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The ability of extracts of urban air and vehicle exhaust particulates to bind to the dioxin receptor has been determined. It was shown that such
extracts do contain significant amounts of dioxin-receptor binding activity. The level of dioxin-receptor binding found in ambient air reflects its pollu-
tion level as determined by mutagenic activity. Furthermore, it was shown that the extracts of both urban air and vehicle exhaust particulates could
provoke the induction of cytochrome P4501A1 in cultured rat hepatoma cells. Chemical fractionation of the extracts revealed that the majority of the
dioxin-receptor binding activity from urban air and gasoline vehicle samples fractionated with the polycyclic aromatic compounds. However,
unknown polycyclic aromatic compounds were responsible for the majority of the binding activity measured. In the case of diesel vehicle exhausts,
the majority of the dioxin-receptor binding activity was found to be associated with nitro-polycyclic aromatic compounds. Studies with a variety of
diesel fuels showed that the amount of dioxin-receptor ligands present in exhaust emissions are fuel-dependent and that substantial amounts of
dioxin-receptor ligands are present in the semivolatile phase of exhaust emissions. - Environ Health Perspect 102(Suppl 4):111-116 (1994).
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Introduction
Bound to particles found in urban air is a

highly complex mixture of organic com-

pounds, many of which are produced dur-
ing the incomplete combustion of organic
matter such as from the burning of fossil
fuels and from motor vehicle exhausts. The
adverse health effects of these compounds is
known only partly.

In man and other mammals, metabolism
of these compounds in the tissues can have
one of two effects. On one hand, metabo-
lism may lead to products that are relatively
nontoxic and are cleared from the body
rapidly. On the other hand, even though it
may represent a minor metabolic pathway for
the compounds in question, many of these
compounds are metabolized to a more chem-
ically reactive species capable of reacting with
cellular macromolecules such as DNA (e.g.,
the metabolism of benzo[a]pyrene to

benzo[a]pyrene-7,8-diol-9, 10-epoxide) (1).
Such metabolic activation is a key step in the
sequence of events leading to genotoxicity
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and carcinogenicity (2). With regard to
polycyclic aromatic compounds (PACs), two
cytochrome P450 isozymes, P450IA1 and
P450IA2 (3), preferentially catalyze this acti-
vation, and their activity generally is known
as aryl hydrocarbon hydroxylase (AHH) (4).
One of the most commonly studied effects

of the PACs is their ability to induce AHH
(4,5). Thus, these compounds are capable of
inducing their own metabolism as well as that
of related compounds. Although this induc-
tion can lead to increased toxicity such as the
increased formation of benzo[a]pyrene
adducts, the effects ofAHH induction on
PAC toxicity are complex, depending upon
the PAC in question and its route of adminis-
tration, bioavailability and target organ.
Thus, induction ofAHH, per se, may play a
role in the mechanism of toxicity and carcino-
genicity of the nonhalogenated PACs that are
metabolized extensively by this monooxyge-
nase system to chemically reactive species
capable ofbinding to cellular macromolecules.

Studies have shown thatAHH induction is
due to an increased rate of transcription of the
cytochrome P450 gene(s) in question (6-8).
It is believed that the PACs elicit these effects
through initial binding to the receptor protein
that specifically binds the environmental cont-
aminant 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD), the dioxin receptor (otherwise
termed the Ah receptor) (6,7,9-12). The
binding of PAC or TCDD to the dioxin
receptor results in a ligand-dependent trans-
formation of the receptor to an activated
receptor-ligand complex that translocates to
the cell nucleus. In that position, it subse-
quently interacts with specific nudear compo-

nents to affect transcriptional regulation of tar-
get genes (6,7,9,11,12), induding cytochrome
P450IA1. Induction ofAHH correlates well
with the inducers affinity for the dioxin recep-
tor, both in vivo and in vitro (9,13-15).
The highly toxic halogenated PACs such

