Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1994 Dec;102(Suppl 10):45–51. doi: 10.1289/ehp.94102s1045

In vivo EPR spectroscopy of free radicals in the heart.

J L Zweier 1, P Kuppusamy 1
PMCID: PMC1566969  PMID: 7705304

Abstract

Electron paramagnetic resonance (EPR) spectroscopy can be applied to directly measure free radicals; however, it has not been possible to measure important biologic radicals in situ because conventional spectrometer designs are not suitable for the performance of measurements on large aqueous structures such as whole organs or tissues. We describe the design, construction, and application of instrumentation developed in an effort to obtain optimum performance in measuring free radicals in intact biologic organs or tissues. This spectrometer consists of a 1- to 2-GHz microwave bridge with the source locked to the resonant frequency of a specially designed recessed gap, loop-gap resonator. The principles of resonator design and construction are analyzed and described. Using this spectrometer radical concentrations as low as 0.4 microM in aqueous solutions could be measured. Studies of isolated beating hearts involving simultaneous real time measurements of free radicals and cardiac contractile function are performed. This in vivo EPR technique is applied to study the kinetics of free radical uptake and metabolism in normally perfused and globally ischemic hearts. In addition, it is demonstrated that this technique can be used to noninvasively measure tissue oxygen consumption. Thus, low frequency EPR spectroscopy offers great promise in the study of in vivo free radical generation and the effects of this radical generation on whole biologic tissues.

Full text

PDF
48

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Kobayashi K., Neely J. R. Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res. 1979 Feb;44(2):166–175. doi: 10.1161/01.res.44.2.166. [DOI] [PubMed] [Google Scholar]
  2. Samuni A., Carmichael A. J., Russo A., Mitchell J. B., Riesz P. On the spin trapping and ESR detection of oxygen-derived radicals generated inside cells. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7593–7597. doi: 10.1073/pnas.83.20.7593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Zweier J. L., Flaherty J. T., Weisfeldt M. L. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1404–1407. doi: 10.1073/pnas.84.5.1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Zweier J. L., Jacobus W. E. Substrate-induced alterations of high energy phosphate metabolism and contractile function in the perfused heart. J Biol Chem. 1987 Jun 15;262(17):8015–8021. [PubMed] [Google Scholar]
  5. Zweier J. L., Kuppusamy P. Electron paramagnetic resonance measurements of free radicals in the intact beating heart: a technique for detection and characterization of free radicals in whole biological tissues. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5703–5707. doi: 10.1073/pnas.85.15.5703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Zweier J. L. Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem. 1988 Jan 25;263(3):1353–1357. [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES