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Redox Cycling of Radical Anion Metabolites
of Toxic Chemicals and Drugs and the
Marcus Theory of Electron Transfer
by Ronald P. Mason*

A wide variety of aromatic compounds are enzymatically reduced to form anion free radicals that generally
contain one more electron than their parent compounds. In general, the electron donor is any of a wide
variety of flavoenzymes. Once formed, these anion free radicals reduce molecular oxygen to superoxide
and regenerate the parent compound unchanged. The net reaction is the oxidation of the flavoenzyme's
coenzymes and the reduction of molecular oxygen. This catalytic behavior has been described as futile
metabolism or redox cycling. Electron transfer theory is being applied to these reactions and, in some
cases, has successfully correlated V., and Km with the reduction potentials of the aromatic compounds.

Introduction
A free radical is any organic molecule with an odd

number of electrons. Even a simple organic molecule
such as benzene can be transformed into three chemi-
cally distinct, highly reactive free radicals (Fig. 1). One-
electron oxidation, the removal of an electron from the
pi-electrons, results in the formation of the benzene
cation radical. The one-electron reduction of benzene,
the addition of an electron, results in the formation of
the benzene anion radical. The third free radical is
formed by the homolytic cleavage of one of the C-H
bonds by UV light or other radiation to form a hydrogen
atom and the phenyl radical.

Severe chemical conditions are necessary to form free
radicals from benzene, but this is not the case for most
aromatic compounds. In fact, many classes of free rad-

0U- I
e-+0

2* + H

FIGURE 1. Free radicals from benzene.
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icals are forned as a result of the metabolism of chem-
icals. In our work, we delineate the metabolic pathways
by which a given class of free radicals may be formed,
the subsequent reactions of these free radicals under
physiological conditions, and the toxicological implica-
tions of these reactions. Of the three types of free-rad-
ical metabolites, only radical anion metabolites partic-
ipate in redox cycling. These species are analogous to
the benzene anion (Fig. 1). They are formed by a one-
electron transfer from an enzyme to an aromatic organic
chemical, which may be either a drug or an industrial
chemical. Investigations of bipyridylium, azo, quinone
and nitro radical anion metabolites have been exten-
sively studied (1-4).

Paraquat and Other Bipyridylium
Compounds
The herbicide paraquat and related bipyridylium di-

cations such as diquat can undergo a one-electron re-
duction to form very stable free radicals. In 1933, Mi-
chaelis and Hill (5) showed that the paraquat free radical
can use molecular oxygen as a one-electron acceptor to
form the superoxide anion radical with the regeneration
of the paraquat dication (5) [Eq. (1)].

PQ+- + 02-PQ2 + *°2 (1)
In 1960, Homer and others (6) proposed that the re-

duction of paraquat to its free radical was an essential
step in its herbicidal mode of action, because a corre-
lation was found between the reduction potential of pa-
raquat analogs and their herbicidal activity (6). Para-
quat is reduced to its free radical within chloroplasts
during photosynthesis, and the herbicidal activity of
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paraquat requires light for electron transport. Plant
leaves incubated in paraquat solutions accumulated ma-
londialdehyde, indicating that lipid peroxidation occurs
(7). This lipid peroxidation is thought to be mediated
by the one-electron reduction of paraquat and the sub-
sequent transfer of the electron to molecular oxygen
resulting in superoxide formation (8).
For 20 years, paraquat has been known to be reduced

in anaerobic microsomal incubations to a free radical,
as evidenced by its visible absorption spectrum (9). This
free radical has a deep blue color. The electron spin
resonance spectrum (ESR) is a better means of iden-
tification of free radicals because, like nuclear magnetic
resonance, ESR is much more specific than UV-visible
spectroscopy. Paraquat serves as an ideal model com-
pound for investigating free radical-mediated toxicity
because it has no known metabolism other than the free-
radical metabolism.

