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Differential Gene Expression during
Multistage Carcinogenesis
by G. Tim Bowden* and Peter Kriegt

The use of the mouse skin multistage model of carcinogenesis has aided our understanding of critical
target genes in chemical carcinogenesis. The mutagenic activation of the Harvey-ras proto-oncogene has
been found to be an early event associated with the initiation of mouse skin tumors by the polycyclic
aromatic hydrocarbon 7,12 dimethylbenz[a]anthracene and the pure initiator ethyl carbamate (urethane).
In contrast to chemical initiation ofmouse skin tumors, ionizing radiation-initiated malignant skin tumors
have been shown to possess distinct non-ras transforming gene(s). Differential screening of cDNA libraries
made from chemically initiated malignant skin tumors has been used to identify a number of cellular
gene transcripts that are overexpressed during mouse skin tumor progression. These differentially ex-
pressed genes include 13-actin, ubiquitin, a hyperproliferative keratin (K6), a gene whose product is a
member of a fatty acid or lipid-binding protein family, and a gene called transin or stromelysin. The
overexpression of the stromelysin gene, which encodes a metalloproteinase that degrades proteins in the
basement membrane, is hypothesized to play a functional role in malignant tumor cell invasion and
metastasis. We believe that the cloning, identification, and characterization of gene sequences that are
differentially expressed during tumor progression could lead to the discovery of gene products that either
play functional roles in skin tumor progression or in the maintenance of various progressive tumor
phenotypes.

Introduction
During the process of either chemical or radiation

carcinogenesis, the progression of target cells through
a premalignant to malignant state is accompanied by a
variety of morphological, cytological, and biochemical
alterations. Presumably, these phenotypic changes re-
sult from either qualitative alterations in encoded gene
products or changes in the levels of expression of cel-
lular genes. One class of cellular genes that is known
to be altered during carcinogenesis and is thought to
play a functional role in tumor formation is the cellular
proto-oncogenes (1-3). In addition to the proto-onco-
genes, there is a class of cellular tumor-suppressor
genes whose inactivation may be required for expres-
sion of the tumorigenic phenotype (4). Both chemical
carcinogens and ionizing radiation are known to induce
the types of mutations that have been observed to ac-
tivate proto-oncogenes to transforming oncogenes and
to inactivate tumor-suppressor genes. These mutations
can lead to structural changes in encoded gene products
or loss of normal control of expression of these genes.
The mouse skin model of multistage carcinogenesis is
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an ideal system in which to identify critical target genes
for the action of chemical or physical carcinogens. The
process of malignant tumor formation in the model can
be subdivided into distinct stages operationally defined
as initiation, promotion, and progression. A single sub-
carcinogenic dose of a chemical carcinogen or ionizing
radiation can be delivered to the target tissue, epider-
mis, and no tumors will appear unless the initiator is
followed by repeated doses of a tumor promoter such
as a phorbol ester. The majority of the tumors arising
from initiation-promotion protocols are benign papillo-
mas. In the progression stage, the benign papillomas
progress to form malignant squamous cell carcinomas
(SCCs), and a number of agents including some initia-
tors, certain peroxides, and ionizing radiation can en-
hance the progression of benign to malignant tumors
(5- 7). In addition, there are epidermal cell cultures that
represent each of the stages in the formation of the
malignant SCCs. Therefore, questions can be asked
about this model concerning the timing of certain gene
alterations including proto-oncogene activation, tumor-
suppressor gene inactivation, and differential expres-
sion of other cellular genes. In addition, potential func-
tional roles for altered gene expression in tumor pro-
gression can be assessed using mammalian expression
vectors and the various epidermal cell cultures that rep-
resent the stages in tumor formation.
Over the last 6 years, a number of laboratories have

used this multistage model to study proto-oncogene ac-
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tivation (8-15) and the differential expression (16-21)
oftumor-associated genes. Here we summarize the find-
ings that we have made concerning critical target gene
alterations during multistage mouse skin carcinogenesis
using both chemical initiation and ionizing radiation as
an initiator.

