
Ensemble molecular dynamics yields submillisecond
kinetics and intermediates of membrane fusion
Peter M. Kasson†, Nicholas W. Kelley‡, Nina Singhal§, Marija Vrljic¶, Axel T. Brunger¶�††, and Vijay S. Pande‡,‡‡§§

†Medical Scientist Training and ‡Biophysics Programs, Departments of §Computer Science, �Molecular and Cellular Physiology, and
‡‡Chemistry, ††Stanford Synchrotron Radiation Laboratory, and ¶Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305

Edited by Harry B. Gray, California Institute of Technology, Pasadena, CA, and approved June 26, 2006 (received for review February 27, 2006)

Lipid membrane fusion is critical to cellular transport and signaling
processes such as constitutive secretion, neurotransmitter release,
and infection by enveloped viruses. Here, we introduce a powerful
computational methodology for simulating membrane fusion from
a starting configuration designed to approximate activated prefu-
sion assemblies from neuronal and viral fusion, producing results
on a time scale and degree of mechanistic detail not previously
possible to our knowledge. We use an approach to the long time
scale simulation of fusion by constructing a Markovian state model
with large-scale distributed computing, yielding an understanding
of fusion mechanisms on time scales previously impossible to
simulate to our knowledge. Our simulation data suggest a
branched pathway for fusion, in which a common stalk-like inter-
mediate can either rapidly form a fusion pore or remain in a
metastable hemifused state that slowly forms fully fused vesicles.
This branched reaction pathway provides a mechanistic explana-
tion both for the biphasic fusion kinetics and the stable hemifused
intermediates previously observed experimentally. Our distributed
computing and Markovian state model approaches provide suffi-
cient sampling to detect rare transitions, a systematic process for
analyzing reaction pathways, and the ability to develop quantita-
tive approximations of reaction kinetics for fusion.

Markovian state models � lipid membrane � reaction mechanism �
computer simulation � vesicle

The kinetic and mechanistic details of membrane fusion are
extremely challenging to observe in a physiological context

(1–3) because the rate-limiting steps of biological fusion likely
precede and are much slower than the fusion reaction itself (4).
This experimental challenge makes membrane fusion an ideal
target for simulation studies, but simulating lipid vesicle fusion
in atomic detail is extremely challenging computationally be-
cause of the long time scales and large system sizes needed to
understand the process. To reach the time scale of interest and
attain statistical significance, orders of magnitude greater com-
putational power would be needed, far greater than possible with
even the world’s fastest supercomputers. Recent advances in
coarse-grained simulation methodology have brought the sim-
ulation of individual fusion events on the 100-ns time scale within
reach (5), but these studies have to date not included sufficient
sampling to make precise quantitative predictions for membrane
fusion.

To overcome these barriers, we have developed a Markovian
state model (MSM)-based approach, consisting of a set of
algorithms and computational paradigms for long time scale
dynamics (Fig. 1). Using this method and a large-scale distrib-
uted computing approach, we predict the fusion behavior of
pairs of 14-nm-diameter vesicles (comprising �500,000 atoms)
on the hundred-microsecond time scale. This time scale is
comparable to the fastest experimental measurements of the
fusion process [�200 �s (6)] and is 10,000-fold longer than most
atomic-resolution molecular dynamics simulations. This simula-
tion method makes possible our subsequent kinetic and mech-
anistic analysis of membrane fusion.

The theoretical underpinning for these techniques (the
MSM approach) has been developed for simple model systems
(7, 8), and here we demonstrate the application of MSM
approaches to large, complex systems. The power of this
technique is that, in addition to predicting rates and mecha-
nisms, we obtain a robust kinetic model that extends the time
scale of accurate measurement to hundreds of microseconds
and beyond, limited only by the fidelity of the computational
representation and the uncertainty levels in the initial rate
calculations (see Methods). Because this approach simulates a
very large ensemble of reaction trajectories, it makes predic-
tions with high statistical power and strong error estimation,
greatly exceeding the quantitative accuracy of previous mo-
lecular dynamics simulations.