In microsomal systems, the enzymatic reduction of
paraquat to its cation radical is catalyzed by the fla-
voenzyme NADPH-cytochrome P450 reductase (Fig.
2). The paraquat radical is stable in the absence of ox-
ygen. In the presence of oxygen, paraquat is reforned
and superoxide is generated in a catalytic fashion with
no net change occurring to the paraquat molecule (Fig.
2). This process has been terned futile metabolism (1,3)
or redox cycling (4). The mechanism of paraquat poi-
soning in man and other mammals is generally thought
to be a superoxide-mediated toxicity that is completely
analogous to the herbicidal mode of action. The lung is
the site of injury because of the accumulation of para-
quat in this tissue (10). The energy-dependent uptake
of paraquat and the subsequent free-radical formation
are cell-specific. Paraquat free-radical formation occurs
with clara cells and alveolar Type II cells but not with
alveolar macrophages (11). Diquat, morfamquat, and
other bipyridylium compounds do not affect the lung as
seriously, but these compounds do cause liver damage.
We have shown that diquat, paraquat, benzyl viologen,
and morfamquat are reduced by rat hepatocytes to their
respective radical cations (12).

Quinones
The quinone moiety is found in pigments isolated from

a variety ofplants and fungi, some ofwhich are clinically
important antitumor drugs (13). Although menadione
(vitamin K3) is used therapeutically, it is also cytotoxic
and causes the marked decrease of intracellular thiols
such as glutathione, the formation of superoxide by fu-

FIGURE 2. Futile metabolism or redox cycling of paraquat by
NAD(P)H-dependent flavoenzymes.

tile cycling (Fig. 3), the oxidation of reduced pyridine
nucleotides (Fig. 3), alterations in intracellular calcium
ion homeostasis, and the death of isolated hepatocytes
(14,15).

Doxorubicin, daunorubicin, and other anthracycline
anticancer drugs are known to be carcinogenic, muta-
genic, and cardiotoxic (13). The first evidence of enzy-
matic semiquinone formation from a quinone anticancer
drug was indirect. In 1975, Handa and Sato (16) dem-
onstrated that daunorubicin and doxorubicin mediated
the formation of superoxide in microsomal incubations
containing NADPH (16). Later, they also demonstrated
that these compounds stimulated aerobic NADPH ox-
idation in the absence of any net reduction of these
antitumor compounds (17). The presence ofsemiquinone
metabolites of anthracyclines has been demonstrated
with ESR in anaerobic incubations containing micro-
somes, purified NADPH-cytochrome P450 reductase,
and even in incubations of tumor cells (3). Analysis of
the high-resolution ESR spectrum of the enzymatically
generated daunorubicin semiquinone was reported re-
cently (18).

Azo Compounds
Although red dye number 2 (Fig. 4) is only a weak

carcinogen, this compound was recently banned as a
food dye by the Food and Drug Administration because
of its high consumption. The reductive metabolism of
azo compounds such as red dye number 2 by a wide
variety of biological systems has long been known. Sul-
fonazo III is a diazonaphthol compound that is used in
the titrimetric determination of sulfates and organic sul-
fur (Fig. 5); it is structurally related to the monoazo
food dyes such as red dye number 2. We have detected
the ESR spectrum of a free-radical metabolite of sul-
fonazo III in anaerobic rat hepatic microsomal incuba-
tions containing this azo dye and NADPH (19). NADPH
is the ultimate source of the electron.
The spectrum of the sulfonazo III free radical is char-

acterized by a partially resolved 17-line hyperfine pat-
tern and a g-value of the center line equal to 2.0034
(Fig. 5). The g-value is analogous to the chemical shift
in nuclear magnetic resonance and is used to charac-
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FIGURE 3. Futile metabolism or redox cycling of many quinones by
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FIGURE 4. Structure of red dye number 2.
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FIGURE 5. The ESR spectrum ofthe sulfonazo III free radical detected in anaerobic microsomal incubations containing an NADPH-generating
system. The g-value of 2,2-diphenyl-1-picrylhydrazyl(DPPH) is indicated by the arrow. From Mason et al. (20).

