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Mapping transcriptional regulatory networks is difficult because
many transcription factors (TFs) are activated only under specific
conditions. We describe a generic strategy for identifying genes
and pathways induced by individual TFs that does not require
knowledge of their normal activation cues. Microarray analysis of
55 yeast TFs that caused a growth phenotype when overexpressed
showed that the majority caused increased transcript levels of
genes in specific physiological categories, suggesting a mechanism
for growth inhibition. Induced genes typically included established
targets and genes with consensus promoter motifs, if known,
indicating that these data are useful for identifying potential new
target genes and binding sites. We identified the sequence 5�-
TCACGCAA as a binding sequence for Hms1p, a TF that positively
regulates pseudohyphal growth and previously had no known
motif. The general strategy outlined here presents a straightfor-
ward approach to discovery of TF activities and mapping targets
that could be adapted to any organism with transgenic technology.

microarray � overexpression � yeast

Delineation of transcriptional control networks is critical to
understanding how the physiology of cells and organisms is

orchestrated. One of the most surprising results of genome
sequencing from yeast to vertebrates is the large amount of
conserved intergenic sequence, much of which is presumably
cis-regulatory (1–3). Moreover, in most sequenced genomes, a
correspondingly large proportion of genes appear to encode
transcription factors (TFs), typically 3–6% of all genes (4, 5).
Even in yeast, a relatively well studied organism, physiological
functions and�or DNA-binding sites remain unknown for
roughly half of all apparent sequence-specific DNA-binding TFs
(4, 6), suggesting that there are many more transcriptional
regulatory pathways than are currently known.

Several strategies have been devised to decipher regulatory
codes, but none is without caveats. Algorithms that seek con-
served promoter elements (1, 2) or common sequence elements
in promoters of coexpressed genes (7, 8) can identify potential
cis-regulatory sequences, but do not inherently identify the
binding TF. Microarray-based biochemical approaches promise
to rapidly identify sequence preferences of individual TFs, but
additional influences apparently contribute to site occupancy in
vivo (9, 10). ChIP-chip (4, 11, 12) identifies sequences bound by
a TF in vivo, but positive results often depend on identifying
conditions under which the TF is DNA-bound; moreover, bound
sites may not be active (13).

Artificial activation of TFs by genetic modification is a prom-
ising experimental strategy for demonstrating functionality of
TFs in vivo without knowing the natural condition under which
the TF acts. Devaux et al. (14) showed a nearly perfect corre-
spondence between the target genes activated by a well studied
gain-of-function mutation in PDR1 (PDR1-3), and those acti-
vated by an inducible fusion protein consisting of the Pdr1p
DNA-binding domain (DBD) and the Gal4p activation domain.
Other studies have examined the effects of overexpressing native
TFs (15–17). However, to our knowledge, this general approach

has not yet been tested on a large scale to ask whether it is
generally effective in specifically activating primary targets of
TFs, or whether there is any way to determine which TFs are
likely to be amenable to this type of experimentation.

In a systematic genetic screen using an ordered clone set
overexpressing full-length ORFs from the GAL promoter (18)
we found that 57 of 175 yeast TFs tested (32.6%) caused growth
inhibition when overexpressed. This number is more than twice
as many as would be expected by chance: over the entire genome,
we found that only 769 of 5,280 (14.6%) of genes caused growth
inhibition, and in fact TFs are among the functional classes that
are most toxic when overexpressed (18). This finding suggested
that in many cases a TF might be activated by simple overex-
pression, even if the TF is not normally active under the specific
growth condition used. To ask whether this is the case, and, if so,
whether the resulting transcription profiles reflected known or
apparent physiological functions of the TFs, we have now
analyzed these TF overexpression strains by using DNA microar-
rays. Here, we show that in many cases the induced genes
correspond to physiological functions and known targets and
that expected binding sites of the TF can usually be identified in
the promoters of these genes. Markedly fewer expression
changes were observed in deletion mutants of this same collec-
tion of TFs, consistent with the view that specific regulatory
events or conditions are prerequisites for activation of many TFs.
We demonstrate that the basic helix–loop–helix family member
Hms1p (19) binds in vitro to a cis-regulatory sequence predicted
from the overexpression data and that overexpression of two of
the apparent target genes causes the same pseudohyphal growth
phenotype displayed by cells overexpressing HMS1. Together,
these results suggest that analysis of gene expression in organ-
isms in which TF overexpression causes a visible phenotype, a
phenomenon we term ‘‘phenotypic activation,’’ represents a
straightforward approach for rapidly characterizing TFs and
mapping regulatory networks on a large scale.