as chlorinated dibenzo-p-dioxins and diben-
zofurans only are metabolized slowly to rela-
tively nontoxic metabolites, which are rapid-
ly cleared from the body (9). Many of the
parent compounds, however, share a com-
mon characteristic spectrum of toxic effects
including thymic involution, teratogenesis
(e.g., cleft-palate formation), tumor promo-
tion, and the stimulation of epidermal cell
proliferation and differentiation, leading to
chloracne in humans (9). A number of
nonhalogenated PACs also have been shown
to produce some of these toxic effects in
model systems (16-19). Importantly, it is
apparent that these toxic effects of the halo-
genated and nonhalogenated PACs are diox-
in-receptor mediated. Thus, it is evident
that the determination of a compound's
dioxin-receptor binding affinity and its abili-
ty to induce activation of the receptor to its
DNA-binding state, allowing it to regulate
target genes, would provide a measure of its
potential for eliciting the toxic effects associ-
ated with this large group of compounds.

Methods
During the Swedish Urban Air Project, we
determined the ability of various sample
extracts to bind to the dioxin receptor. The
dioxin-receptor binding affinities of samples
were measured using an hydroxylapatite
assay developed in our laboratory (20) and
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emissions. Therefore, extracts were made of
vehicle exhaust particulate matter and
assayed for the presence of dioxin-receptor
ligands. As illustrated in Figure 2, more

dioxin-receptor binding activity was emit-
ted per driving distance from the diesel-
fueled car (IC50; 0.002 m/ml) than from
the gasoline-driven car (IC50; 0.030 m/ml)
(23). However, a number of factors play
significant roles in the magnitude of dioxin-
receptor binding competition displayed by
vehicle exhaust including vehicle type and
fuel composition. This presumably results
from the effect these factors have on the
PAC content of the emissions (24).
Indeed, IC50 values as low as 0.005 m dri-
ving distance/ml (Figure 2) have been
obtained from emission particulate extracts

from gasoline driven vehicles (R. Tofgard,
Diesel Car personal communication).

Figure 1. Dioxin-receptor binding affinities of extracts
of urban air particulates collected at three different
sites by high volume samplers (21).

are described in full elsewhere (21). Relative
binding affinities are expressed as IC50, the
amount of sample required to reduce the
specific binding of a standard amount of
3H]TCDD (1 pmole/ml) to its receptor

by 50%. The ability of partide extracts to

induce AHH in the cell line H4IIE in vitro
was determined as described by Franzen et al.
(22). Sample extracts were prepared and their
PAC content was analyzed as noted in later ref-
erences. Particulate material was collected
over 24-hr periods from inner-city, subur-
ban, and rural air using high-volume filter
samplers situated at roof top level (21).
Particulate emissions from gasoline- and
diesel-fueled vehicles were collected (23).

Results
Presence ofDioxin-receptor
Iigands in Urban Air

Extracts of ambient air particulate samples
were shown to contain components which
bound to the dioxin receptor (21) (Figure
1). The much lower IC50 (0.1 m3/ml) of
inner-city air indicates that it elicits signifi-
cantly higher dioxin-receptor binding com-

petition per m3 air than rural air (IC50;
7.8 m3/ml). The IC 50 of a sample taken at

a suburban site was approximately twice
that of the inner-city sample (0. 19 m3/ml),
reflecting a decreased presence of dioxin-
receptor binding activity. There appeared
to be agreement between the dioxin-recep-
tor binding competition determined for
each site and the pollution level as deter-
mined by measuring direct mutagenic effects
of the same samples by Ames test (21).

Figure 2. Dioxin-receptor binding affinities of exhaust
particulate extracts from a gasoline and a diesel-fueled
car [(23); unpublished material].

The amounts of 26 known PACs present

in some urban air particulate extracts were

determined. Assuming that all analyzed
PACs present at concentrations .0.1 ng/m3
had the same receptor binding affinity as

benzo[a]pyrene, between 1 and 30% of the
observed binding could be accounted for
(21). This is a conservative estimate based
on the fact that only two of the 16 PACs pre-

sent for which receptor binding affinity data
is available have binding affinities greater

than benzo[a]pyrene. Any significant contri-
bution to the observed binding activity due
to TCDD or tetrachlorodibenzofuran was

ruled out because these compounds are below
the detection limit of2 pg/m3.