To build an MSM, we perform molecular dynamics simula-
tions of 10,000 separate fusion reactions by using the
Folding@Home distributed computing project (9), thus creating
a statistical ensemble of reaction trajectories unprecedented in
membrane fusion studies. We use 10 initial simulation runs to
seed 10,000 independent molecular dynamics runs (Fig. 1b and
Methods); we then sample the reaction trajectories at regular
intervals and cluster these sampled ‘‘microstates’’ into a discrete
set of ‘‘macrostates’’ to derive an MSM (7, 8) describing the
kinetics and thermodynamics of membrane fusion (Fig. 1a and
Methods). The resulting �85,000 structures are systematically
grouped into states by k-means clustering (Fig. 6, which is
published as supporting information on the PNAS web site), and
a transition probability matrix (pij) is constructed by using the
trajectories, setting pij to the frequency that a trajectory in state
i will visit state j in the next snapshot. This probability matrix
allows modeling of the long time scale kinetics of the reaction
ensemble (7, 8).

At the individual simulation level, we use the Marrink-Mark
coarse-grained molecular dynamics method (10, 11) (Fig. 1c)
to achieve a quantitative approximation of atomic behavior
while easing the computational requirements for simulation.
Our simulation is designed to mimic experimental conditions
while still maintaining a model simple enough to analyze the
relevant driving forces for fusion. We use molecular dynamics
with an explicit representation for lipids, ions, and solvent.
Simulation trajectories evolve according to explicit physical
forces rather than methods such as dissipative particle dynam-
ics that use soft-core potentials (12, 13). The Marrink-Mark
force field allows a 4-fold reduction in the number of particles
represented and a 40-fold increase in the time step interval
compared with unified-atom simulations (see Methods).

We generated a starting configuration that we hypothesize
may correspond to a fusion-active complex: two highly curved
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14-nm vesicles composed of 1-palmitoyl 2-oleoyl phosphati-
dylethanolamine (POPE) lipids that are positionally restrained
by a crosslinker molecule corresponding approximately to the
intermembrane distance predicted for the fusion-active soluble
N-ethylmaleimide-sensitive factor attachment protein receptor
(SNARE) complex. This crosslinker serves as a local positional
restraint on the vesicles in the region of fusion, analogous to the
prefusion states of HIV gp41, influenza hemagglutinin, or
trans-SNARE complexes (Fig. 1d). The 14-nm vesicles are of
comparable size to the smallest experimentally observed lipid
vesicles (14). The highly curved fusogenic lipid context is de-
signed to reproduce additional factors believed necessary for
fusion in biological systems (15, 16). Indeed, fusogenic phos-
phatidylethanolamine lipids have been extensively used as ex-
perimental model systems for studying fusion intermediates (17,
18). Fig. 1d shows the analogy by which this starting configura-
tion was designed to mimic hypothesized fusion-active confor-
mations from neuronal and viral fusion.

Results and Discussion
Using these combined computational advances, we have con-
structed a reaction diagram for vesicle fusion from a starting
configuration designed to approximate the fusion-active com-
plexes formed by SNAREs and viral fusion peptides (Figs. 2 and
3a). Construction of MSMs for membrane fusion has required
extension of the underlying methodology, as typical reaction
coordinates used for protein folding problems (such as rmsd
between aligned structures) fail to capture the structural tran-
sitions involved in fusion (Fig. 7, which is published as supporting
information on the PNAS web site). We use measures of lipid
and vesicle contents mixing to capture the reaction coordinates
for fusion, monitoring the progression of the reaction from two
separate and unfused vesicles through the formation of fusion
intermediates and ultimately progression to full fusion. Cluster-
ing of trajectory snapshots (or microstates) via the k-means
algorithm applied to lipid and contents mixing data yields
reaction intermediates in an automated and systematic manner.
The intermediates (or ensemble macrostates) can be broadly
classified as unfused, stalk-like, hemifused, and fully fused
vesicles based on inspection of the clustered states (Table 1,
which is published as supporting information on the PNAS web
site). We find fusion simulation trajectories to be Markovian at
our 20-ns sampling interval (Fig. 8, which is published as
supporting information on the PNAS web site), thus validating
the use of the MSM analytic approach.

We observed rapid depletion of the unfused starting state with
formation of transient intermediates on the 100-ns time scale.
These transient intermediates have a stalk-like conformation
similar to that previously proposed as an early fusion interme-
diate (19–21). On the submillisecond time scale, long-lived
hemifusion intermediates dominate; this population decays over
a time scale of several microseconds (t1/2 � 6.3 �s) to yield fully
fused vesicles. We find that fusion proceeds via two distinct
pathways (Fig. 2) from the stalklike state: rapid formation of a
fused state and formation of a metastable hemifused state that
slowly decays to form a fused state. The metastable hemifused
intermediates that we observed resemble hemifused structures
that have previously been suggested as fusion intermediates
(22–24) and have been observed experimentally as long-lived
intermediates in fusion-impaired systems (24, 25). Recently, a
cell-based fusion assay has been shown to produce a large
fraction of stable and metastable hemifusion intermediates, thus
supporting our computational analyses (26). Our results are
consistent with these findings; furthermore the reaction scheme
we derive provides a mechanistic explanation for such experi-
mental observations. In our simulations, �20% of vesicles

