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Hemopoietic Stem Cells: Stochastic
Differentiation and Humoral Control of
Proliferation

by Makio Ogawa*

The central feature of hemopoiesis is life-long, stable cell renewal. This process is supported by hemopoietic
stem cells which, in the steady state, appear to be dormant in cell cycling. The entry into cell cycle of the
dormant stem cells may be promoted by such factors as interleukin-1, interleukin-6 (IL-6), and granulocyte
colony-stimulating factor (G-CSF). Once the stem cells leave G, and begin proliferation, the subsequent process
is characterized by continued proliferation and differentiation. While several models of stem cell differenti-
ation have been proposed, micromanipulation studies of individual progenitors suggest that the commitment
of multipotential progenitors to single lineages is a random (stochastic) process. The proliferation of early
hemopoietic progenitors requires the presence of interleukin-3 (IL-3), and the intermediate process appears
to be supported by granulocyte/macrophage colony-stimulating factor (GM-CSF). Once the progenitors are
committed to individual lineages, the subsequent maturation process appears to be supported by late-acting,
lineage-specific factors such as erythropoietin and G-CSF. Synthesis of a hemopoietic factor may take place
in different cell types and is regulated by multiple factors. The physiological regulator of erythropoiesis is
erythropoietin, which, by a feedback mechanism, provides fine control of erythrocyte production. Feedback
mechanisms for leukocyte production have not been identified. It is possible that there is no feedback regu-
lator of leukopoiesis. In this model, leukocyte production in the steady state is maintained at a genetically
determined level. When an infection occurs, the bacterial lipopolysaccharides may augment the production
of interleukin 1« and 8, tumor necrosis factor, macrophage colony-stimulating factor, etc. These factors cir-
culate and stimulate the production in the marrow of G-CSF, GM-CSF, IL-3, IL-6, etc., with resultant leu-
kocytosis. Once the infection subsides, the production of the factors and leukopoiesis return to the steady-
state levels.

nificant elucidation of the mechanisms of hemopoiesis. In
addition, these assays allowed identification of several
types of hemopoietic factors. Recent clinical trials indicate
that some of the recombinant proteins promise to be ef-

Introduction

The central feature of the hemopoietic system is its con-
tinuous process of cell turnover. It is estimated that ap-

proximately 200 billion erythrocytes (1) and 60 billion neu-
trophilic leukocytes (2) are produced and destroyed daily
in a man weighing 70 kg. This life-long cell renewal pro-
cess is supported by stem cells that possess the ability to
self-renew and to produce progenitors that are commit-
ted to differentiation in single lineages. The mechanisms
regulating stem cell functions have intrigued not only
hematologists but also biologists interested in cellular
differentiation and have been the object of active inves-
tigations and model building. During the last three de-
cades, studies using functional assays for hemopoietic pro-
genitors, i.e., the in vivo spleen colony assay for murine
stem cells (3) and clonal cell culture assays for progenitors
at various stages of development (4), have resulted in sig-
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fective in the treatment with patients with hemopoietic
disorders. In this review, I will summarize first the cur-
rent understanding of the stem cell kinetics and differen-
tiation and second the mechanisms of the hemopoietic fac-
tors regulating the dynamics of cell turnover.

Progenitors

General Consideration

Available evidence suggests that at a given time,
hemopoietic cells occupying the entire hemopoietic tissue
may be supplied by a small number of stem cell clones.
Mulligan and his associates (5,6) reconstituted the hemo-
poietic system of mice by transferring a retrovirally la-
beled clone of stem cells, thereby demonstrating that the
descendants of a single stem cell can generate enough
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cells to occupy the entire lympho-hemopoietic system.
Follow-up studies of such animals indicated that hemopoi-
esis may be supported by sequential activation of different
stem cell clones (6). This clonal succession of hemopoietic
stem cells in vivo had also been evinced by Mintz et al.
(7) who injected suspensions of liver cells from 13-day
mouse fetuses into the placental circulation of W/W or
WYW' mice and obtained mice whose hemopoiesis was
supported by more than one lone of stem cells. Serial ob-
servations of the erythrocyte types up to 60 weeks after
transplantation revealed a complementary rise and fall in
the proportion of the cells of different genotypes. These
observations clearly demonstrated major proliferative
potentials of a single stem cell and the exponential in-
crease in the incidences of the progenitors as they pro-
gress through the developmental process.