terize the structure of the free radical. 2,2-Diphenyl-1-
picrylhydrazyl (DPPH) serves as a g-value standard
analogous to tetramethylsilane in NMR. The eight lines
upfield and eight lines downfield of the center line in-
dicate that the unpaired electron is delocalized onto at
least one of the aromatic rings and probably onto both
azo groups. Again, the scheme of futile metabolism em-
phasizes the rapid air oxidation of the azo anion radical
as the pivotal event (20). In such a scheme there would
be no net reduction ofthe azo compound since the parent
compound would be reforned (Fig. 6). Sulfonazo III
would thereby catalyze the production of superoxide
anion radical and oxygen consumption.
The simplest method for detecting superoxide is by

the addition of superoxide dismutase to the reaction
medium. This enzyme catalyzes the disproportionation
of the superoxide anion radical to give back half of the
superoxide as oxygen and reduces the other half to hy-
drogen peroxide [Eq. (2)].

2 0- + 2H + -*02 + H202 (2)
In such a reaction, the hydrogen peroxide formed by
the disproportionation of the superoxide anion radical
can itself be disproportionated by catalase to give back
half of the oxygen as molecular oxygen [Eq. (3)].

2H202 -_ 02 + 2H20 (3)
When both superoxide dismutase and catalase are added
to the incubation, water is the only reduced species of
oxygen that can accumulate.

NAD(P)H F

FH* R-N-N-R

FH2 R-N=N-R

02

FIGURE 6. Futile metabolism or redox cycling of some azo com-
pounds by NAD(P)H-dependent flavoenzymes.

In view of these considerations, the stimulation of
oxygen uptake by sulfonazo III and the reversal of this
stimulation by superoxide dismutase and catalase would
be a useful approach to determine whether the azo anion
radical is formed in the presence of oxygen. When we
examined the effect of 50 ,uM sulfonazo III on the
NADPH-supported oxygen consumption by rat hepatic
microsomes, we found that, indeed, the rate of oxygen
uptake was increased 10-fold over the basal rate and
that this stimulation was partially reversed by super-
oxide dismutase (Fig. 7). The presence ofthe superoxide
anion radical strongly suggested that the sulfonazo an-
ion free radical is formed by a microsomal reductase
under aerobic conditions. The rate of oxygen uptake is
over five times greater than that observed during nor-
mal cytochrome P-450-catalyzed reactions. As ex-
pected, the disproportionation of hydrogen peroxide by
catalase also decreased the sulfonazo III-stimulated up-
take of oxygen (Fig. 7). The rate of dye disappearance
in these incubations is only 2% of the rate of oxygen
consumption. This implies that the consumption of ox-
ygen is indeed catalytic, as is consistent with the scheme
(Fig. 6). The oxidation of NADPH by microsomal in-
cubations is also greatly increased by sulfonazo III, but
it is not influenced by superoxide dismutase or catalase
(20).
One final point is that sulfonazo III anion radical for-

FIGURE 7. Effect of superoxide dismutase and catalase on suifonazo
III stimulation of oxygen consumption by rat hepatic microsomal
incubations. Data from Mason et al. (20).
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mation in the presence of oxygen will not lead to the
formation of the ultimate products of azoreduction, ar-
omatic amines and hydrazines, unless the oxygen con-
centration is very low. The absence of these reductive
metabolites in vitro or in vivo does not imply that azo
reduction to the anion radical has not occurred. For
instance, our microsomal oxygen uptake results imply
that every molecule of sulfonazo III in the incubation
was reduced to the anion radical once every 9 sec, but
the nearly quantitative air oxidation of the azo anion
radical results in little net disappearance of the sulfon-
azo III until all of the oxygen is consumed. Therefore,
better known methods of detecting drug metabolites
such as HPLC, which of course cannot detect unstable
free radicals, may lead to erroneous conclusions con-
cerning the extent of reductive drug metabolism. Be-
cause this futile metabolism is characteristic of many
classes of these phantom free radicals, many in vitro
and whole animal studies that show no net fornation of
products may be totally misleading in ascertaining the
importance of free-radical intermediates and, therefore,
the true extent of actual metabolism.