Results
Overexpression of TFs Results in Diverse and Dramatic Transcriptional
Responses. Our previous analysis (18) identified 57 TFs that
caused growth inhibition when overexpressed. An initial two-
color microarray expression analysis of one of these, GAL-
GCN4 (compared with the empty vector control; Fig. 4, which is
published as supporting information on the PNAS web site),
showed that many of the induced genes were known physiolog-
ical targets of Gcn4p (20) and that virtually all of the catalogued
Gcn4p targets were induced (see below). Gcn4p is a well
characterized example of a TF whose deletion is phenotypically
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benign except in specific circumstances; nearly all genes encod-
ing amino acid biosynthetic enzymes are induced by Gcn4p in
amino acid-deprived cells (21). Our observation that overex-
pression of GCN4 was sufficient to induce a physiologically
relevant response suggests that simple mass action may produce
a relatively ‘‘natural’’ hyperactivation state and that the growth
inhibition may be caused by inappropriate induction of the
biosynthetic pathways controlled by Gcn4p. Moreover, Gcn4p
DNA-binding sequences were enriched specifically among genes
with the highest ratios (Fig. 5, which is published as supporting
information on the PNAS web site) and the known Gcn4p
DNA-binding site was perfectly recapitulated by seeking se-
quence motifs that correlated with the degree of gene induction
(see below).

To ask whether Gcn4p is an exception, and whether overex-
pressing different TFs resulted in different transcriptional re-
sponses, we analyzed a total of 55 TF overexpression strains by
using microarrays (the mating-type determinants MAT�2 and
HMRa2 were omitted) and corresponding deletion mutants of 51
nonessential TFs for comparison (grown under a single standard
condition). A fluor-reversal strategy was used in which mRNA
from each strain was compared with mRNA from an empty-
vector control (in the case of overexpression strains) or WT
strain (in the case of deletion mutants) twice, with the red�green
fluors reversed in the replicate. Each strain was examined at a
single 3-h time point, as a time course of GCN4 induction
indicated that little information is gained from taking additional
time points (Fig. 6, which is published as supporting information
on the PNAS web site, and data not shown).

To isolate experiments in which the transcriptional alterations
could not be accounted for by measurement noise or effects
caused by slow growth, we identified those in which (i) the
replicates had a Pearson correlation �0.3, which typically sep-
arates physiologically unrelated experiments (22), or (ii) the
fluor-reversal experiments have reciprocal best-matching corre-
lations among all dye swaps and vice versa. Forty-six TF over-
expression experiments passed at least one of these criteria,
indicating that the vast majority of TF overexpression microarray
data contained distinctive and prominent patterns. This finding
is illustrated in Fig. 1A, which shows all genes induced in any of
the 46 overexpression experiments. In contrast, only 10 of the TF
deletion microarray experiments passed these criteria (all of
which were TFs represented among the 46 passing overexpres-
sors) largely because there were few expression changes in these
mutants beyond measurement noise, such that few experiments
contained a distinctive pattern. Fig. 1B illustrates that there is
less expression change in deletion mutants versus overexpressed
TFs and also suggests that there is little correspondence between
the genes induced upon overexpression and those whose expres-
sion is reduced in the deletion mutant (Fig. 1 A and B). Thus, it
is possible that many TFs are inactive under typical unstressed
growth conditions, which could account for the fact that it has
been difficult to obtain meaningful ChIP-chip data for roughly
half of all apparent yeast TFs (4).