Cell-Cycle Dormancy of Stem Cells

It is generally held that in the steady state, most
hemopoietic stem cells are not engaged in active prolifer-
ation. Experimental evidence for this concept has been
provided by investigators in several laboratories. Becker
et al. (8) demonstrated that short-term exposure to
3H-thymidine with high specific activity does not kill
colony-forming units in spleen (CF'U-S). Similarly, multi-
lineage colony formation in culture was not affected by the
brief exposure to *H-thymidine with high specific activ-
ity (9). Hodgson and Bradley (10) reported that high-dose
5-fluorouracil (5-FU), which preferentially kills cells in the
cell cycle, does not affect cells that form late-appearing
spleen colonies termed pre-CFU-S. In our laboratory, se-
quential observations of the growth of individual mul-
tipotential progenitors in culture also suggested that most
primitive multipotential progenitors are dormant in cell
proliferation (11). The concept of a true resting state was
originally proposed by Lajtha (12) and was based on
studies of liver cell regeneration. He envisioned that this
state is metabolically distinct from the other phases of the
cell cycle, and coined the term Go state. Lajtha proposed
that hemopoietic stem cells are in Go since cell-cycle dor-
mancy confers the stem cells time to repair DNA dam-
age and thus allows maintenance of the genetic integrity
of the stem cell populations (13). The mechanisms that ini-
tiate the cell division of the stem cells are not known. Laj-
tha proposed that this is a random process (13). As will
be discussed later in this review, there is evidence that
interleukin-1, interleukin-6, and granulocyte colony-
stimulating factors appear to shorten the Go period and
may induce the stem cells to begin active proliferation. It
is possible that these factors, like the other hemopoietic
factors, act as survival and/or growth factors on the most
primitive hemopoietic stem cells and that the survival of
stem cells and the duration of G, state may depend on the
ambient levels of these factors.

Self-Renewal of Stem Cells

When a stem cell divides, its progeny can self-renew or
differentiate. Following the development of the spleen

colony assay, Till and his associates (14) transplanted
single-cell suspensions of individual spleen colonies into
secondary recipient mice and observed a very heter-
ogeneous distribution of the incidences of CFU-S in in-
dividual spleen colonies. The frequency distribution could
not be fitted by a Poisson distribution but could be ap-
proximated by a y distribution (14). Simultaneously, they
carried out a computer simulation of a birth and death
model in which they envisioned that self-renewal of CF U-
S is a birth process and that loss of colony-forming abil-
ity associated with differentiation is a death process. This
simulation of the model based on generation of random
numbers also resulted in a y distribution of CFU-S inci-
dences. Based on these data, they proposed that self-
renewal or differentiation is a stochastic (random) process.

In our laboratory, we analyzed distributions of colony-
forming cells for blast cell colonies and those of multiline-
age colonies by replating individual blast cell colonies. We
assumed that the blast cell colony formation and mul-
tilineage colony formation represent the culture equiva-
lent of the birth and death processes, respectively (15).
The frequency distributions of the secondary blast cell
colonies and multilineage colonies could be approximated
by variates of y distributions. Therefore, the studies in
viwo and in culture mutually corroborated and were con-
sistent with the concept that self-renewal and commit-
ment to differentiation of an individual stem cell is a
stochastic process.

We also carried out serial observations (mapping) of the
development multi-potential blast cell colonies (11) from
spleen cells of 5-F U-treated mice (10). Blast cell colonies
emerged after variable lag times and once identified,
grew with relatively fixed cell doubling times and devel-
oped into multilineage colonies. These observations were
consistent with the notion that in the steady-state the dor-
mant stem cells enter cell-cycle randomly and that once
committed to differentiation, their progeny proliferate at
a relatively constant cell doubling time.

Differentiation of Stem Cells

Several models for stem cell differentiation have been
proposed (16). Two deterministic models propose that ex-
ternal factors instruct individual stem cells regarding
their directions of differentiation. The hemopoietic induc-
tive microenvironment (HIM) model of Trentin and his as-
sociates (17,18) features small anatomical niches that are
specific for individual lineages and determine the commit-
ment of stem cells. The stem cell competition model envi-
sions control of stem cell differentiation by lineage-specific
humoral factors. For example, VanZant and Goldwasser
(19,20) proposed that exposure of a stem cell in a certain
cell cycle phase to erythropoietin or colony-stimulating
factors determines the commitment to the erythroid or
granulocytic lineage. In addition, a model of predeter-
mined, sequential loss of lineage potentials has been pro-
posed (21). As discussed previously in our review (16),
specific criticisms may be raised against the data support-
ing these models. Most importantly, these models are
based on studies of populations of colony-forming cells
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rather than on individual progenitors. Identification of
murine blast cell colonies with high replating efficiencies
(22) provided us with a unique opportunity to micro-
manipulate single progenitors and study differentiation
potentials of single stem cells.