Fig. 1. Methodological advances for the simulation of vesicle fusion. (a) The
clustering of reaction snapshots into states and the linking of these clusters
using MSM to derive a kinetic model for fusion reactions over long time scales.
Ten randomly selected structures are rendered for each state, with lines
representing transitions between states. The state-transition rendering is
generated from the equilibrium distribution of states and overlaid on a
surface schematizing the free energy landscape for fusion projected onto
outer- and inner-leaflet lipid mixing reaction coordinates. (b) The ensemble-
simulation scheme that we use with the Folding@Home distributed comput-
ing system. (c) A single POPE lipid using a unified-atom and a coarse-grained
model (10, 11). (d) The analogy by which a chemical crosslinker is used to
model a fusion protein such as the trans-SNARE complex, which is rendered
based on an extrapolation from the crystal structure (35).

Fig. 2. Branching reaction pathway for vesicle fusion. Pathway I shows the
canonical progression from an unfused starting state (a) through a stalk-like
early intermediate (b) and a hemifused late intermediate (c) to the fully fused
state (d). Pathway II shows the additional reaction pathway observed in our
simulations: rapid fusion from the stalk-like intermediate to the fully fused
state. All renderings are of snapshots from observed reaction trajectories;
lipids are colored to distinguish the outer (red and green) and inner (gold and
blue) leaflets of each vesicle. Explicit water is present in all simulations but not
rendered.
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rapidly fuse from the stalk state; the others fuse via slow decay
of the hemifused population, resulting in a biphasic pattern for
completion of the fusion reaction (Figs. 3b and 4d).

Our approach also allows the calculation of free energies of
fusion intermediates by using statistical mechanics (Fig. 3c), using
rates for both forward and reverse reactions (such as blinking of the
fusion pore) from our observed trajectories. Free energies are
calculated by using the kinetic model derived from these forward
and reverse transition probabilities. The energetics of membrane
fusion have received considerable attention in the literature (re-
viewed in ref. 27); the advantages of free energy calculations using
an MSM approach are that intermediate states are derived from the
reaction and energies are based on molecular interactions from
molecular dynamics simulation rather than continuum membrane
models. The energies calculated depend on the fusion system being
simulated, but this powerful and general approach can be repeated
to calculate free energies for any given fusion model. We observe
a 3.8 kcal�mol decrease in free energy on formation of the stalk-like
state from the starting configuration, consistent with a reaction
driven by vesicle crosslinking. The hemifused state is more stable

than the stalk-like state (�G of �3.3 kcal�mol), whereas the fused
state is, as expected, the most stable state, with a �G of �6.0
kcal�mol from the stalk-like state and �2.6 kcal�mol from the
hemifused state (see Methods). Our clustering of macrostates does
not explicitly address pore expansion, as both newly opened and
expanded pores cocluster within the fused states. Thus the calcu-
lated free energy value for the fused state does not fully reflect the
energy of fusion pore expansion, which will be considerable for the
fusion of two small and highly curved vesicles.

We have also assessed vesicle fusion by performing compu-
tational measurements analogous to experimental fusion assays.
Schematized in Fig. 4, these measurements are outer leaflet lipid
mixing between vesicles, inner leaflet mixing, and contents
mixing, which have been assessed experimentally for vesicle
fusion via fluorescence dequenching and FRET assays (23, 28,
29). In full fusion, these mixing events are thought to happen
sequentially, as shown in model systems (30) and in our simu-
lations (Fig. 9, which is published as supporting information on
the PNAS web site). We have therefore measured the fraction
of simulations that have progressed to the next mixing stage as
a function of time after the previous stage (Fig. 4d). Because we
measure mixing via a threshold for the number of molecules
mixed rather than via percent dilution (see Fig. 9), the diffu-

Fig. 3. Vesicle fusion reaction mechanism and kinetics. (a) A schematic of the
fusion reaction mechanism as determined by MSM. All reactions with proba-
bilities �5% are shown with rates as calculated from the MSM transition
matrix. In our simulations, fusion proceeds via a stalk-like intermediate state.
We also observe a long-lived off-pathway intermediate that is hemifused,
which slowly converts to the fused state (dashed line). Error estimation for
calculated rates is given in Table 2, which is published as supporting informa-
tion on the PNAS web site. (b) The reaction kinetics for fusion over multimil-
lisecond time scales as determined from our simulations. The hemifused
intermediate state dominates on the microsecond time scale, with a decay t1/2

of 6.3 �s. On the 10-�s time scale, the fused state dominates. (Inset) The
formation of transient intermediates at early times. Dashed lines show 90%
confidence bounds. (c) Free energy values calculated from the long-time scale
kinetic model for each state identified via k-means clustering. Error bars
denote 90% confidence intervals.