Dominant Transforming Genes in
Chemically and Radiation-initiated
Mouse Skin Tumors

Activated Harvey ras Oncogenes in
Chemically Initiated Mouse Skin Tumors

In collaboration with Balmain's laboratory (9), we
have demonstrated the presence of dominant trans-
forming activity in 7,12-dimethylbenz[a]anthracene
(DMBA)-initiated, 12-0-tetradecanoylphorbol-13-ace-
tate (TPA)-promoted papillomas, and malignant SCCs
using the NIH 3T3 transfection focus assay. This dom-
inant transforming activity was attributed to the acti-
vation of the Harvey ras (Ha-ras) gene, and the acti-
vation was considered an early event associated with
DMBA initiation because the activated oncogene was
shown in benign papillomas. Subsequently, Balmain's
laboratory (10) demonstrated that more than 90% of the
DMBA-initiated tumors had a specific A:T transversion
mutation at the second nucleotide of codon 61 of the Ha-
ras gene. This was demonstrated using DNA sequenc-
ing, restriction-fragment-length polymorphisms
(RFLP), and oligonucleotide probing. The A:T trans-
version mutation resulted in the creation of a new Xbal
site, which was detected by Southern blot analysis. It
was shown using RFLP analysis that the mutation was
heterozygous in most papillomas and homozygous and
amplified in some but not all of the SCCs.
More recently, work in our laboratory at the Uni-

versity of Arizona Medical School has focused on dom-
inant transforming activity in skin tumors initiated by
the carcinogen ethyl carbamate (urethane) (12). Ure-
thane is a pure initiator of mouse skin tumors that re-
quires metabolic activation to yield an ultimate carcin-
ogenic form, most likely an epoxide (22-24). Using the
NIH 3T3 focus-forming assay, dominant transforming
activity was detected in DNA isolated from SCCs ini-
tiated with urethane. Rearranged and amplified copies
of the c-Ha-ras gene were detected in DNA-isolated
transformant cell lines, indicating that an activated Ha-
ras gene had been transferred to the NIH 3T3 recipient
cells. Analysis of p2lras from the transformant cell lines
suggested that the activating ras mutation was present
in codon 61. Ultimately, the Ha-ras gene was shown to
be activated by a specific A:T transversion mutation at
the second position of codon 61. This mutation was de-
tected in both benign papillomas and SCCs, suggesting
the activation occurred early in tumor development.

Recent results (25) concerning urethane-induced lung
tumors in A/J mice showed evidence for consistent ac-

tivation of the Kirsten ras gene by the same A:T trans-
version mutation at codon 61. In addition, vinyl car-
bamate, a proximate carcinogen that is a probable
intermediate metabolite of urethane, produced mouse
hepatomas (26) with the same codon 61 A:T transversion
in the c-Ha-ras gene. Therefore, three different mouse
tumor types induced with urethane or its probable in-
termediate metabolite contained a high frequency
(though not exclusively) of ras gene activation by the
same A:T transversion mutation at codon 61. The model
of direct interaction of tumor initiators with specific
target bases in the ras proto-oncogene cannot be di-
rectly related to what is known about major DNA ad-
ducts formed with urethane or vinyl carbamate. Fol-
lowing administration of urethane or vinyl carbamate,
7-(2-oxoethyl)guanine was the only major adduct
identified in rat liver (24,27). It has been proposed
that this adduct may isomerize to yield an O6,7-
(1'hydroxyetheno)guanine adduct that potentially could
lead to a G:A transition mutation. Clearly, further work
needs to be done in this area to determine why the
observed A:T transversion mutation is predominant de-
spite the lack of evidence for DNA-deoxyadenosine ad-
ducts.

Distinct Non-ras Transforming Genes in
Ionizing Radiation-Initiated Mouse Skin
Tumors

In addition to studying chemical carcinogen-initiated
mouse skin tumors, we have focused on ionizing radia-
tion-initiated, TPA-promoted skin tumors and dominant
transforming genes. We found that ionizing radiation
can act as a weak initiator (28,29) of malignant skin
tumors (i.e., SCCs) when initiation is followed by TPA
promotion. In addition, we observed that ionizing ra-
diation was capable of inducing basal cell carcinomas, a
tumor histology not seen with chemical agents in the
mouse skin system. We have also observed that frac-
tionated doses of accelerated electrons were effective
in the third stage of tumor progression. DNAs from
mouse skin tumors initiated with ionizing radiation in-
cluding papillomas, SCCs, basal cell carcinomas (BCCs),
and pilomatrixomas demonstrated dominant transform-
ing activity by the production of transformed foci in the
mouse recipient line, NIH 3T3 (30). Dominant trans-
forming activity was not found in DNA from normal
epidermis or from the corresponding liver.
The NIH 3T3 transformants induced with SCC DNA

