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Genetic Analysis of the K-rev-i
Transformation-Suppressor Gene
by Hitoshi Kitayama,* Tomoko Matsuzaki,* Yoshikazu
Sugimoto,* Yoji Ikawa,* and Makoto Noda*

Flat revertants with reduced malignancy in vivo can be isolated from Kirsten sarcoma virus-transformed
NIH 3T3 cells (DT line) following transfection with a normal human fibroblast cDNA expression library.
We have recovered from one such revertant a 1.8-kb cDNA clone, K-rev-1, that exhibits an activity of
inducing flat revertants at certain frequencies (2-5% of total transfectants) when transfected into DT cells.
The K-rev-1 cDNA has the capacity to encode a protein with a calculated molecular weight of 21,000,
having strong structural similarity to ras proteins (- 50% homology), especially in their guanosine tri-
phosphate/guanosine diphosphate-binding, effector-binding, and membrane-attachment domains. Toward
understanding the mechanism of action of K-rev-1 protein, we constructed a series of point mutants of
K-rev-1 cDNA and tested their biological activities. Substitutions of the amino acid residues in the putative
guanine nucleotide-binding regions (Asp'7 and Asn"6), in the putative effector-binding domain (residue
38), at the putative acylation site (Cys"'8), and at the unique Thr6' all decreased the transformation-
suppressor activity. On the other hand, substitutions including Gly'2 to Val'2, Ala59 to Thr59, and Gln'
to Glu' were found to significantly increase the transformation-suppressor activity of K-rev-1. These
findings are consistent with the idea that K-rev-1 protein is regulated like many other G-proteins by
guanine triphosphate/guanine diphosphate-exchange mechanism probably in response to certain negative
growth-regulatory signals.

Isolation of Morphologically Flat
Revertants after Transfection
Our strategy for the isolation of flat revertants is

outlined in Figure 1. DT is a transformed derivative of
HGPRT-NIH 3T3 cells containing two copies of Kirsten
murine sarcoma virus (Ki-MSV) genome (1). The oc-
currence of spontaneous revertants resulting from in-
activation of viral oncogene, v-Ki-ras, is extremely low
in this cell line. We transfected DT cells with a cDNA
expression library (pcD2-human foreskin fibroblast li-
brary) (2) and then selected for G418-resistant colonies.
The surviving colonies were pooled and treated by one
of the several different procedures, each of which was

designed to enrich the cell population that failed to ex-
press one or more of the properties usually associated
with v-Ki-ras-induced transformation (3). The majority
of the colonies surviving these treatments appeared to
be morphologically transformed, and therefore, a final
screening for flat revertants in the population of trans-
formed cells was effected by microscopic observation of
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individual colonies. Among the clones exhibiting rela-
tively stable morphology and reduced tumorigenicity in
vivo, seven clones were found to be totally or partially
resistant to retransformation by superinfection with Ki-
MSV (3).

Properties of the Revertants
By definition, each ofthe revertants exhibit a contact-

inhibited growth pattern. Approximate numbers of
transfected plasmids stably incorporated per cell, es-
timated by Southern blot analysis using a vector-specific
probe, ranged from 1 to 10 copies. Also, differences in
hybridization patterns observed in such experiments
confirm the independent origins of these revertants.
Doubling times of the revertants are generally longer
than that ofthe parental DT line, while some revertants
grow even more slowly than does the nontransforned
NIH 3T3 line. Colony-forming efficiency (CFE) in me-
dium with 1% fetal calf serum and in agar suspension
culture is more or less reduced in these revertants.
These in vitro properties correlate reasonably well with
reduced tumorigenicity in vivo noted with these seven
revertants (Table 1). Southern blot analysis indicated
that two copies of the v-Ki-ras gene without any gross
rearrangements are retained in six out of the seven
revertants. High levels of expression of Ki-MSV RNA
as well as p2l' protein, comparable to those observed



KITAYAMA ET AL.

NORMAL
HUMAN
FIBROBLAST

cDNA
LIBRARY

hols I
Anva

B,s 3_ ce

PSAm322 pcO ?2X IPatvA
oti

go, SV40 gooy pweimt

poly A

Xhso I

SAC" III

X IcONAP

G418R FIAT REVERTANT

DT CELLS
ENRICHMENT

FIGURE 1. Detection of revertant-inducing cDNAs.

Table 1. Properties of NIH 3T3, DT, and the flat revertants isolated following cDNA library transfection.

