is proposed as 0.02

0.04
0.08

l1 i = 2lr I&
fc(x; , 00 IW

which is compared with the chi-square distribution with df 1.
When we approximate the marginal distribution oft by the i3-

binomial distribution, the conditional likelihood of 4 in Equa-
tion 5 has the following derivative at the point 4 = 0.

d 1CM10= Nn(m-1) m(N -1) 21

0.4 0.2
0.25
0.3
0.35
0.4

-0.0100 -0.0077 -0.0077 -0.0083
-0.0138 -0.0056 -0.0055 -0.0100
-0.0147 -0.0057 -0.0056 -0.0140
-0.0191 -0.0067 -0.0058 -0.0259
-0.0340 -0.0095 -0.0109 -0.0438

-0.0091 -0.0038 -0.0037 -0.0038
-0.0104 -0.0044 -0.0044 -0.0052
-0.0115 -0.0049 -0.0049 -0.0059
-0.0136 -0.0059 -0.0058 -0.0087
-0.0170 -0.0070 -0.0068 -0.0109

-0.0172 -0.0086 -0.0085 -0.0047
-0.0161 -0.0075 -0.0073 -0.0026
-0.0153 -0.0069 -0.0066 -0.0025
-0.0166 -0.0086 -0.0083 -0.0024
-0.0166 -0.0089 -0.0086 -0.0011

MLE, maximum likelihood estimate.

Table 2. Mean square errors of estimators for the parameter 4
(litter size = 10, number ofanimals = 20, number of iterations = 10,000).

1r MLE

Therefore, the condition > 0 is equivalent with that > 0 in 0.02
Equation 1. 0.04

0.08

Simulation Study 0.16

0.0010 0.0016 0.0016 0.0009
0.0015 0.0021 0.0022 0.0013
0.0026 0.0035 0.0036 0.0023
0.0053 0.0068 0.0071 0.0050
0.0125 0.0150 0.0173 0.0129

0.2 0.01 0.0007 0.0009 0.0009 0.0008
To examine performance of the proposed estimators of and 0.02 0.0009 0.0011 0.0011 0.0011

the test procedures and X and 4, we conducted a simulation 0.04 0.0015 0.0017 0.0017 0.0017
study. The selected values of the incidence rate vr are 0.05, 0.2, 0.08 0.0028 0.0029 0.0030 0.0030
and 0.4 as small, moderate, and large values, respectively. The 0.16 0.0057 0.0057 0.0059 0.0063
large value is set for a study of the behaviors ofestimates out of 0.4 0.2 0.0055 0.0054 0.0054 0.0058

the dependence on the constraint such that the estimates of 0.25 0.0067 0.0066 0.0066 0.0070
should be non-negative. The dispersion parameter is selected 0.3 0.0076 0.0074 0.0074 0.0080
suitably at each X level in 0.05 through 0.4. The p3-binomial ran- 0.35 0.0085 0.0082 0.0082 0.0088
dom numbers were generated by the IMSL package, and the 0.4 0.0091 0.0087 0.0090 0.0095
MLE was obtained by the program in Smith (30). The size of ef- MLE, maximum likehihood estimate.
fective iteration is 10,000.
Estimaton of The estimators of in the study are the MLE, Test of . From the above results, it looks better to use the two

the unbiased moment estimator 4, and the two conditional MLEs conditional MLEs of for marginal LRT forof. Then the test

based on the normal approximation to the marginal distribution procedures for t in the present study consist ofthe usual LRT,

of t, say 4N, and the 0-binomial approximation, say 4)B. In our squared t-test, which is derived by method ofmoments,

simulations, the cases where estimates of were indeterminate and the two marginal LRTs based on the normal, sayTBT, and

or took the value 1 occurred rarely, and they were not counted in the binomiall approximation of t, sayTmi . The parameter

effective iteration. When an estimate took a negative value, it as valuesofr(eh are same as in the situation for the estimation of

regarded to take zero. For each estimator, we calculated the me- nr. For each test procedure, empirical significant levels for the

dian bias, which is defined by the median deviation from the true nominal s and 1 % levels are examined.

value, and the MSE. The median bias is used because it is hardly The results are given in Tables 3 and 4, showing that the usual

influenced by the non-negative constraint to estimates. LRT statistical significance when is larger than

The results are shown in Tables 1 and 2. Noteworthy findings 0.04. The squared t-test overstates all the parameter values and

in Table 1 are that the median biases of the two conditional MLEs has stable empirical levels when r is large. The approximations

are about half those of the MLEs. The unbiased moment by the normal distribution and the (-binomial distribution to the
estimator decreases by 1 when w is large. Table 2 indicates that marginal distribution of t have resulted in the similar perfor-
the MSEs of the four estimators are comparable to each other. mance for the estimation of 4), but T, shows differences from
Summarizing results of the simulations, we conclude that the TmB. The empirical levels of Tuare unstable, and their range is
conditional MLEs perform the best, and the unbiased moment wider than that of the usual LRT.
estimator is superior to the MLE. On the other hand, TB has smaller empirical levels than