grew in soft agar and formed tumors in nude mice.
Southern blot analyses of primary NIH 3T3 transfor-
mant DNAs carrying transforming genes from radia-
tion-initiated SCCs indicated that the oncogenes re-
sponsible for the transformation of the recipient cells
were not Ha-ras, Ki-ras, or N-ras, nor were they erbB,
B-lym, met, neu, or raf. The transforming gene(s)
transferred by DNA from four SCCs were further char-
acterized by determining their sensitivity to digestion
with a series of restriction enzymes. The results ofthese

52



GENE EXPRESSION AND CARCINOGENESIS

experiments indicated that there were at least three
different transforming genes present in four SCCs in-
itiated with ionizing radiation.
Our data suggest that the target gene(s) for oncogenic

activation are different for chemical carcinogens and
ionizing radiation. Support for this finding has recently
been presented by Borek et al. (31) as well as by Kro-
lewski and Little (32). These workers have also detected
distinct non-ras transforming genes in ionizing radia-
tion-transformed rodent cells in culture. Perhaps it is
not surprising that activation of the ras proto-onco-
genes, and in particular the Harvey ras oncogene, was
not identified with radiation-initiated mouse skin tu-
mors as was consistently observed with chemically in-
itiated mouse skin tumors (8-12). The ras family of
oncogenes is activated by point mutations, and the
chemical initiating agents or their active metabolites are
known to be relatively efficient point mutagens.

In contrast, ionizing radiation is a relatively weak
point mutagen and instead induces larger genomic al-
terations. Goodhead (33) has compared the cross sec-
tions for ionizing radiation-induced mutations and in
vitro transformation. From these studies he has sug-
gested that the target for transformation is larger than
a single gene and smaller than a chromosome and may
involve more than one gene or chromosome. Rauth (34)
has suggested that direct activation of a transforming
gene may not be occurring. He speculated that a variety
ofgenes that control stability ofDNA or fidelity ofDNA
replication may be damaged by radiation and increase
the probability of errors in DNA during subsequent
rounds of DNA replication. Therefore, the likelihood of
a second step leading to activation of a transforming
gene or oncogene would increase. Our finding of at least
three different transforming genes in four radiation-
initiated malignant skin tumors supports Rauth's hy-
pothesis in that multiple transforming genes are likely
to result from secondary DNA damage due to the direct
effects of ionizing radiation on some cellular genes that
regulate DNA replication and repair or genomic sta-
bility.

Differential Gene Expression during
Mouse Skin Carcinogenesis

Expression Pattern of the mal Genes in
Benign and Malignant Skin Tumors

In addition to studying dominant transforming genes
as target genes activated during mouse skin carcino-
genesis, we have also identified and characterized cel-
lular genes whose expression is altered during tumor
development (15). To achieve this goal, we have used
differential screening ofcDNA libraries that were made
from polyA + RNA isolated from SCCs induced by
DMBA initiation and TPA promotion. The libraries
were screened using cDNA probes made from RNA

isolated from normal epidermis and SCCs. We isolated
six cDNAs (mall to mal6) that identified distinct RNA
transcripts that were overexpressed at different stages
during skin tumor progression. To investigate a poten-
tial role of the mal genes in the process of skin carcin-
ogenesis, we asked whether there was a correlation
between the stage of tumor development and the level
of expression of the different mal genes. In addition,
we sequenced the cDNAs for the mal genes and
searched gene sequence data bases for homology or
identity with known genes.
Our work to date has focused on the mall to mal4

genes. The mall gene was found to be overexpressed
in both benign and malignant skin tumors in comparison
to normal adult epidermis (15,35). Sequencing of the
mall cDNA has revealed extensive sequence homology
to a family of low molecular weight, hydrophobic, li-
gand-binding proteins. This family includes a differen-
tiation-associated protein in adipocytes (adipocytes
lipid-binding protein), mouse myelin P2 protein, a poly-
peptide growth inhibitor purified from bovine mammary
gland, fatty-acid-binding protein and cellular retinol-
binding protein (CRBP) [reviewed in Demmer et al.
(36)]. These low molecular weight, cytosolic, nonenzy-
matic proteins form a multigene family of proteins pre-
sumably derived from a common ancestral gene. These
proteins bind fatty acids or retinoids and are presumed
to function in some aspect of intracellular lipid metab-
olism. Some of them may play a functional role in pro-
liferation and differentiation.
Recent studies suggest a role for cellular retinol-bind-