When we carried out cytological analysis of multiline-
age colonies that were derived from single progenitor
cells and were cultured under identical conditions, we ob-
served varying lineage combinations expressed in in-
dividual colonies (23). Subsequently, studies of paired pro-
genitors revealed heterologous pairs of single and
multilineage colonies expressing diverse lineage com-
binations (24). These results were consistent with the con-
cept that the lineage selection by the progenitors at the
time of cell division is a random process. Sequential
manipulation of paired progenitors and analysis of the
differentials of colonies derived from these progenitors in-
dicated that the apparent random commitment takes
place sequentially during stem cell differentiation (25).
Analysis of single and paired human progenitors also re-
vealed similar results and were consistent with the notion
that the principle of human stem cell differentiation is a
random restriction in the types and number of lineage
potentials (26,27).

In the analysis of human multilineage colonies of single
cell origin, we observed that individual lineages were rep-
resented by a variable number of cells. For example, a
mixed colony consisted of 1340 erythrocytes and 4 eosi-
nophilic leukocytes (26). This observation suggested that
the number of times that a progenitor divides after com-
mitment to a single lineage is variable. This observation
is also in agreement with earlier observations in replat-
ing analysis of single lineage colonies. Investigators had
observed variable replating efficiencies and heterogene-
ous size distributions of secondary colonies. For example,
Wu (28) reported that the cumulative frequency distribu-
tion of the numbers of secondary T-lymphocyte colonies
per primary T-lymphocyte colony could be approximated
by a y distribution. Analysis of the size of secondary mast
cell colonies and computer simulation of a modification of
the birth and death model of Till et al. (14) also suggested
that mast cell proliferation in culture is a stochastic pro-
cess (29). Together these data are consistent with the no-
tion that both differentiation and proliferation of
hemopoietic progenitors are separate stochastic pro-
cesses.

Humoral Factors

General Considerations

While differentiation may be a stochastic process,
proliferation and survival of progenitors appear to be un-
der the control of humoral factors. Recently, a number of
hemopoietic factors have been identified, purified, and
molecularly cloned. The major hemopoietic factors include
erythropoietin (Ep) (30-32), a physiological regulator of
erythropoiesis; granulocyte/macrophage colony-
stimulating factor (GM-CSF) (33-36); granulocyte (G)}-CSF
(87-39); interleukin-3 (IL-3) (40-48); and macro-

phage/monocyte (M)-CSF (44-46). Except for Ep, the
physiological roles of these factors have not yet been
clearly established. However, recent clinical trials of some
of the factors indicate that they may possess significant
therapeutic potential in the treatment of some of the
hemopoietic disorders. Readers are referred to recent
reviews (4 7-49) for detailed information on the biosynthe-
sis, biochemistry and molecular biology of these proteins.

G-CSF was initially identified as a differentiation-
inducing factor for leukemic cell lines (37). Some investi-
gators have proposed that hemopoietic factors induce
differentiation of progenitors in normal hemopoiesis. As
reviewed earlier, our micromanipulation studies of
differentiation of single and paired progenitors suggested
that stem cell differentiation is not a directed process. The
primary function of the humoral factors is to support the
survival and/or proliferation of hemopoietic progenitors.
In this model, the apparent induction of differentiation is
a mere reflection of survival/proliferation of a population
of progenitors that are supported by a humoral factor and
the death of populations of progenitors that are not sup-
ported by the factor. Based on these concepts, I have sum-
marized the recent evidence on the targets of the in-
dividual hemopoietic progenitors. The factors are
arbitrarily divided into late-acting, lineage-specific factors,
early-acting, lineage-nonspecific factors and those affect-
ing dormant stem cells. The proliferative kinetics of the
stem cells and the targets of the major hemopoietic fac-
tors are schematically presented in Figure 1.