Fig. 4. Measuring the progress of fusion via analogue to experiment.
Progress of the vesicle fusion reaction is assessed via lipid and vesicle contents
mixing, as have been measured in experimental assays (23, 28, 29). (a) Mixing
of outer leaflet lipids. (b) Mixing of inner leaflet lipids. (c) Mixing of vesicle
contents. (d) The fraction of vesicles that have mixed inner leaflet lipids, outer
leaflet lipids, and contents, measured for each mixing event as a function of
�t from the time of the previous mixing event. Outer leaflet mixing is rapid
and complete, but on the time scale of individual trajectories, only 26% of
inner leaflets fuse; the remaining vesicles fuse at a much slower rate, depen-
dent on the decay of off-pathway intermediates. Upon inner leaflet fusion,
formation of a fusion pore and contents mixing is again rapid and complete.
Dashed lines represent one standard deviation of the mean. Intravasicle lipid
mixing between leaflets was observed in �2% of trajectory snapshops (Fig. 13,
which is published as supporting information on the PNAS web site).
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sional processes limiting mixing for a given vesicle geometry will
not depend on vesicle size. We observe rapid (t1/2 � 20 ns) and
complete (100% of vesicles) initiation of outer leaflet mixing
from the unfused state. Subsequent to outer leaflet mixing, 26%
of vesicles rapidly (t1/2 � 30 ns) progress to inner leaflet mixing;
our MSM analyses indicate that essentially all of the vesicles that
mix outer leaflets go on to fuse, but on a much slower time scale
(� � 8.9 �s, biexponential fit to Fig. 3b). After the onset of inner
leaflet mixing, contents mixing and full fusion are again rela-
tively fast (t1/2 � 40 ns) and complete (93% of vesicles).

Because lipid mixing calculations provide results in terms of
experimental parameters but at higher time resolution than
measurable with current experimental techniques, they are
especially useful in probing the determinants of membrane
fusion. In this manner, we have tested the length of the in-
tervesicle crosslinker required for fusion. Increasing the length
of the crosslinker decreases the probability of outer leaflet
mixing (Fig. 5) but, once the outer leaflets have mixed, inner
leaflet mixing and contents mixing occur with the same rates at
all crosslinker lengths (Fig. 10, which is published as supporting
information on the PNAS web site). We have also computed
MSM simulations for a 2-nm crosslinker configuration corre-
sponding to the minimal predicted width of a prefusion (trans)-
SNARE complex; these simulations show formation of the fused
state on a 13-�s time scale (Fig. 11, which is published as
supporting information on the PNAS web site).

These results suggest that intermembrane crosslinking (and
likely the analogous tethering activity of fusion proteins) are
important in initiating formation of stalk-like intermediate
structures between highly curved membranes but that membrane
crosslinking does not participate in later stages of the fusion
reactions, although experiments on fusion protein mutants sug-
gest that the fusion apparatus still promotes fusion at this stage
(24, 25). Because both transmembrane domain mutants of both
SNAREs and several viral fusion peptides and glycosylphos-
phatidylinositol-anchored influenza hemagglutinin (24, 25) have
been shown to generate long-lived hemifused states, it is likely
that the transmembrane regions of fusion proteins decrease the

free energy of the fused state, perhaps by affecting lipid orga-
nization. Our results, in combination with these experimental
findings, highlight the manner in which physiological regulation
of fusion may occur via the modulation of the kinetic and
energetic balance between fusion intermediates.

Physiologic measurements of vesicle fusion have detected fusion
at the submillisecond range (6, 31, 32); however, our simulations
suggest that fusion of closely apposed membranes occurs �20-fold
faster than these measurements. Factors such as vesicle curvature
and lipid composition differ between our model system and phys-
iological fusion and likely modulate fusion kinetics. However, based
on our findings, we suggest that the rate-limiting steps in physio-
logical fusion, such as the entry of enveloped viruses and neuro-
transmitter release, are those leading to the formation of the
activated ‘‘encounter complex’’ that comprises our start state rather
than the mechanics of fusion itself.