Overexpression of TFs Induces or Represses Known Targets and
Pathways. Three lines of evidence indicate that genes induced in
these experiments are likely to be physiological targets. First,
most of the TF overexpression experiments displayed specific
and significant induction of genes in one or more Gene Ontology
categories, using the Wilcoxon–Mann–Whitney (WMW) test,
which calculates a P value (Fig. 1C) for differences in the median
expression ratio ranks between genes that are in a given category
and those that are not. In many cases, the significant categories
were related to the known specific functions of the TF. For
example, whereas amino acid biosynthesis categories were in-
duced by overexpression of GCN4, overexpression of UPC2 or
ECM22 (23) resulted in a general induction of genes in the

ergosterol biosynthetic pathway (Fig. 1C). We obtained similar
results for known repressors (e.g., ROX1), which are much fewer
in number in our study (data not shown). These trends were
readily distinguished even when the experiments also contained
common transcriptional alterations characteristic of growth in-
hibition such as induction of stress-response genes and reduction
of protein biosynthesis genes; these are visible as horizontal red
and green bands in Fig. 1 A.

Second, among the transcriptional activators and repressors
we analyzed, and for which known target genes are present in
TRANSFAC (24), we generally observed induction or repres-
sion of appropriate targets. Fig. 2 shows a comparison of WMW
P values obtained for TRANSFAC targets for our overexpres-
sion data and ‘‘ChIP-chip’’ experiments done with these same
TFs (4) (Fig. 2). As above, these tests measure how well the
known targets are sorted to the top of the ranked list of genes.
In most cases, overexpression yielded more significant discrim-
ination of known targets than ChIP-chip by this test. For
example, the three known Adr1p targets (ACS1, CTA1, and
ADH2) have significantly higher ranks among induced genes in
our data (7, 13, and 15 of 5,222), in comparison to their ranks in
ChIP-chip data (1,359, 2,510, and 3,148 of 6,229). Cases where
ChIP-chip yields greater significance may represent instances
where overexpression does not result in induction of physiolog-
ical targets; Ino2p is likely such an example. However, others
may involve sampling artifacts: Met4p has only two targets in
TRANSFAC but only one of them (MET16) is present in our
final data set (where it is ranked 450 of 5,222).

Third, among the 25 TFs in our experiments with well known
DNA-binding specificities, in 15 cases the established sites with
at least a 75% match (i.e., 75% of the bases in the known motif
were present in the found motif, without gaps) were identified in
de novo motif searches, often as the top-scoring motif (Fig. 3).
We initially ran a Gibbs sampling program (BioProspector) (25)
on the highest 10, 30, and 50 scoring genes in each experiment;
however, these analyses were often confounded by stress re-
sponse elements (CCCCT) appearing in many of the induced
genes, presumably as a secondary effect. We therefore devel-
oped a probabilistic inference algorithm called RankMotif (see
Methods) that seeks both a motif specific to the individual
experiment and a second motif that pervades multiple experi-
ments. In addition to identifying known motifs, RankMotif
generated high-scoring predicted binding sites for several TFs
without established binding specificities. The full results are
available on request. Fig. 3A shows the nine top-scoring tran-
scriptional activators for which a binding specificity is known; in
eight cases, we obtained at least a partial match (underlined in
purple). Fig. 3A also shows motifs predicted for nine TFs for
which there is no established binding specificity but for which the
RankMotif z-score is comparable to the nine known activators
shown.

The fact that known TF targets, expected functional catego-
ries, and known binding sites can be readily identified in these
data indicates that there is a strong tendency for TF overex-
pression to cause meaningful transcriptional alterations. Al-
though we cannot assume that all of the genes induced by
overexpression of a TF are primary physiological targets (they
might encompass both physiological and nonphysiological sec-
ondary effects and nonphysiological primary targets that are
induced by overexpression) we reasoned that these data should
facilitate identification of TF functions, target genes, and DNA-
binding sites.