Presence ofDioxin-receptor Linds in
Vehide Exhaust Emisions

A substantial amount of the particulate mat-

ter in city air comes from vehicle exhaust

Dioxin-receptor-mediated
Biological Activity ofUrban Air
Particulate racts

Having demonstrated the presence of dioxin-
receptor ligands in association with urban
air particulate material, it was important to

know whether these ligands could elicit bio-
logical effects. Therefore, the ability of par-

ticle extracts to induce the enzyme system
AHH in the rat hepatoma cell line H4IIE
was investigated. H4IIE cells were treated
with extracts of particulate matter from
urban air, vehicle exhaust, and pure com-

pounds known to be present in such
extracts (22). The results obtained are

given in Table 1.
AHH activity in the H4IIE cell line

could be induced by extracts of particles
collected from urban air and automobile
exhausts in a dose-dependent manner.

Furthermore, AHH activity was induced
by five individual PACs, including 1-/3-
nitrobenzo[a]pyrene and 6-chlorochrysene,
present in the sample extracts. With the

Table 1. Induction of aryl hydrocarbon hydroxylase (AHH) activity compared with competition for dioxin receptor
binding by pure substances, extracts of vehicle exhaust particulate matter, and urban air particulate matter (22).

Compound/sample AHH induction (EC50 ) b Dioxin receptor (IC50) c

5,6-Benzoflavone 45 nM 26 nM d
Dibenz[a,h]anthracene 62 nM 6 nM
6-Chlorocrysene 96 nM 14 nM
1-/3-nitrobenzo[alpyrene (1:2) 220 nM 2 nM
Benzo[a]pyrene 600 nM 42 nM
Benz[a]anthracene 720 nM 60 nM
Gasoline car exhaust 0.01 m/mI e 0.03 m/mI e
Ambient air 1 25 pg/ml f6 pg/ml f
Ambient air 2 9 17 pg/ml f 4 pg/ml f

aData taken from Franz6n et al. (22). bThe EC50 is the concentration of compound or sample giving 50% of the
maximum AHH activity. CThe IC50 is the concentration of competitor that competes for 50% of the specific binding
of [3HI TCDD. dData taken from Greibrokk et al. (32). eConcentration of tested particulate extract corresponding
to meter driving distance per milliliter cytosol. fMicrogram of extracted particulate matter per milliliter cytosol.
9Represents a second 24-hr sample taken at a similar site to sample 1 (22).
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Figure 3. Dioxin-receptor binding activities of fractionated particulate extracts filtered from (A), urban air; (B),
exhaust, expressed as the percent total activity over all the fractions (23,25,26).

exception of the nitro-PAC, there was a

high overall rank correlation between
induction ofAHH by the pure PACs and
particle extracts and their receptor binding
affinities (r = 0.85). These and further
data from the use of specific inhibitors of
cytochrome P450s, analysis of mRNA lev-
els, and immunoblotting (22) indicate that
substances present in extracts of urban air
particulates can interact with the dioxin
receptor in cells and cause an accumulation
of cytochrome P450IA1 mRNA leading to

an increase in enzyme activity.
Thus it has been shown that compounds

associated with urban air or vehicle exhaust
particulate matter not only demonstrate
dioxin-receptor binding but also can elicit a

subsequent biological response in intact cells.

Fractonation ofParticulate Extracts

It had been estimated that only 1 to 30% of
the dioxin-receptor binding competition
activity of an urban air particulate extract

theoretically could be attributed to known
PAC determined in the sample (21). In
order to understand which compounds pre-
sent in particulate extracts contribute to the
measured receptor binding activity, particu-
late extracts from urban air as well as diesel
and gasoline exhaust emissions were frac-
tionated on the basis of increasing polarity
into five fractions, I to V (23,25,26). The
dioxin-receptor binding activity of the frac-
tions (Figure 3) was determined in addition
to their chemical composition. The five frac-

tions collected were fraction I, light aliphatic
hydrocarbons; fraction II, heavy aliphatic
hydrocarbons and PAC; fraction III,
nitro-PAC; fraction IV, dinitro-PAC and
quinones; and fraction V, polar material.