Cell line NIH 3T3 DT R12 R14 R16 R29 R31 R37 R40
Doubling time, hra 18 10 21 21 23 18 19 16 14
Saturation density, x 104 cm2 11 14 10 4.4 8.7 11 29 19

In 1% fetal calf serum < 0.1 11 1.2 < 0.1 1.4 1.1 < 0.1 < 0.1 4
Colony-forming efficiency, %, in < 0.01 68(L) 0.5(S) 1.2(S) 0.9(S) < 0.2 1.7(S) < 0.01 3.4 (S)

soft agarb
Tumorigenicityc + + + - - - + + - +
Fibronectin expressiond + + + + + + + + + + + + + + + + + + +
Chromosome number, mean ± SD 50 ± 7 50 ± 11 55 ± 13 60 ± 24 57 ± 13 48 ± 12 43 ± 16 70 ± 12 50 ± 18
v-K-ras copy number 0 2 2 2 2 2 2 1 2
p2lExpression + ++ + +++ + ++ ++ + +++
Rescuable murine sarcoma viruse - + + + + + + + +
Plasmid copy number 0 0 1 7-8 10-12 1-2 1-2 1 2-3

aTransformed cells have no limit to their growth.
bRatio (%) of soft agar colonies to viable cells seeded as measured by colony-formation assay in liquid medium. Approximate colony sizes are

indicated in parentheses as follows: L, > 500 cells; S, < 100 cells per colony at day 14.
cCells (5 x 106) were inoculated subcutaneously into 4- to 6-week-old nude mice (CD-1; Charles River Breeding Laboratories), and the mice

were periodically examined for evidence of tumors. (-) No evidence of tumor; (±) tumor of < 1 cm diameter; (+) tumor of 2 to 3 cm diameter;
(+ +) tumor of > 3 cm diameter, in more than two of three inoculated animals. Experiments were terminated 28 days after inoculation. (+ + +)
All animals died within 3 weeks, with large necrotic tumors.
dEstited by immunoblot analysis.
eAssay performed as described (14).

in DT cells, were detected in all revertants. MSV rescue
experiments demonstrated that all seven revertants
tested here contain biologically active MSV genomes
(Table 1). These observations indicate that reversions
are probably not the result of inactivation of Ki-MSV
genomes. When each revertant was fused to either NIH
3T3 cells or Ki-MSV-transformed TK-NIH cells, the
majority of the cell hybrids expressed a nontransformed
phenotype (3), indicating the occurrence of genetic al-
teration(s) in these flat revertants, which results in a

dominant suppression of the transformed phenotype as-
sociated with the v-Ki-ras gene.

Recovery of K-rev-1 cDNA from R16
Revertant
Southern blot analysis using the vector DNA as a

probe showed that about 10 clones of human cDNA are
present in one of the revertants, R16. The pcD2 vector
has a unique Sal 1 site between the two drug resistance
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markers, amp and neo. Although the neo gene is placed
under the control of a eukaryotic promoter, it confers
weak kanamycin resistance on E. coli as well. To re-
cover transfected cDNAs, total DNA extracted from
R16 cells was digested with Sall, circularized by ligation
at low DNA concentration, and transformed into highly
competent E. coli (Fig. 2). Out of ten ampicillin-resist-
ant bacterial clones, eight were kanamycin-resistant.
Since plasmids retaining both selection markers after
the above treatments are likely to be intact, we tested
biological activities of these eight plasmid clones by
transfection assay in DT cells. One plasmid clone, pK-
rev-1, with an insert of 1.8 kb, was found to have an
activity to induce flat revertants at frequencies of 2 to
5% of total G418-resistant colonies (4).

Structure of the K-rev-1 cDNA
We have sequenced the cDNA insert ofpK-rev-1 plas-

mid by generating progressive deletions and by dideoxy
sequencing procedures (4). The sense orientation of K-
rev-1 cDNA encodes only one long open reading frame
(184 amino acid residues) that has the capacity to encode
a protein with a calculated molecular weight of 21,000.
A homology search of the Protein Identification Re-
source (NBRF, release 31.0) revealed that this reading
frame shares strong structural similarity with ras pro-
teins (Fig. 3). Similarities are especially strong in the
regions known, in the Ha-ras protein, as the a phos-
phoryl-group-binding domain (residues 5-22), guanine-
binding domains (residues 28, 116-120, 145-147) and so-
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FIGURE 2. Recovery of the cDNAs.

called effector-binding domain (residues 32-44). Also,
K-rev-1 and ras genes share the consensus sequence
CAAX (A: nonpolar residue, X: any residue) at the carb-
oxy-terminal regions, which is known to be essential for
the membrane-attachment and the transforming activ-
ities of ras proteins. These findings prompted us to ex-
amine the effects of point mutations in those possible
functional domains of K-rev-1 protein on its biological
activity.

Mutagenesis of K-rev-1
Mutations resulting in single amino acid substitutions

were introduced to 10 sites in the coding region of K-
rev-1 cDNA (Fig. 4) by oligonucleotide-directed in vitro
mutagenesis. The mutations can be divided into four
categories: a) from normal ras type to activated ras type
(Val2, Thr59); b) from normal ras type to inactivated
ras type (Asp17, Alae, Asn`, His116 Gly167 Ser181); c)
from K-rev-1-specific type to normal ras type (Gln61,
Glu', Thr1"); and d) from K-rev-1 specific type to ac-
tivated ras type (Lys61). The mutant cDNAs were in-
serted into an eukaryotic expression vector pcEXV-1
and co-transfected with a marker plasmid (pL2neo) (2)
into DT cells. Transfectant colonies were selected in
medium containing G418, and the proportion of flat col-
onies to the total G418-resistant colonies were scored
(Fig. 4).
The revertant-inducing activity of K-rev-1 was sig-