HMS1 Overexpression Induces Pheromone-Responsive and Metabolic
Genes, and Hms1p Binds 5�-TCACGCAA. Figs. 1 and 3A contain
undiscovered functions, targets, and binding sites for a variety of
yeast TFs. Among the poorly characterized TFs for which
overexpression yielded both induction of significant Gene On-
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tology categories and a predicted binding motif, and for which
previous ChIP-chip experiments produced no readily interpret-
able results (4), was HMS1 (high copy Mep suppressor). HMS1
encodes a basic helix–loop–helix protein implicated in pseudohy-
phal growth because ectopic expression promotes filamentation
and suppresses the pseudohyphal defect of the high-affinity
ammonium permease-deficient �mep2��mep2 strain (19). How-
ever, the precise physiological role of Hms1p remains obscure:
there are no known target genes or pathways of transcriptional
activation by Hms1p, and no Hms1p DNA-binding sites have
been identified either in vivo or in vitro. In our microarray data,
HMS1 overexpression induced some of the same genes induced
by STE12 in response to pheromone (17) and genes in a variety
of metabolic pathways (Fig. 7A, which is published as supporting
information on the PNAS web site), either of which could

provide a potential mechanism for its morphological effect:
STE12 is required for pseudohyphal growth (26) and nutritional
cues stimulate filamentous growth (27).

Our data also led to a predicted binding consensus for Hms1p.
We performed gel-shift assays with purified Hms1p DBD on
specific sequences corresponding to some of the top-scoring
degenerate motifs identified by RankMotif (Fig. 3A) and de-
tected strong binding to 5�-TCACGCAA (Fig. 3B), which over-
laps six of the bases shown in Fig. 3A. Binding of Hms1p-DBD
to the 5�-TCACGCAA motif is specific, as we observed no
binding of Hms1p-DBD to the consensus motifs of Gcn4p and
Upc2p (Fig. 3B) nor to other sequences tested, including some
other variants of the consensus (data not shown and Fig. 8, which
is published as supporting information on the PNAS web site).
We then examined whether genes that are up-regulated in

Fig. 1. Microarray expression data resulting from overexpression and�or deletion of 57 TFs that cause growth inhibition when overexpressed. Only TFs that
contain expression profiles significantly above microarray noise when overproduced are shown. The diagram shows all 5,222 genes represented on the array after
removal of dubious ORFs, transposable elements, mitochondria-encoded genes, and bad spots on the array. (A) Overexpression experiments. z-score-
transformed data are shown (see Methods). Genes are ordered such that those with the greatest level of induction when a given TF is overexpressed are grouped,
and then TFs are ordered according to the number of genes meeting this criterion. The color scale reflects z-score, which reflects noise-corrected log(ratio) (see
Methods) and extends from �3-fold induction (red) to �3-fold reduction (green). (B) Microarray expression data (z-score transformed) of the corresponding
deletion mutants. Rows and columns are in the same order as A, except that four essential TFs are missing. (C) Induction of specific functional classes of genes
in response to TF overexpression. The columns are in the same order as A. Induction was scored with the WMW P value (see Methods).
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response to HMS1 overexpression and contain exactly the 5�-
TCACGCAA motif have a role in promoting pseudohyphal
growth in a WT �1278 strain. We found that overexpression of
either URA10 or YPC1, which encode an orotate phosphoribo-
syltransferase and alkaline ceramidase, respectively (28, 29),
promotes pseudohyphal growth and suppresses the pseudohy-
phal defect of the �mep2��mep2 diploid strain (Fig. 7B),
although neither URA10 or YPC1 is by itself required for the
HMS1 hyperfilamentation phenotype (Fig. 7C). Intriguingly,
there is evidence that both uracil biosythesis and sphingolipid
content impact pathogenesis and�or filamentation in pathogenic
yeasts (30–33).