Conclusions
By using powerful MSM simulation techniques, we were able to
calculate the reaction kinetics and free energies for membrane
fusion in a chemically defined and biologically relevant system.
Our simulation design represents a major step forward in
sampling accuracy for predicting membrane fusion mechanisms:
our simulations feature large (n � 10,000) ensembles of molec-
ular simulations that yield a qualitatively greater degree of
information regarding the biophysics of membrane fusion on
time scales of physiologic fusion (time scales 1,000-fold longer
than previously simulated by molecular dynamics). In addition,
our use of a chemical crosslinker begins to capture the require-
ments for synthetically induced fusion in biological systems.

These advances have made possible calculations of sufficient
detail and statistical rigor to address kinetic questions, such as rates
and mechanism, in a quantitative and physically based manner. Our
simulations provide a systematic, statistically significant, kinetic
model of membrane fusion at near-atomic resolution, thus repre-
senting a major advancement of computational methodology. We
use this model to predict rates for the fusion of two apposed, highly
curved membranes after formation of an activated prefusion com-
plex, a key step in membrane fusion that is not directly observable
by current experimental techniques. We predict that this reaction
proceeds in a biphasic fashion and on a 6- to 9-�s time scale via a
branching reaction pathway with a metastable hemifusion inter-
mediate. Previous simulations of fusion have observed multiple
fusion pathways (5); our approach adds mechanistic specificity in
that we predict fusion via a metastable hemifused intermediate in
one instance and rapid fusion directly from a stalk-like state in the
other. Furthermore, our MSM simulation approach can be ex-
tended to include the simulation of the long time scale behavior of
large molecular assemblies in general and specifically the investi-
gation of protein–lipid interactions and explicit models of biological
fusion proteins.

Methods
Simulation Setup. The coarse-grained lipid and water parameter set
of Marrink and coworkers (10, 11) was used to model fully hydrated
POPE vesicles with coarse-grained explicit water molecules. This
parameter set includes explicit representations of electrostatic
interactions and polarity (11). Molecular dynamics simulations
were performed with GROMACS (33, 34) using simulation pa-
rameters as described (10, 11). A 4-fold time scale normalization
factor was applied as in previous reports (10, 11); additional
validation is presented in Fig. 12, which is published as supporting
information on the PNAS web site.

Starting coordinates for individual vesicles were as described
(10) with the vesicles then placed �1 nm from each other. A
crosslinker was formed by a solvent-exposed polar group co-
valently bonded to the phosphate group of one POPE molecule
from the outer leaflet of each vesicle, with an equilibrium

Fig. 5. Dependence of vesicle fusion rates on crosslinker length. To assess the
effect of crosslinker length on vesicle fusion rates, the fraction of vesicles that
have mixed outer leaflets is plotted as a function of time for crosslinker lengths
of 1, 2, 4, and 6 nm. Simulations with a crosslinker length of 2 nm have a t1/2

of 80 ns for outer leaflet mixing, compared with 20 ns for simulations with a
1-nm crosslinker. Simulations with crosslinker lengths of 4 and 6 nm remain
at �50% fused after 150 ns. Dashed lines represent one standard deviation of
the mean.
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interphosphate distance of 1, 2, 4, or 6 nm. One crosslinker
molecule was sufficient to induce vesicle fusion in our simula-
tions (Fig. 2).

Computation of Molecular Dynamics Trajectories. To compute the
large number of simulations required for ensemble dynamics, we
harnessed the distributed computing power of the Folding@Home
project (9). Ten initial simulation runs were used to seed 10,000
independent molecular dynamics runs (Fig. 1b) as follows: 10 400-ns
simulations were performed and sampled once at the starting state,
eight times at 12-ns intervals, and once at �180 ns to generate 100
sets of starting coordinates. Folding@Home was used to calculate
100 independent molecular dynamics trajectories for each set of
starting coordinates, yielding 10,000 total trajectories of up to 500
ns in length (Fig. 1b).

Development of an MSM for Vesicle Fusion. We built an MSM based
on molecular dynamics trajectories as described (7) by sampling the
trajectories at 20-ns intervals, clustering the sampled ‘‘snapshots’’
into macrostates according to kinetically relevant criteria, and
constructing a transition count matrix A from the trajectory data
such that aij � count [Trk(t) � i, Trk (t � �t) � j], for all trajectories
Trk and times t, where Trk (t) is the state that trajectory k is in at time
t and �t � 20 ns. Lipid and contents mixing were selected as metrics
that well capture the reaction coordinates of vesicle fusion, and state
clustering was performed in the Euclidean space defined by these
metrics. Cluster centroids are listed in Table 1.