Late-Acting, Lineage-Specific Factors

Ep is a physiological regulator of erythropoiesis and is
secreted by the kidney. The recombinant protein has been
given to patients with chronic renal failure and intracta-
ble anemia with remarkable therapeutic success (50).
While some controversy still exists, the cells that are the
most sensitive to Ep appear to be late erythroid progen-
itors that include erythroid colony-forming units (CFU-
E) (51), erythroid cluster-forming units (52), and pronor-
moblasts. Since these cells are present in large numbers,
are close to terminal maturation and are actively engaged
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FIGURE 1. The model depicts the cell cycle dormancy of the stem cells
and active proliferation of their progenies once they begin differen-
tiation. It also illustrates the principle targets of the major
hemopoietic factors.
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in cell proliferation, a slight fluctuation in the ambient Ep
levels would result in rapid changes in the production and
release of reticulocytes. Experimental data suggest that
multipotential stem cells (53) and early erythroid progen-
itors (54-56) are not under the control of Ep. ,

G-CSF apprears to be a late-acting, neutrophil-specific
factor. It has been demonstrated that in serum-containing
cultures G-CSF supports the formation of neutrophil/mac-
rophage colonies and pure neutrophil colonies (57),
whereas in serum-free culture, it supports formation of
only neutrophil colonies (58). In our laboratory, we studied
the effects of G-CSF alone and in combination with other
factors on colony formation by purified human progenitors
in serum-free culture (59). G-CSF revealed significant syn-
ergism with earlier-acting factors such as IL-3 and GM-
CSF in support of the formation of neutrophil colonies.
When G-CSF was injected into animals, prompt and dose-
dependent neutrophilic granulocytosis was observed
(60-62). In addition, the differential revealed predomi-
nance of mature neutrophils (61). Together, these obser-
vations support the concept that G-CSF is a late-acting,
neutrophil-specific factor. Interestingly, G-CSF appears
also to play a role in stimulation of active proliferation of
dormant stem cells. This will be elaborated in more de-
tail later.

M-CSF has long been considered as a late-acting macro-
phage/monocyte-specific factor. Recently, CSF-HU that
is abundant in human urine (63) was proved to be human
M-CSF (46). A clinical trial of this material produced mod-
est elevation in the granulocyte and macrophage counts
in patients (63). It was also reported that during preg-
nancy, there is concomitant increase in the serum levels
of M-CSF and blood monocyte counts (64). In serum-free
culture of purified human progenitors, M-CSF alone or in
combination with GM-CSF, G-CSF, IL-3, and Ep was an
ineffective factor for macrophage colony formation (59).
It is possible that M-CSF needs to interact with other fac-
tors in serum in macrophage colony fornation.

Early-Acting, Lineage-Nonspecific Factors

IL-3 appears to be an important factor for proliferation
of early hemopoietic progenitors. Purified murine IL-3
supports the growth of various types of colonies, includ-
ing multilineage colonies (65-67) and blast cell colonies
(66,68). Gibbon IL-3, which is 93% homologous with hu-
man IL-3, supported the formation of human multiline-
age and blast cell colonies (69). We also observed that
delayed addition of murine IL-3 to cultures 7 days after
cell plating decreases the number of multipotential blast
cell colonies to one-half the number in cultures with IL-3
added on day 0. It did not, however, alter the prolifera-
tive and differentiative characteristics of late-emerging,
multipotential blast cell colonies (66).

Based on these observations, we proposed that IL-3
does not trigger stem cells into active proliferation but is
required for the continued proliferation of early multipo-
tential progenitors. Subsequently, we observed that the
development of multipotential blast cell colonies requires
less IL-3 than the process of multilineage colony forma-

tion from blast cell colonies (68). These observations sug-
gested that during stem cell development, the early multi-
potential progenitors are sensitive to IL-3, whereas as
they gradually differentiate, the sensitivity to IL-3 slowly
declines.

More recently, we examined the effects of human IL-3
on colony formation by purified hemopoietic progenitors
in serum-free culture. IL-3 alone was not effective in sup-
port of colony formation except for a few small eosinophil
colonies (59). Serial observation of the serum-free culture
dishes containing human IL-3 revealed that blast cell
clusters appear after varying lag time, reach approxi-
mately the 50 cell stage, and degenerate in the absence
of late-acting, lineage-specific factors. IL-3 revealed sig-
nificant synergism with Ep and G-CSF in support of
erythroid bursts and neutrophil colonies, respectively.
These observations indicated that IL-3 supports progen-
itors that are in the early stages of hemopoietic develop-
ment, but it does not support the terminal maturation
process (59).

The primary function of GM-CSF may also be to sup-
port the intermediate stages of hemopoietic development.
It may not support the terminal neutrophil/macrophage
maturation process effectively. Although it was originally
identified as the factor that supported neutrophil/macro-
phage colonies in culture, Metcalf et al. (70) in 1980 ob-
served that the few cell divisions of multipotential progen-
itors are supported by murine GM-CSF. Using serial
transfer of multipotential blast cell colonies, we demon-
strated that a subpopulation of the multipotential progen-
itors that respond to IL-3 also respond to GM-CSF (71).
Investigators in several laboratories (72-74) have reported
that human GM-CSF supports multilineage colony forma-
tion in serum-containing culture and possesses significant
burst-promoting activity (BPA). In the studies of human
enriched progenitors in serum-free culture, we observed
that GM-CSF alone did not support colony formation ex-
cept for a few small eosinophil colonies (59). However, in
combination with G-CSF and Ep, GM-CSF effectively
supported a large number of neutrophil colonies and
erythroid bursts. Recently, administration of the recom-
binant GM-CSF to primates (75,76) and patients with ac-
quired immunodeficiency syndrome (77) raised the levels
of circulating neutrophils, eosinophils, and monocytes.
These observations indicate that the primary target of
GM-CSF is a population of multipotential progenitors that
are intermediate between those responding to IL-3 and
those sensitive to late-acting, lineage-specific factors.

Factors That Affect Proliferation of
Dormant Hemopoietic Stem Cells

Very recently, several factors have been identified that
appear to induce proliferation of hemopoietic stem cells
in Go. Stanley and his co-workers (78) reported that
hemopoietin-1 (H-1), which was purified from human blad-
der carcinoma cell line, 5637 (79), acts synergistically with
IL-3 in support of proliferation of murine hemopoietic
stem cells. The recent reports by Mochizuki and her as-
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sociates (80) and Moore and Warren (81) suggest that IL-1,
which is abundant in the supernatant of this cell line, may
account for the H-1 activity.

In our laboratory, we have found IL-6 [also called inter-
feron p2 (82) and B-cell stimulatory factor-2 (83)] to pos-
sess synergistic activity with IL-3 in the support of the
active proliferation of murine hemopoietic stem cells (84).
In the presence of IL-3, multipotential blast cell colonies
emerged after varying lag times from spleen cells of
5-FU-treated mice (66,84). When IL-6 is also present, the
appearance of multipotential blast cell colonies is signifi-
cantly hastened, although the speed of the development
of the blast cell colonies was not affected (84). These data
suggested that part of the H-1 effect of IL-6 is the appar-
ent shortening of the Go period of hemopoietic stem cells.

Human IL-6 also works synergistically with human
IL-3 in stimulation of the proliferation of early human pro-
genitors (85). Most recently, we have identified human G-
CSF as an additional synergistic factor for the
IL-3-dependent proliferation of murine hemopoietic stem
cells (86). Both G-CSF and IL-6 appear to possess
stronger synergistic effects than IL-1. It is of interest that
there appears to be structural similarity between IL-6
and G-CSF including the positions of the cysteine
residues, indicating similarity in three-dimensional struc-
tures of the two proteins. It is possible that the genes for
the two proteins may share a common ancestral gene.

There are experimental data to indicate that production
of IL-1, IL-6, and G-CSF may be significantly augmented
immediately after invasion by microorganisms. For exam-
ple, bacterial lipopolysaccharides induce synthesis of IL-1
in macrophages (87). IL-1 then circulates in the body and
may augment synthesis of G-CSF (88,89) and IL-6 (90,91)
by fibroblasts and other cell types. G-CSF stimulates the
production of neutrophils, and IL-6 enhances maturation
of B-cells and thereby the synthesis of immunoglobulins.
The additional effects of these factors on hemopoietic
stem cells in Go may assure an uninterrupted supply of
the hemopoietic and possibly lymphoid progenitors for an
integrated and effective defense against bacterial infec-
tions.