nificantly increased by one of the category 1 mutations
Thr59 (5.0-fold) and by another mutation Val12 to a
smaller extent (1.8-fold). On the other hand, the activity
is more or less diminished by the category 2 mutations,
which indicates that these conserved amino acid resi-
dues probably play similar, if not identical, roles in the
regulation of K-rev-1 protein and of ras proteins. Also,
the results with Ala38 and Asn' mutants, together with
the fact that K-rev-1 protein and ras proteins share an
identical amino acid sequence in so-called effector-bind-
ing domain, suggest that these proteins might interact
with a common, or structurally related, effector mole-
cule(s) with this domain (residues 32-40). On the other
hand, two category 3 mutations, Glu' and Thr160, in-
creased the frequency of reversion. It is interesting that
wild-type K-rev-1 has threonine at amino acid 61, be-
cause the Thr61 mutant of H-ras is known to be weakly
transforming (5). In this experiment, two mutations at
amino acid 61, the normal ras type (Gln) and the strongly
activated ras type (Lys), both decreased the frequency
of reversion, indicating the importance of the unique
Thr6' residue for the transformation-suppressor activ-
ity of K-rev-1.

Discussion
In earlier studies, we observed that wild-type K-rev-

1 induced reversion only in a small fraction of DT cells.
In the present study we have found that certain point
mutants of K-rev-1, including K-rev-1(Val12) and K-rev-
l(Glu63), induce reversions at higher frequencies. These
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FIGURE 3. Structure of the K-rev-1 cDNA. Comparison of the amino acid sequences of the predicted K-rev-i protein and ras proteins. Residue
identical to c-Ha-ras-1 is designated by a dash.
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FIGURE 4. Effects of various point mutations on the revertant-in-
ducing activity of K-rev-i pL2neo DNA (0.5 jig) and pcEXV(K-
rev-i cDNA) (5 jig) were co-transfected into about 106 DT cells, the
transfectant colonies were selected in medium containing G418, and
the numbers of total and flat colonies were scored. Predicted domain
structure of K-rev-i protein is presented at the top of the figure:
P, phosphate binding; E, effector binding; G, guanine binding; M,
membrane binding.

results are reminiscent of earlier observations that nor-
mal ras can tranform NIH 3T3 cells only when over-
expressed (6,7), whereas ras carrying certain point mu-
tations such as Val12 or Leu61 exhibit potent trans-
forming activities.

It has been proposed that ras proteins are regulated
by the guanosine triphosphate/guanosine diphosphate
(GTP/GDP) exchange mechanism analogous to that for
other well-characterized G-proteins [reviewed in Bar-

bacid (8) and McCormick (9)]; namely, a hypothetical
upstream signal stimulates the protein to release GDP
and to bind with GTP. Only this active, GTP-bound form
of the protein is able to interact with its effector mol-
ecule whose nature in mammalian cells is currently un-
known (see below). The system is switched off by a
specific GTPase-activating protein (GAP) which con-
verts the GTP-bound ras protein to the inactive, GDP-
bound form by potentiating the intrinsic GTPase activ-
ity of ras proteins. The activating mutations in ras are
thought to inactivate the intrinsic GTPase activity and/
or to decrease the affinity to GAP. In light of this model,
one could speculate that K-rev-V/GTP-complex, which
is expected to be stabilized by the activating mutations
such as Val12, may bind to the ras effector and inhibit
the transduction of the downstream growth signal. We
have recently found by using chimeric K-rev-l/H-ras
genes that a region (residues 1-59) including the con-
served putative effector-binding domain (residues 32-
40) is responsible for the transformation suppressibility
of K-rev-1 (10,11), which is consistent with this model.
However, an alternative model that K-rev-1 protein is
involved in a negative signal transduction pathway that
is separate from the positive pathway for ras protein
seems equally probable at this moment.
McCormick (9) proposed that GAP may be the effec-

tor itself for ras proteins, since the GAP-binding domain
in ras coincides with the genetically identified effector-
binding domain, and the enzymatic activity of GAP is
consistent with the model if one assumes that the ef-
fector receives and terminates the signal. Kituchi et al.
(12) reported that they could detect in the bovine brain
two distinct species of GAP specific to smg-p2l, the
bovine homologue of K-rev-1, and that the smg-
p21GAPs failed to activate the GTPase activity of H-
ras protein, whereas the original rasGAP failed to ac-
tivate smg-p2i GTPase. These findings indicate that, at
least, the switching-off mechanisms for ras and for K-
rev-1 are separate. Molloy et al. have reported the evi-
dence that platelet-derived growth factor-receptor ki-
nase phosphorylates rasGAP and alters its subcellular
localization from the cytosol to the plasma membrane

76



ANALYSIS OF K-rev-I TRANSFORMATION-SUPPRESSOR GENE 77

(13), providing a potentially important insight into the
nature of upstream signal for ras protein(s). The main
conclusion of the present study that the mode of reg-
ulation for K-rev-1 protein is probably very similar to
that for ras proteins raises the possibility that K-rev-i
protein may also be regulated by certain upstream, neg-
ative growth-regulatory signal.
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