Dioxin-receptor binding activity was

elicited by all the fractions of the urban air
particulate extract. The highest dioxin-
receptor binding activity was associated
with fraction II, which contains the majori-
ty of PACs, members of which are pre-

sumed to be responsible for the observed
receptor binding. Considerable activity
also was seen in fraction IV, which con-

tains more polar dinitro- and oxygen-con-

taining PACs. However, the chemical
identity of the compounds that contribute
to the activity of this fraction is not known.
Somewhat similar results were seen for

the gasoline emission extract. The highest
dioxin-receptor binding activity was

observed again in fraction II, with some

activity also in the later fractions. If it is
assumed that the PACs determined in frac-
tion II with potential affinity for the dioxin
receptor have the same binding affinity as

benzo[a]pyrene, most of the observed
receptor binding competition in this frac-
tion can be accounted for. In contrast, the
considerable activity present in fraction III
could not be explained on the basis of
those receptor ligands such as fluorenone
derivatives determined to be present.
Possible candidates are halogenated deriva-
tives of oxygenated PAC (23).

Diesel

4D
I 11 III IV V

Fraction

gasoline-fueled vehicle exhaust; (C), diesel-fueled vehicle

In the case of the diesel emission extract,
more than 85% of the measured activity was
present in fraction III, which contains the
majority of nitro-PACs. Fraction II elicited
only approximately 10% of the determined
dioxin-receptor binding competition, the
remaining minor activity was in fraction IV.

Recently, fraction II has been subfrac-
tionated further on the basis of molecular
size. This took place in initial experiments
designed to determine more precisely
which compounds in these extracts are

responsible for the observed dioxin-recep-
tor binding competition (26). Fraction II
was divided into seven subfractions (Table
2). Although more than 90% of the PACs
detected in the subfractions was found in
fractions II-1 to II-4, the greatest dioxin-
receptor binding competition was seen in
fractions II-5 and 11-6. Although these two
fractions contain PACs that are a size
expected of good dioxin-receptor ligands
(27), it is not known whether the PACs

Table 2. Dioxin receptor affinity test IC50 (mg/ml)a
of the subfractions.

Fraction 11-1 >66
Fraction 11-2 27
Fraction 11-3 6
Fraction 11-4 1.8
Fraction 11-5 0.8
Fraction 11-6 1.1
Fraction 11-7 6.2
a IC50 values are expressed as mg/ ml of original par-
ticulate material.
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Figure 4. Effect of different fuel preparations on the
dioxin-receptor binding activities of particulate emis-
sion extracts from a diesel-fueled bus (35).

present in these fractions account for the
observed competition.

The Impact ofFuel on
Diesel Exaust Emissions
A large study to investigate the impact of
fuel on the chemical composition and bio-
logical effects of diesel exhaust emissions
has been carried out (28). As part of this
study, the ability of particulate and semi-
volatile phase exhaust emission extracts

competing for dioxin-receptor binding was

determined for eight fuels. Each fuel was

tested in two vehicle types, a bus and a

truck (28). Diesel fuel D6 represented
commercially available diesel at fuel stations
in Sweden.

Figure 4 shows the IC50 values for com-

petition obtained from particulate extracts

from burning different fuels in the bus.
The IC 50 values varied over an approximate
8-fold range. Because of large variation
about the mean, the IC50 calculated for
fuel D7 was not significantly different from
that of any other fuel. Insufficient sample
prohibited further estimations, and D7 has
been excluded from the following compar-
isons. Fuel D1 displayed the lowest com-

petition in the binding assay with the high-
est (p<0.01) IC50 of 0.24 m driving dis-
tance/ ml. Fuel D6 produced the emission
sample with the highest binding competi-
tion with the lowest IC50 of 0.04 m/ml.
This IC50 was significantly lower than
those for fuels DI, D2, D5 (p<0.01), and

Dl D2 D4 D5 DO D7 DB D9

Fuel

Figure 5. Effect of different fuel preparations on the
dioxin-receptor binding activities of particulate emis-
sion extracts from a diesel-fueled truck (35).