ing protein in carcinogenesis (37-39). Several workers
have shown that squamous cell carcinomas of the head
and neck contained increased levels of cellular retinol-
binding protein compared to normal tissue. Since retinol
inhibits terminal differentiation of keratinocytes, it has
been suggested that the increased CRBP levels in squa-
mous cell carcinomas may cause the decreased terminal
differentiation observed in these carcinoma cells as com-
pared with normal keratinocytes. Whether the tumor-
specific overexpression of the mall gene may be linked
to similar defective processes involved in tumor de-dif-
ferentiation and cellular proliferation has to be deter-
mined by further experiments.
We have found that the mal2 gene transcripts are

also overexpressed in both benign and malignant skin
tumors. Our expression data have shown that there is
a higher steady-state level ofmal2 transcripts in benign
papillomas that are autonomous (i.e., no longer require
promoter treatment) compared to papillomas that are
dependent on continued tumor promoter treatment (35).
Sequencing of a ma12 cDNA and a ma12 genomic clone
has recently revealed identity with the sequence for a
mouse hyperproliferative keratin, K-6 (D. R. Roop, per-
sonal communication). The mal3 cDNA used in probing
of Northern blots has revealed multiple hybridizing
bands. The intensity and pattern of these mal3-related
bands or transcripts changed during tumor develop-
ment. In normal adult epidermis, low steady-state lev-
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els of three transcripts were detected (i.e., 1.3, 2.3, and
2.9 kb). In benign papillomas, the 1.3 and 2.3 kb tran-
scripts were overexpressed, whereas the largest 2.9 kb
transcript was not detectable. In malignant SCCs, this
largest transcript related to mal3 was always overex-
pressed, whereas the 2.3 kb transcript either was ab-
sent or was expressed at a lower level.
Sequencing of a full-length mal3 cDNA has shown

identity with the highly conserved coding region of the
ubiquitin gene (40). Our cDNA sequence contained 96
bases of 5' noncoding region and 152 bases of 3' non-
coding region. We have used both 5' and 3' specific
oligonucleotide probes to determine that the cDNA that
we cloned and sequenced corresponds to the ubiquitin
gene (which encodes four tandem open reading frames
of the ubiquitin monomeric protein) whose transcribed
message is the 1.3 kb transcript that is overexpressed
in both papillomas and SCCs compared to normal epi-
dermis (21). One of the six mal cDNA sequences, mal4,
detected 1.9 kb transcripts that were expressed at lev-
els 10-fold higher in SCCs in comparison to normal epi-
dermis. A full-length cDNA for mal4 was obtained from
a XgtlO cDNA library made from an SCC-producing cell
line, PDVc57. DNA sequencing of this full-length mal4
cDNA revealed identity with the mouse 3-actin cDNA.
Southern analysis ofDNAs from normal epidermis, pap-
illomas, and SCCs showed no evidence for amplification
or gross rearrangement of the ,B-actin gene during tu-
mor progression.
The RNA-RNA hybrid protection assay was used to

screen for the expression of mutated 1-actin(s) in mouse
skin tumors. No evidence for a mutation was obtained
in the benign and malignant skin tumors that were ex-
amined. Fluorescence microscopy of tumor sections
stained with rhodamine-conjugated phalloidin showed a
peripheral pattern of F-actin localization with no gross
differences between papillomas and SCCs. We also
found approximately equal amounts of P-actin protein
detected by two-dimensional gel electrophoresis and ex-
tracted from normal epidermis, papillomas, or SCCs.
These results indicated that the overexpression of P-
actin RNA in SCCs did not result in an increased steady-
state level of ,B-actin protein. This would indicate that
translational or posttranslational mechanisms may be
functioning to maintain a relatively constant cellular
concentration of actin in the presence of high levels of
,B-actin-specific RNA. It is also possible that in SCCs
and some papillomas there is an increased synthesis of
1-actin protein (paralleling the increased mRNA) but
that there is increased degradation of ,-actin protein
such that the steady-state level of protein is not altered.
An increased turnover of actin has been reported in
cultured fibroblasts from individuals susceptible to dom-
inantly inherited cancer (41). Because these predisposed
fibroblasts show reduced and disorganized microfila-
ments, features that have been associated with in-
creased motility of tumor cells in culture and increased
metastatic potential in vivo, it is clear that alterations
in the properties or metabolism of actins can have pro-
found effects on cellular phenotypes.