Discussion
Our results show that phenotypic activation of TFs is feasible as
a general approach to identifying TF activities, targets, and
binding sites. Although further experimentation of individual
cases will be required to conclusively distinguish all primary and
secondary effects, the simple transient overexpression applied
here yielded unique and meaningful results for the majority of
TFs analyzed and these could be interpreted by objective sta-
tistical and machine learning techniques. Importantly, this ap-
proach appears to be much more fruitful than analysis of
deletion mutants, possibly because most TFs are not active under
typical growth conditions. Moreover, our results with Hms1p
and other TFs (Fig. 3B) indicate that the approach also appears
to be able to identify TF functions and targets not easily
accessible by either phylogenetic footprinting or ChIP-chip. We
note that overexpression is only one type of artificial activation;
other groups have fused TF DBDs to constitutive activation
domains (14, 34). However, our results indicate that in many
cases overexpression of the native protein, which may contain
domains besides the DBD that are required for proper physio-
logical function, will suffice for phenotypic activation.

The fact that the genes induced upon overexpression of TFs
tend to include the bona fide targets argues that TF occupancy
can be an important factor in the rate of transcription of many
genes, because the simplest explanation is that overexpression
increases occupancy by mass action. The observation that over-
expression of TFs often causes growth inhibition suggests that
cells are sensitive to aberrant activation of a variety of different

pathways, and�or that there are signals that sense inappropriate
pathway activation and reduce division rate. Consistent with this
idea, our original study (18) also identified many signaling
molecules that cause growth inhibition when overexpressed,
presumably because they activate their targets similarly, in an

Fig. 2. Behavior of known TF targets in response to overexpression or
deletion of the TF and compared with a similar analysis of genomewide
ChIP-chip data from Harbison et al. (4). Each point indicates, for the TF
indicated, the WMW P value (see Methods) for the difference of medians
between the ranked TRANSFAC targets and those of all other ORFs; i.e., a
point with a higher �log(P) value indicates that the median of TRANSFAC
targets is shifted higher toward the top of the ranked list of genes. For our
data, the z-scores are ranked; for Harbison et al. data, the P values are ranked.
Only TFs with P � 0.05 in either Harbison et al. or this study are shown.

Fig. 3. Promoter analysis of differentially regulated genes in response to TF
overexpression. (A) Motifs identified by RankMotif compared with known
DNA-binding motifs for overexpressed TFs. Binding sites are displayed as logos
in which the height of each letter is proportional to its weight in determining
the motif. The purple underlined portion indicates bases consistent with the
known binding site. The likelihood of the known motif matching the Rank-
Motif consensus is given (formula and code are available on request). The
orange underlined portion of the HMS1 motif shows the six bases that match
the gel-shifted segment in B. (B) Gel mobility-shift assays. The purified DBDs
of Gcn4p, Upc2p, and Hms1p TFs were incubated with oligonucleotides con-
taining two tandem copies of the motif sequence predicted by RankMotif. The
same amount of purified MBP-TF DBD was used for each oligonucleotide in
the binding reaction.
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unregulated manner. Notably, when we generated microarray
profiles of 23 well characterized TF overexpression strains that
did not exhibit a reduced fitness when overexpressed a similar
analysis to that shown here indicated that all were inactive (data
not shown). These results indicate that overproduction of these
TFs is not sufficient for their activation, although it remains
possible that some of the TF-fusion proteins are nonfunctional.
However, our simple initial phenotypic screen was sufficient to
identify these constructs as unlikely to be worth pursuing.