D8 (p<0.05), but it was not significantly
different from those of the remaining fuels.
The IC 50 values for dioxin-receptor bind-

ing competition of the particulate phase
exhaust emissions from the truck are shown
in Figure 5. It was observed that fuel D6
once again produced the emission with the
highest receptor binding affinity with an

IC50 of 0.04 m driving distance/ml. In
contrast to that seen with the bus, there
were no significant differences between any

of the fuels with regard to the receptor

binding competition IC50 of their emissions
from the truck. However, only a 2-fold
variation in IC50 values was observed in the
samples from the truck. The IC50 values for
dioxin-receptor binding competition of par-
ticulate associated emission products in this
study compare favorably with those deter-
mined in previous studies of both diesel- and
gasoline-fueled exhaust emissions.
From the data derived from the bus

experiment where there was a greater
spread in the IC50, it was observed that
there was a gross correlation between the
affinity of an exhaust sample for the dioxin
receptor and the PAC content of the sam-

ple for the original fuel sample. Fuels with
high PAC content gave rise to particulate
emissions with high PAC contents and
high dioxin-receptor binding activities and
vice versa; fuels with low PAC content gave

rise to emissions with lower PAC contents

and lower dioxin-receptor binding activi-
ties. This observation is not surprising

DI D2 D4 D5 DO D7 D8 DO

Fuel

Figure 6. Effect of different fuel preparations on the
dioxin-receptor binding activities of semivolatile emis-
sion extracts from a diesel-fueled bus (35).

because it is generally believed that com-

pounds of the PAC-type are responsible for
the binding activities. All fuel and emis-
sion data were subjected to multivariate
analysis in this study (28). This analysis
revealed that a major factor correlating
with the biological effect of emissions
(dioxin-receptor binding, Ames test) was

the PAC content of the fuel. However, it
is not certain which compounds are

responsible for the dioxin-receptor binding
activity elicited by vehicle exhaust particu-
late extracts. It is probably not because of
dibenzo-p-dioxins or related compounds
because the levels of these compounds are

too low to produce the observed receptor
binding activities (29).
The IC50 values for the dioxin-receptor

binding competition of the semivolatile
phase exhaust emissions from the bus are

shown in Figure 6. Dioxin receptor binding
activity was observed in all the samples
except that from fuel D7 (IC50>0.5 m/ ml).
Fuel D6 gave rise to the semivolatile phase
emission with the highest affinity for the
dioxin receptor with the lowest IC50 of
0.02 m/ ml. With the exception of the
sample from fuel Dl, the dioxin-receptor
binding activities of the semivolatile phase
emissions were similar or lower than those
of the corresponding particulate-phase
emissions.

This study demonstrates the presence of
significant amounts of compounds with affin-
ity for the dioxin receptor in the semivolatile
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phase of diesel exhaust emissions. This was
a surprising result because it was expected
that compounds emitted in this phase
would be of lower molecular weight and
size than good ligands to the dioxin recep-
tor. The majority of any ligand of the cor-
rect size was expected to appear in the par-
ticulate phase. It has been shown that,
characteristically, good ligands for the diox-
in receptor are planar molecules that, when
their atomic van der Waals radii are includ-
ed, fit into a rectangle of 6.8 x 13.7 A
(27). Such compounds might be expected
to have a low volatility and then would
appear to a much greater degree in the par-
ticulate phase. Indeed, the majority of
larger PACs were found in the particulate
phase, whereas the smaller 2- and 3-ringed
PACs were mainly in the semivolatile
phase. It has been suggested, based on
mathematical modeling of particle/vapor
partitioning, that possibly 20 to 60% of
TCDD in ambient air would exist in the
vapor phase (30). Indeed, it has been
reported that tetra- and pentachlorinated
dioxins and dibenzofurans pass through
glass fiber filters during urban air sampling
(31). It will be of interest to identify those
compounds present in the semivolatile
phase with affinity for the dioxin receptor.

Discussion
Extracts of particulate material collected
from urban air have been shown to contain
compounds capable of binding to the diox-
in receptor. Furthermore, these extracts
have been shown to be capable of eliciting
a receptor-mediated biological effect in cul-
tured cells, namely, the induction ofAHH
activity. Thus, it is demonstrated that
compounds present in these extracts have
the potential to elicit the dioxin-receptor
mediated effects discussed above.

It is not fully known which compounds
in these extracts are responsible for the
observed dioxin-receptor binding. Initial

studies have shown that for extracts of
ambient air particulates only 1 to 30% of
the measured dioxin-receptor binding activ-
ity could be accounted for and that perhaps
nitro-compounds do not contribute in any
major way. A number of urban air particu-
late samples were collected in the presence
of increased concentrations of reactive gases
to investigate the effect of chemical trans-
formation on dioxin-receptor binding and
mutagenicity (21). Studies had shown that
certain nitro-PACs have high affinities for
the dioxin receptor (32). However, the
presence of increased concentrations of
nitrogen dioxide, nitrous acid, nitric acid,
or ozone had no effect on the dioxin-recep-
tor binding activities determined. Thus,
although nitro-PACs are present in these
extracts, they do not appear to be the major
dioxin-receptor binding species in extracts
of urban air particulate samples.
Although most of the receptor binding

associated with the major PAC-containing
fraction in the case of a fractionated partic-
ulate extract from gasoline emissions could
be accounted for, a substantial amount of
receptor binding activity present in the
other fractions could not be accounted for.
In contrast to what is seen for ambient air
particulates, it would appear that for diesel
particulate emission extracts the large
majority of dioxin-receptor binding activity
resides with nitro-derivatives of the PAC.
A comparison of gasoline and diesel
exhaust emissions with respect to nitro-
PAC shows that the latter contains 100- to
1000-fold more of these compounds
(33,34). Moreover, a number of mono-
nitro-PACs have been shown to bind with
high affinities to the dioxin receptor (29),
and nitro-PACs have been shown to cause
induction ofAHH activity (35). This may
account for the different profiles of recep-
tor binding across the fractions for gasoline
and diesel exhaust emissions. Which of
these compounds elicits the dioxin-receptor

affinity associated with the environmental
samples is, however, primarily unknown.
Thus, more detailed fractionation studies
are required to elucidate the most potent
dioxin-receptor ligands in these extracts.
Then we would know on which com-
pounds to focus future toxicity and risk
assessment studies.
Finding substantial dioxin-receptor

binding activity in the semivolatile phase of
diesel-fueled vehicle emissions is impor-
tant. By concentrating our efforts on par-
ticulate-associated PAC and their deriva-
tives, we may be underestimating the bur-
den of these compounds in our environ-
ment grossly. It will be of interest to deter-
mine the identity of the dioxin-receptor
ligands in the semivolatile phase.
As the dioxin-receptor binding assay

gives results that can be related to a given
amount of TCDD, it is possible to express
the results obtained with complex samples
as TCDD equivalents. This method of
expressing results has been validated for use
with complex mixtures of halogenated-
PACs (36). However, as the nonhalo-
genated PACs are metabolized and cleared
from the body much more rapidly, using
TCDD equivalents probably has little rele-
vance to estimating the potential toxicity of
mixtures of these compounds. The use of a
model nonhalogenated PAC as a standard
against which to compare potencies would
be of greater relevance in this case. More
information concerning the dioxin-recep-
tor binding affinities and the toxicities of
PACs occurring in association with urban
particulate matter is required before a suit-
able prototype compound can be chosen.

In condusion, the dioxin-receptor binding
assay is a useful tool for screening samples for
potentially toxic compounds acting through
the dioxin receptor. It also compliments
other short-term toxicity tests that detect
potential toxins with differing mechanisms
of action.
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