'ON OB 4'
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the usual LRT for all the parameter values. The understatement Table 4. Empirical significance levels of tests for
of Tm8 can be improved by using the chi-square distribution in the parameter wwith 1% nominal level
place of the F distribution to yield the critical values when an (litter size = 10, number of animals = 20, number of iterations = 10,000).
estimate X is 0. In the right-hand columns of Tables 3 and 4, w 4 LRT t2-Test TmN TmB TmB
modified empirical levels are given. The improvement in the X2 F F F X2+F
case of small 4 looks satisfactory. Such a modification is sup- 0.05 0.01 1.24 2.47 2.42 0.50 1.12
ported by the fact that when 4 = 0, the (-binomial distribution 0.02 1.56 2.80 2.79 0.51 1.35
becomes the binomial distribution so that the chi-square test is 0.04 2.19 3.78 3.76 0.77 1.85

^ ... . .... ~~~~0.08 2.99 5.02 5.01 1.42 2.69more appropriate when) = 0. Recall that a negative estimate 0.16 5.29 8.09 8.08 2.80 4.83
4 is changed to zero.

Test of 4. The test for the hypothesis 4 = 4)o(> 0) is per- 0.2 0.01 0.80 1.02 0.64 0.40 0.74
formed by the two conditional LRTs based on the normal, say 0.02 0.99 1.33 0.85 0.52 0.91formeand bthe twoconditioal LT sbppromas on t0.04 1.08 1.35 1.10 0.62 0.90T(N, and the (3-binomial, say 77CB, approximation to the marginal 0.08 1.32 1.64 1.50 0.87 1.02
distribution of t in comparison to the usual LRT. The fixed 0.16 1.43 1.98 2.02 1.22 1.25
parameters of (7r,4O) are also same as the simulation for the> . . . . . . ~~~~~0.4 0.01 0.81 1.16 0.55 0.44 0.74estimation of v. For the three LRT procedures, empirical 0.02 0.92 1.07 0.64 0.57 0.80
significant levels for the nominal 5 and 1 % levels are examined, 0.04 1.19 1.16 0.88 0.70 0.93
which are summarized in Tables 5 and 6. These results show that 0.08 1.04 0.88 0.89 0.67 0.78
in the small 4o cases the empirical levels of the conditional 0.16 1.31 1.19 1.31 1.01 1.04
LRTs are about half of the nominal levels. It is our under- 0.2 1.37 1.28 1.34 1.08 1.08
standing that this phenomenon is due to the constraint that 4 is 0.25 1.18 1.18 1.26 0.96 0.96
non-negative. Therefore, we should conduct the one-sided test 0.3 1.21 1.18 1.32 0.96 0.96
against the alternative 4 > 4)o-is small, which means that we 0.35 1.17 1.19 1.35 0.97 0.97
might compare each of the empirical levels to half of the cor- 0.4 1.18 1.17 1.36 0.88 0.88
responding nominal level. LRT, likelihood ratio test.
Note that the one-sided U test can be produced by the signed

LRT (31) as
Table 5. Empirical significance levels of tests for

the parameter 4 with 5% nominal level
(litter size = 10, number ofanimals = 20, number of iterations = 10,000).

or LRT
and it is applicable even when 4o = 0. Empirical significant 0.05 0.00 (3.43)8
levels given by the one-sided U test of above the three test are 0.01 1.25 (2.92)

given in Tables 5 and 6. the signed LRT against the one-sided 0.02 1.27 (2.58)
0.04 1.61 (2.84)
0.08 3.65
0.16 5.56Table 3. Empirical significance levels of tests for

the parameter r with 5% nominal level
(litter size = 10, number ofanimals = 20, number ofiterations = 10,000).

r 4) LRT t2-Test TmN Tm8 TmB
x2 F F F x2+F

0.05 0.01 4.23
0.02 4.74
0.04 5.61
0.08 6.54
0.16 8,37

0.2 0.01 4.43
0.02 4.81
0.04 5.14
0.08 5.71
0.16 5.82

0.4 0.01 4.72
0.02 5.01
0.04 5.68
0.16 6.10

0.2 5.88
0.25 5.69
0.3 5.92
0.35 5.61
0.4 5.63

LRT, likelihood ratio rest.