Importantly, the general phenotypic activation approach de-
scribed here, an initial screen for a visible phenotype upon TF
overexpression, coupled to subsequent microarray analysis and
a battery of statistical analyses, could be applied systematically
in any organism for which an inducible transgene can be
introduced, using commercially available custom oligonucleo-
tide microarrays (35). There are already numerous instances in
organisms ranging from microbes to mammals in which overex-
pression of TFs results in morphological abnormalities (36–38).
It will be intriguing to determine whether expression profiling in
these samples reveals induction of specific pathways whose genes
contain binding sites for the TF in question. It will be equally
fascinating to explore cases where pathways are also induced or
repressed that do not appear to be direct targets of the TF,
because such cases may result from transcriptional cascades.
HMS1, for example, appears to positively regulate genes involved
in several diverse pathways, including several that have dedicated
TFs, and do not appear to contain Hms1p-binding sites in their
promoters (Fig. 7C). In such situations, cause-and-effect rela-
tionships can often be determined by using epistasis analysis, a
traditional genetic approach to mapping pathways that has itself
been shown to be amenable to a microarray readout (17, 39).

Methods
Microarray Experiments. Strains carrying 2� plasmids that contain
TFs regulated by the GAL1 promoter were derived from a yeast
overexpression array (18). For microarray experiments, the TF
overexpression and empty vector control strains were grown
concurrently in selective medium supplemented with 2% raffin-
ose before induction with 2% galactose for 3 h, whereas TF
deletion mutants and the isogenic WT strain were grown in
synthetic medium supplemented with 2% dextrose. Procedures
detailing culturing, RNA preparation, hybridizations, image
acquisitions, and data processing for microarrays are described
in Grigull et al. (22).

Microarray Data Normalization. Spatially detrended and Lowess-
smoothed microarray data were obtained using protocols and
microarrays as described (40). The output of this procedure is a
normalized log ratio of intensity for each spot in the mutant
strain versus the WT strain and the average log intensity for each
spot in the two strains. The normalized log ratio itself is not a
good measure of the significance of up- or down-regulation of
the spot because the SD of the log ratios of unaffected spots
decreases as a function of the average spot intensity. We
transformed the log ratios into intensity-independent measures
of significance of regulation, by calculating a z-score for each log
ratio by dividing it by a robust estimate of the SD of unaffected
spots (on the same array) with similar average intensities.
Specifically, for each spot i with a log ratio of ri, its z-score, zi �
(ri � mi)�si, where mi and si are the median and median absolute
deviation, respectively, of the log ratio of all spots with average
log intensities within 0.25 log units of spot i. These z-scores
typically correspond to five times the log2(ratio). Microarray
data before and after normalization and transformation will be
available at the National Center for Biotechnology Information
GEO database.

WMW Tests for TF Target Enrichment. Lists of yeast TF targets were
downloaded from TRANSFAC (24). In total, binding data from
Harbison et al. (4) and overexpression data from this study were
available for 25 TFs in the TRANSFAC list. For each TF, we
compared the log ratios of the TRANSFAC targets versus the
nontargets in the overexpression assay with a two-sided WMW
test. We also compared the Harbison et al. binding P values of
TRANSFAC targets versus nontargets by using a one-sided
WMW test. For some TFs, Harbison et al. provide binding data
for the TF under multiple growth conditions; in those cases, we
assigned the TF the lowest P value among all of the conditions
and then multiplied the P value by the number of conditions to
correct for the multiple testing.

WMW Tests for Gene Ontology Functional Enrichment. Gene Ontol-
ogy annotations (provided by the Saccharomyces Genome Da-
tabase) were downloaded from www.geneontology.org on Oc-
tober 5, 2005. For each overexpression or deletion mutant, and
for each Gene Ontology Biological Process (GO-BP) category
containing �10 ORFs represented on our microarray, we used
a two-sided WMW test to compare the z-scores of the ORFs
annotated and unannotated in the given GO-BP category. We
controlled for multiple testing by using the Benjamini–Hochberg
procedure to calculate false discovery rate. In Fig. 2C, only the
P values of significantly enriched TF�GO-BP pairs are shown;
any pair with a false discovery rate � 0.01 is assigned a P value
of 1 (i.e., appears as white).