Factors Regulating Other Lineages

Regulation of megakaryopoiesis and thrombopoiesis re-
mains unclear. While several factors such as megakaryo-
cyte-CSF (92) and megakaryocyte stimulatory factor,
which enhances synthesis of platelet-specific proteins by
a rat megakaryoblast cell line (93), have been purified,
their roles in the physiology of megakaryopoiesis and
thrombopoiesis in vivo have not been established.

The proliferation of mast cells appears to be regulated
by IL-3 and IL-4. Several years ago, investigators in a
number of laboratories succeeded in growing murine mast
cells in suspension culture in the presence of medium con-
ditioned by pokeweed mitogen-stimulated spleen cells
(PWM-SCM) (94-97). IL-3 was identified to be the main
factor in PWM-SCM. However, IL-3 could not support the
continued proliferation of mast cells in suspension cul-
tures. In addition, it was found that IL-3 supports primar-

ily proliferation of mucosal-type mast cells but not con-
nective tissue-type mast cells. More recently, IL-4 (98)
[also known as B-cell stimulatory factor-1 (99)] was found
to be an additional mast cell stimulating factor and was
identified as the factor that is needed for the proliferation
of connective tissue-type mast cells (100). The roles of hu-
man IL-3 and IL-4 in the proliferation of human mast cells
have not been established.

Several factors have been shown to stimulate prolifer-
ation of eosinophils recently. Previously, several investi-
gators documented that the human and murine GM-CSF
and IL-3 support eosinophil proliferation in methylcellu-
lose culture (66,68,69,72-7). In addition, in vivo admin-
istration of human GM-CSF in monkeys and men (75-77)
revealed significant augmentation of the number of cir-
culating eosinophils. Recently, Sanderson and his col-
leagues (101) identified eosinophil differentiation factor in
the supernatant of cultures of alloreactive T-cell clones.
This factor proved to be identical to T-cell replating fac-
tor (102) and is generally referred to as interleukin-5
(IL-5). The exact relationship between IL-5, GM-CSF, and
IL-3 in eosinophilopoiesis remains yet to be determined.

Control of Hemopoiesis—A Model of
Granulopoiesis

In addition to the factors already described, there are
a number of factors known to affect hemopoiesis in-
directly. Foremost, I1-1a and 8 appear to play major roles
in granulocyte/macrophage production. The synthesis of
IL-1 by macrophages may be augmented by bacterial
lipopolysaccharides (87). IL-1 then augments the produc-
tion and the release of G-CSF (88,89) and GM-CSF
(88,103-106) by a variety of cells, including fibroblasts, en-
dothelial cells, and smooth muscle cells. Tumor necrosis
factors (TNF a and TNF ) and interferons are known to
inhibit myeloid proliferation in culture. A confusing aspect
is that TNFa can stimulate the mesenchymal cells to syn-
thesize and release G-CSF (107) and GM-CSF (108,109).
It was reported that GM-CSF may in turn augment the
synthesis and release of TNFa by monocytic cells (110).
IL-4 may indirectly influence proliferation of progenitors
supported by other cytokines (111,112). These observa-
tions indicate that a complex network of the cellular and
molecular interactions regulate the continuous cellular
production in hemopoiesis.

It is generally held that the feedback mechanisms exist
for the control of individual lineages. In erythropoiesis,
tissue oxygenation and Ep provide the feedback fine con-
trol of cell production. Regarding other lineages, no feed-
back system has been identified. It is possible that there
is no such feedback regulation existing for granulocyte
production. In this model, the production of granulo-
cyte/macrophages in the steady state is maintained at ge-
netically determined levels and is augmented only by ex-
ternal stimuli such as infections. In the presence of
infections, bacterial lipopolysaccharides, IL-1 and TNFa
will be involved in the augmentation of the synthesis and
release of G-CSF and GM-CSF by various types of mesen-
chymal cells as outlined above. These factors, produced lo-
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cally in the bone marrow, in turn augment the production
of neutrophils, macrophages, and eosinophils. Once the ex-
ternal stimuli are removed, the production of the leuko-
cytes reverts back to the steady-state level. Since the
lifespans of leukocytes are brief, only coarse regulation
of the cellular proliferation may be necessary. The wide
normal ranges of granulocyte counts may attest to this
hypothesis.

This work was supported by NIH grant AM32294 and the Veterans
Administration. M. Ogawa is a Veterans Administration Medical Inves-
tigator. The author thanks Dr. Pamela N. Pharr and Linda S. Vann for
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