Nitroaromatic Compounds
Nitroaryl and nitroheterocyclic compounds have en-

joyed widespread use in medicine as antibiotics (Table
1). The most widely employed topical substituted 5-
nitrofuran, nitrofurazone, has been used as a food pre-

Table 1. The nitro compounds

Compound Structure

Nitrofurazone 02N y yC =N- rN-Cj-NH2
WiH HO0

Nitrofurantoin 02N ACC=N- N
? NH
0

O H
11 I

CH2 C-N-CH2 C6 H5Benznidazole I
H NyNO2

N

COO -

p-Nitrobenzoate

NO2

Metronidazole CH2 CH2 OH
02N N CH3

servative, in therapy of patients with second- and third-
degree burns, and as an antibacterial agent for the
treatment or prevention of a wide variety of infections
of the genito-urinary tract. Nitrofurantoin is the sub-
stituted 5-nitrofuran administered most frequently for
systemic infections, particularly those involving the uri-
nary tract. Benznidazole has found use as an antipro-
tozoal (21), and metronidazole has been widely used for
many years in the treatment of infections of Tricho-
monas vaginalis, amoebas and Giardia, and a host of
anaerobic bacterial infections.

In our early investigation of the mechanism of rat
hepatic mitochondrial and microsomal nitroreductase
(22), we reported ESR and ldnetic evidence that sug-
gested that the first step in these nitroreductase reac-
tions is the transfer of a single electron to nitro com-
pounds to give the corresponding nitro anion free
radical. For instance, in the case of nitrofurantoin, the
interaction of the free electron with the nitrogens and
protons gives a complex hyperfine pattern that has been
analyzed and indicates the shift-base is intact (23,24).
In summary, the ESR spectrum shows that the free
radical is simply nitrofurantoin plus an extra electron.
When we examined the effect of 100 ,uM nitrofuran-

toin on the NADPH-supported oxygen consumption by
hepatic or pulmonary microsomes, we found that, in-
deed, the rate ofoxygen uptake was increased sevenfold
over the basal rate and that this stimulation was par-
tially reversed by superoxide dismutase (Fig. 8). Again,
the presence of superoxide anion radical strongly sug-
gested that the nitrofurantoin anion free radical is
formed by microsomal nitroreductase under aerobic
conditions (25). As expected, the disproportionation of
hydrogen peroxide by catalase also decreased the ni-
trofurantoin-stimulated oxygen uptake (Fig. 7). When
both superoxide dismutase and catalase were added to
the incubations, the nitrofurantoin-catalyzed oxygen
consumption was decreased by over a third.
We have examined the paraquat-stimulated uptake

of oxygen by microsomes in order to compare it with
the nitrofurantoin-stimulated uptake (25). Paraquat
stimulates the uptake of oxygen by microsomes less
than an equal concentration of nitrofurantoin (Fig. 8).
Otherwise, the effect of superoxide dismutase and/or
catalase is similar to that observed with the nitrofur-
antoin-stimulated oxygen uptake (25).

_ Microsomes + NADPH
- +Nitrofurontoin (0. ImM)
=3 Porquot (0.1 mM)

100

E!cII
E
0
-a
E

&O.D. Catalase SIID.+Cotalose
FIGURE 8. The effect of superoxide dismutase and catalase on the

stimulation of rat hepatic microsomal consumption of oxygen by
nitrofurantoin and paraquat. Data from Mason and Holtzman (25).
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Our work on the effect of superoxide dismutase and
catalase on the nitro compound-stimulated oxygen con-
sumption by microsomes is consistent with the formna-
tion of nitroaromatic anion radicals under aerobic con-
ditions, and the rapid air oxidation of these radical
intermediates resulting in the catalytic generation of
superoxide and the well-known oxygen inhibition of ni-
troreductases. We propose that the nitrofurantoin-cat-
alyzed reduction of oxygen to superoxide and hydrogen
peroxide may be responsible for some of the toxic man-
ifestations that occur during nitrofurantoin therapy
(25). For instance, we noted that the occasional cases
of pulmonary edema and fibrosis caused by nitrofur-
antoin therapy are similar to the effects of paraquat
poisoning. Subsequent work with animal models sup-
ported our proposal (26).