5.99 6.72 3.44
6.29 7.39 3.88
7.92 9.54 4.71
9.03 11.03 5.59
12.07 13.63 7.20

5.45 3.72 3.20
5.35 4.08 3.68
5.48 4.74 4.20
5.81 5.72 4.86
6.65 6.84 5.22

5.20 3.94 3.37
5.32 4.36 3.74
5.37 5.03 4.54
5.50 5.81 5.17

5.13 5.42 4.81
5.02 5.63 4.72
5.34 5.83 4.88
5.05 5.63 4.69
5.35 5.96 4.83

4.03

4.39

5.01

5.67

7.21

4.13
4.36
A CC<

0.2 0.00 (3.16)
0.01 1.51 (3.10)
0.02 1.43 (3.15)
0.04 2.14 (3.15)
0.08 5.28
0.16 5.86

0.4 0.00 (3.18)
0.01 1.57 (3.20)
0.02 1.30 (3.18)
0.04 2.04 (3.10)
0.08 5.77
0.16 5.86

TCN TB
(3.82) (3.90)

2.29 (4.23) 2.31 (4.23)
2.27 (4.62) 2.27 (4.62)
2.67 (4.75) 2.75 (4.75)
4.68 4.68
7.63 7.73

(4.19) (4.20)
2.13 (4.04) 2.13 (4.04)
2.07 (4.23) 2.08 (4.25)
2.47 (4.30) 2.48 (4.33)
4.87 4.86
6.14 6.17

(4.54) (4.55)
2.12 (4.23) 2.13 (4.24)
1.90 (4.37) 1.90 (4.37)
2.12 (4.09) 2.14 (4.11)
5.07 5.05
5.26 5.25

4.63 0.2 6.08 5.43 5.43

5.12 0.25 6.04 5.64 5.63

5.26 0.3 6.07 5.65 5.64

4.19
0.35 6.30 5.97 5.96

4.46
0.4 6.40 6.14 6.12

5.02 LRT, likelihood ratio test.

5.20 'Values in parentheses were obtained using a one-sided test.

4.72 alternative leads to better accuracy of empirical levels for the
4.88 two conditional LRTs than the usual LRT.
4.69 In conclusion, the simulation study has shown that separate
4.83 likelihood inference has the ability to innovate in statistical in-

ference ofthe parameters (T,O) in the B-binomial distribution.

Uc = jign(q - o)/Tc
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Table i Empirical significance levels of tests for
the parameter 0 with 1% nominal level

(litter size = 10, number of animals = 20, number of iterations = 10,M00).

X X LRT TIN TCB
0.05 0.00 (0.52)' (1.04) (1.04)

0.01 0.22 (0.48) 0.43 (0.90) 0.43 (0.90)
0.02 0.30 (0.60) 0.61 (0.94) 0.61 (0.94)
0.04 0.31 (0.63) 0.67 (1.31) 0.67 (1.31)
0.08 0.23 0.70 0.70
0.16 0.54 1.07 1.07

0.2 0.00 (0.57) (0.84) (0.84)
0.01 0.17 (0.52) 0.30 (0.96) 0.30 (0.97)
0.02 0.18 (0.53) 0.40 (0.70) 0.40 (0.70)
0.04 0.28 (0.63) 0.48 (0.86) 0.50 (0.86)
0.08 0.46 0.54 0.54
0.16 1.33 1.36 1.37

0.4 0.00 (0.58) (0.86) (0.86)
0.01 0.24 (0.49) 0.38 (0.77) 0.38 (0.77)
0.02 0.23 (0.52) 0.36 (0.78) 0.36 (0.78)
0.04 0.28 (0.53) 0.37 (0.72) 0.37 (0.72)
0.08 0.69 0.65 0.65
0.16 1.55 1.34 1.34

0.2 1.45 1.30 1.30
0.25 1.53 1.39 1.40
0.3 1.37 1.40 1.39
0.35 1.37 1.31 1.29
0.4 1.46 1.34 1.35

LRT, likelihood ratio test.
aValues in parentheses were obtained using a one-sided test.

Further Problems
In this paper we do not consider the heterogeneous litter-size

case, two-sample problems, and the regression analysis. Notice
that the inference procedures proposed above are derived from
separation ofthe likelihood. We expect that this principle can be
applied to these statistical problems successfully. For example,
in two-sample problems, the estimation ofa common 4 may be
conducted by maximizing the conditional likelihood

Pim(t, *1,' )P2(Yt, #2,0)
Pim(tl 7 l 1)P2m(t2) '2 i0)

where t1== Xi, t2 = E y,, f#= X /n,, f2= 5FM/f2, and the
marginal distributions of t, and t2 are adjusted to (B-binomial
distributions, respectively. The t-test for the difference between
two incidence rates with a common dispersion may be con-
structed by the signed marginal LRT

21PM(ti X *1 XMP2m(t2 X *-2 Xv
sgn(i - 9) n

dgn(Xy'v Plm(t)
'

*a O)P2m(t2l a ¢)

where WC = (mif#I + m2z2)/(m, + m2) and + is the above condi-
tional MLE. For regression problems, the construction of

inference procedures for regression coefficients looks more dif-
ficult but is worth future study.

The authors thank Byung Soo Kim and Barry H. Margolin for their helpful
comments.
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