The resulting kinetic-state model was tested for Markovian
characteristics by comparing transition count matrices calculated
from the trajectory data at different time intervals �t. For any
transition probability matrix P(�t) such that pij � 0 and �jpij �
1, the likelihood that the matrix P(�t) is the underlying proba-
bility matrix that generated an observed transition count matrix
A is proportional to

�
i, j

pij	�t
aij	�t
. [1]

We can sample transition probability matrices from the likeli-
hood distributions for each time interval. For a Markov process,
the following two equations hold:

P	n� t
 � P	� t
n [2]

and

�i	P	n� t

 � � i	P	� t

n, [3]

where �i are the eigenvalues of the matrix P. We assessed the
degree to which the above equations held for these sampled
transition matrices by calculating the eigenvalues of each sam-
pled Ps(�t) for �t � 20, 40, 60, 80, and 100 ns, and s � 1–50.

We compared these eigenvalues by using a linear fit to the
logarithms of the values (Fig. 8a). Because the eigenvalue uncer-
tainty increases with time interval, we used weighted least-squares
linear fitting where the weight for each point was equal to the
inverse of the variance at that point. We could calculate the degree
of eigenvalue linearity as the weighted rmsd from the fitted line to
the sampled eigenvalues. The results of this process showed good
agreement with the Markovian expectation.

To calculate long-time scale dynamics of vesicle fusion using
the kinetic model derived above, we started with all vesicles in
the unfused state (the cluster corresponding to the ‘‘starting
state’’ for molecular dynamics trajectories as described above):
we set the initial state vector vi(0) � 1 for starting state i, vj(0) �

0, @j � i. The kinetic model was then propagated by using the
sampled transition probability matrix as follows: vs(t � 1) �
Ps

T
*vs(t) for any time t. A matrix K of first-order rate constants

may be calculated from the transition probability matrix by the
following relation: K � log(P)��t. Uncertainties in K and v(t)
caused by sampling errors were determined by calculating Ks and
vs(t) for many sampled transition probability matrices Ps at a
constant �t and computing 90% confidence intervals. Other
potential sources of uncertainty include misclustering and the
degree to which trajectories sample rare transitions.

As an additional test of Markovian characteristics, we calcu-
lated mean first passage times (MFPTs) for vesicle fusion by
using the sampled transition probability matrices Ps(�t) for
different time intervals �t. The MFPT between state A and B is
defined as the average time taken to move from A state to B. We
were interested in the average time to reach the fused states from
the unfused state, because it reflects the rate of fusion. In the
MSM model, the MFPT has a simple analytic form (7). The
following set of linear equations define the MFPT from any state
to a given final state (denoted MFPTF).

MFPTi � � t ��
j�1

N

Pij�MFPTj

MFPTF � 0.

For our system, the MFPTs from the unfused state are constant
to within sampling error across time intervals (Fig. 8b), lending
further confirmation to our Markovian assumption.

Calculation of Free Energies from Ensemble Molecular Dynamics. The
extremely large number of molecular dynamics trajectories that we
computed allowed us to calculate free energy values based on
statistical mechanics. As our molecular dynamics simulations were
performed under NPT conditions (constant number, pressure, and
temperature), the appropriate expression for free energy is G �
�kBT ln(Z), where Z is the isobaric-isothermal partition function.
For a macrostate (or cluster) M, we can approximate Z as �m�M�
�@m for microstates m, which is equivalent to the fraction of
microstates that are in macrostate M at equilibrium and can be
calculated directly from the Markovian transition probability matrix
given a starting distribution of macrostates. This calculation is not
limited to individual macrostates, and we can also consider the sets
of macrostates corresponding to unfused, stalk-like, hemifused, and
fully fused vesicles. Error estimation for free energy calculations
was performed by resampling the Markovian transition matrix as
above to calculate a distribution of partition function values. This
method estimates sampling error; an additional source of error
derives from misassignment of microstates to macrostates in the
clustering process. Because clusters are contiguous in state-space,
a small clustering misassignment could result in erroneous mea-
surement of reverse transitions over a boundary. Given a small but
nonzero frequency of misassignment, this error becomes a sub-
stantial factor only for transitions with very high free energies;
the higher the free energy, the larger the effect of a potential
misclustering.
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