Electron Transfer Theory
These qualitive ideas of electron transfer can be ex-

pressed as a quantitative correlation. Wardman (27) has
proposed that the reduction potential, E' (1-electron
potential in water at pH 7), of nitro aromatic compounds
is the most appropriate index of the redox properties
of nitroaromatic compounds because it is the thermo-
dynamic parameter that characterizes the relative ease
of reduction of these compounds (27).
The thermodynamics of electron-transfer reactions

involving free-radical intermediates are characterized
by the difference in reduction potentials between the
electron donor, the nitroreductase, and the acceptor,
the nitro compound (28). However, only the equilibrium
constant, K1, can be calculated from a knowledge of the
electrochemical potentials and, in general, the rate of
approach to equilibrium can be negligibly slow even
though the reaction is thermodynamically favorable.
The quantum mechanical Marcus theory of electron-
transfer reactions says that the rate constant k, can be
related to the equilibrium constant K1 (i.e., AE ) by the
Marcus relationship for simple outer sphere electron
transfer ki = Aexp(-AG*/RT) where A is a collision
number and AG* defined in its simplest form is related

to the free energy AG and X, which is a reorganization
parameter for the water of solvation. Since AG* is de-
fined by AE' for a one-electron transfer reaction, if the
individual reduction potentials are known, then the rate
constant k, as well as the equilibrium constant K1 can
be predicted. Over small ranges in AE', log k, is pro-
portional to El (27).
To establish a correlation between the one-electron

reduction potentials of nitro aromatic compounds with
the kinetic parameters of a nitroreductase enzyme as
measured by the rate of oxygen consumption, two ni-
troreductase enzymes were chosen for this study, fer-
redoxin:NADP+ oxidoreductase and NADPH-cyto-
chrome P-450 reductase. The former was chosen
because of its potent nitroreductase activity, and the
latter was chosen because it is ubiquitous in mammalian
cells (29). Km and Vmax for the ferredoxin:NADP+ ox-
idoreductase-nitroaromatic systems were determined
from the rate ofoxygen consumption, taken as the initial
slope, using a calibrated Clark electrode (Table 2).
The enzyme kinetic parameters Vm,, and Km were

calculated utilizing the Lineweaver-Burk linearization
(double-reciprocal plot) of the Michaelis-Menten equa-
tion. For nitrofurantoin there is a significant difference
in the Vmax but no significant effect on the value of the
Km when catalase and superoxide dismutase are pres-
ent. Superoxide dismutase and catalase have little effect
on the Vmax and Km values of the other nitro compounds
(29). Neither Km, logKm, Vmax, nor logV__. correlated
well with the reduction potentials (Table 2), although
the trends are generally in the right direction with the
notable exception of metronidazole; that is, as the com-
pound gets harder to reduce, the V_,_ gets smaller and
the Km gets larger (Table 3). On the other hand,
log(Vnj/Km) consistently decreases as the reduction po-
tential becomes more negative. Again, with NADPH-
cytochrome P-450 reductase, no good correlation with
Km or Vm,, alone could be found, but log of Vmal/Km
consistently becomes smaller as the reduction potential
becomes more negative (Table 3).
The plot of log(Vr,,/Km) versus the reduction poten-

tial in the ferredoxin reductase system gives a nearly

Table 2. Kinetic parameters for ferredoxin:NADP+ oxidoreductase with selected nitro aromatic compounds (29).

Compound V,,,,, ILmole 02/mg/min Km, mM log(V,,./Km) El, V
Nitrofurazone 31.2 ± 3.7 0.67 ± 0.09 1.67 - 0.257
Nitrofurantoin 49.0 ± 2.5 1.3 ± 0.2 1.58 - 0.264
Benznidazole 4.1 ± 1.0 7.4 ± 2.2 0.25 - 0.380
p-Nitrobenzoate 2.4 ± 0.2 9.0 ± 0.1 - 0.57 - 0.415
Metronidazole 3.9 ± 0.8 139 ± 30 - 1.52 - 0.486

Table 3. Kinetic parameters for NADPH-cytochrome P450 reductase with selected nitro aromatic compounds (29).