Extraction of Yeast Promoters. Intergenic sequences were down-
loaded from the Saccharomyces Genome Database on October
13, 2005 (ftp:��genome-ftp.stanford.edu�pub�yeast�sequence�
genomic�sequence�intergenic). Promoters were defined as the
intergenic sequence spanning the region immediately upstream
of the start position of a given ORF to the end position of the
upstream neighboring ORF. ORFs annotated as ‘‘dubious’’ were
omitted from analysis. A FASTA file of promoter sequences is
available on request.

Motif Finding Using RankMotif. RankMotif is a probabilistic infer-
ence algorithm that finds degenerate consensus sequences
(taken as a motif model) that are overrepresented in the
promoters of high-ranking ORFs in a ranked list. The input to
RankMotif is a ranked list of ORFs and their associated pro-
moter sequences. For a single TF, RankMotif searches for the
highest-scoring degenerate consensus sequence. To model a
stress response that is shared by multiple overexpression exper-
iments, we introduced a shared motif model that is the same for
all TFs. By incorporating the shared motif model, the score of an
individual model is the maximum of the original score and the
score calculated based on the sum of the ranks of all ORFs whose
promoters contain either or both motifs. RankMotif iterates
between updating the shared motif model given the current
individual motif models (by modifying positions and shifting the
alignment of the motif right and left by a single base), and
updating the individual motif models given the current shared
motif model. The search ends when the current state has a higher
score than all possible updates. In the experiments described
here, we also attempted to avoid some of the drawbacks of
greedy search by also maintaining and updating a set of 19
suboptimal motif models for each TF and for the shared motif
model. To allow for strand preference, we also ran RankMotif on
three different sets of promoters for the ORFs consisting of the
sense strands, antisense strands, and both. RankMotif was run
for five iterations for each of these three promoter sets. We
found the top specific and nonspecific motifs and scores for the
three strand options. The individual motif models reported were
those that had the highest score among the RankMotif output for
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the three promoter sets. Full technical details will be described
elsewhere (Q.D.M., unpublished work).

Purification of DBD and Gel Mobility Shifts. The DBDs and 10–15
flanking amino acids of Gcn4p (amino acids 206–281), Upc2p
(amino acids 1–120), and Hms1p (amino acids 256–360) were
PCR-amplified and fused at their N termini to the maltose-
binding protein (MBP) by cloning into the pMAL-C2 vector.
The fusion proteins were expressed in BL21 (DE3) cells and
purified with amylose resin (NEB, Beverly, MA). The gel-shift
probes consisted of two tandem copies of the 8-mer motif
representing the TF binding site followed by 16 nt of nonyeast
sequence common to all of the probes. Sequences were as
follows: GCN4, 5�-ATGACTCAATGACTCACCTCGGCTG-
CAGGTAC-3�; UPC2, 5�-ATCGTTTAATCGTTTACCTCG-
GCTGCAGGTAC-3�; and HMS1, 5�-TCACGCAATCACG-
CAACCTCGGCTGCAGGTAC-3�. For the binding reaction,
0.1 pmol of 5�-32P-end-labeled probe and purified MBP-TF DBD
was incubated with gel-shift reaction buffer (10 mM Hepes, pH
7.8�75 mM KCl�2.5 mM MgCl2�1 mM DTT�3% Ficoll) at room
temperature in a 10-�l binding reaction. Final protein concen-
trations were: Gcn4p-DBD, 119 nM; Upc2p-DBD, 107 nM; and

Hms1p-DBD, 129 nM. After 1 h, 3 �l of 20% Ficoll (Sigma, St.
Louis, MO) was added, and the reaction was loaded onto a 5%
nondenaturing acrylamide gel and then visualized with a Phos-
phorImager (Bio-Rad, Hercules, CA). The same amount of
purified MBP-TF DBD was used for each probe in the binding
reaction.

Data Availability. All microarray data (before and after z-score
transformation), spreadsheets underlying the figures, lists of
known TF targets, WMW scores for all functional categories in
all experiments, a table of properties of the TFs, and algorithms
for computing the significance of motif matches in Fig. 3A are
available on request. Microarray data will be available at the
National Center for Biotechnology Information GEO database.
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