Compound Vmax, Lmole/unit/min' Km, mM log (Vmax/Km) El, V
Nitrofurazone 53.4 ± 0.4 0.10 ± 0.01 - 1.27 - 0.0257
Nitrofurantoin 25.3 ± 2.4 0.24 ± 0.05 - 2.00 - 0.264
Benznidazole 9.4 ± 1.9 1.31 ± 0.25 - 3.14 - 0.380
p-Nitrobenzoate 1.8 ± 0.6 3.9 ± 1.9 - 4.33 - 0.415
Metronidazole 9.6 ± 3.9 78.5 ± 45.0 - 4.91 - 0.486

a Unit of cytochrome c assay x 104.
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FIGURE 9. Log (Vma,/Km) versus El (mV) for ferredoxin:NADP+
oxidoreductase interaction with five nitrocompounds as substrates
in the absence (0) and presence (0) of catalase/superoxide dis-
mutase.

Table 4. Redox dependence of nitro aromatic compounds upon
reduction by a variety of systems.

Reduction by Redox dependence, V1 a
Aerobic bacteria 8.2b
Anaerobic mammalian cells 10.7b
Anaerobic microsomes 10.5b
Reduced flavin mononucleotide 18.4b
Xanthine/xanthine oxidase 13.8b
Ferredoxin:NADP+ oxidoreductase 13.5cd 13.gd
NADPH-cytochrome P-450 reductase 14.9d

ad(log k)Id (AE).
b Data taken from Wardman and Clark (30).
cWith catalase and superoxide dismutase.
d Data taken from Orna and Mason (29).

perfect correlation (Fig. 9). The VmaxlKm ratio is con-
sidered a measure of the enzyme-nitro substrate reac-
tivity and of all consequent reactions that follow. In
other words, the Vmax1Km value is a measure of the
enzyme's commitment to catalyze nitro reduction. No-
tice that a tenth of a volt change in reduction potential
causes over an order of magnitude change in VmaxlKm.
NADPH-cytochrome P-450 reductase gives a similar

correlation (Fig. 10). The slope of the line defined by
the equation in Figure 10 is analogous to the redox
dependence of a simple chemical rate constant and can
be taken as a measure of the redox dependence corre-
lating biological reductions with El. Wardman and
Clark (30) have summarized some of the numerous re-
dox correlations for nitro compounds (Tables 4 and 5).
Considering the diversity of these studies, the close
quantitative agreement with redox dependences around
10 V-1 are striking. This coefficient defines an order of
magnitude decrease in the concentration required to
achieve a fixed response for an increase in El of 0.1 V.
Note that cytotoxicity (Table 5) and the rate of reduc-
tion of nitro aromatic compounds (Table 4) have similar

-2 0

E

E -3-

0~~~~~~~

-4
y=2.29+15.Ox R=0.98

-5
-0.5 -0.4 -0.3 -0.2

E; (V)

FIGURE 10. Log (Vma...Km) versus E' (mV) for NADPH-cytochrome
P-450 reductase interaction with five nitro compounds as sub-
strates.

Table 5. Cytoxicity and mutagenicity redox dependence of
nitroaromatic compounds.'

Toxicity Red6x dependenceb
Cytotoxicity

Bacteria 11.5
Anaerobic mammalian cells 10.1
Aerobic mammalian cells 8.7

Mutagenicity
Aerobic bacteria 11.2
Aerobic mammalian cells 7.4

DNA synthesis 12.5
DNA strand breakage 9.8
DNA, release of dT 11

a Data taken from Wardman and Clarke (30).
b Mean of one to three studies.

redox dependencies. With this in mind, it is not sur-
prising that metrondiazole, with the lowest reduction
potential of any nitro drug, is also the safest nitro drug.
The traditional mechanism for cytotoxicity, mutagen-

icity, etc., of nitro compounds is that a reduction prod-
uct such as the nitroso (the 2-electron reduction product)
or hydroxylamine (the 4-electron reduction product)
binds to DNA and leads ultimately to the biological
response. It is quite reasonable that nitro anion for-
mation is rate-limiting in the production of DNA dam-
aging products, whatever they may be. This approach
can be extended for quinone, bipyridylium, and azo com-
pounds. Work is in progress in our laboratory on the
Vma, and Km dependencies of bipyridylium and quinone
compounds.
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