Expression Pattern of the Transin Gene
during Mouse Skin Tumor Progression
The rodent transin gene encodes an oncogene-indu-

cible protein that has been shown to be a rodent hom-
ologue (16) of an extracellular matrix-degrading metal-
loproteinase known as stromelysin (42). The rat transin
or stromelysin cDNA was originally cloned because of
its selective expression in polyoma virus-transformed
rat fibroblast cells and lack of expression in untrans-
formed parental cells (43). Later studies indicated that
stromelysin was present in cell lines transformed by a
number of different oncogenes. These results prompted
us to study the expression pattern of the stromelysin
gene in mouse skin tumors produced in an initiation-
promotion protocol (16).
When RNA was isolated from tumors resulting from

DMBA initiation and TPA promotion, stromelysin tran-
scripts were detectable in 73% of the SCCs, but only
6% of the papillomas expressed low levels of strome-
lysin. Similar results were obtained with tumors initi-
ated by N-methyl-N-nitroso-N'-nitroguanidine
(MNNG) and promoted with TPA. When mice were
treated with repeated applications ofMNNG, a protocol
which produces malignant tumors with a high proba-
bility of invading and metastasizing, 100% of the malig-
nant tumors contained very high levels of stromelysin
transcripts (44). In relation to the overexpression of the
stromelysin gene in invasive and metastatic skin tu-
mors, it is of interest that stromelysin when activated
can degrade fibronectin, laminin, proteoglyeans, gela-
tins, and to some extent collagen types III, IV, and V
(45). These protein substrates are found in basement
membrane that separates the epidermis from the dermis
and must be transversed by malignant skin tumor cells
for both invasion and metastasis to occur.

In addition to finding constitutive expression of the
stromelysin gene in malignant skin tumors, we have
also observed transient induced expression of the gene
in phorbol-ester-treated normal mouse epidermis (17).
This response in terms of steady-state level of stro-
melysin message is transient, with peak levels occurring
12 to 18 hr after TPA treatment and reduced to back-
ground levels by 24 hr. Stromelysin expression is also
stimulated by the incomplete second-stage tumor pro-
moter 12-O-retinoylphorbol-13-acetate (RPA) but not
induced by ethylphenyl propiolate, a nontumor pro-
moting, hyperplastic agent. The stromelysin transcripts
are localized to the basal cells of the TPA-stimulated
epidermis. These results suggested that the transient
induction of stromelysin during tumor promotion is a
phorbol-ester-specific response and that it is not a result
of the proliferative response to tumor promoters.
Our concept of the role of stromelysin in tumor pro-

gression is summarized as follows. Initiation of mouse
skin with chemical carcinogens results in the activation
of the Harvey ras oncogene in a small population of
epidermal cells. These cells with the activated ras on-
cogene are thought to be "initiated" cells that undergo
clonal expansion under the influence of a tumor pro-
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moter to give rise to a benign papilloma. Repeated
treatment with the tumor promoter also results in re-
peated, transient elevations in stromelysin. Papillomas
can be classified by their behavior after withdraw from
tumor promoter treatment. "Dependent" papillomas are
dependent on continuous promoter treatment or they
will regress, whereas "autonomous" papillomas are no
longer dependent on promoter treatment. Since a small
percentage of papillomas contain stromelysin tran-
scripts, we speculate that these tumors may have been
"autonomous" and premalignant. Stromelysin expres-
sion may be constitutive in these premalignant tumors
and no longer dependent on tumor promoter treatment.
Conversion to malignant tumors is usually accompanied
by constitutive expression of stromelysin. The reason
for the constitutive expression of stromelysin in malig-
nant SCCs is not because of either amplification or gross
rearrangement of the stromelysin gene (44). Since the
tumors with the greatest probability of becoming in-
vasive and metastatic have the greatest probability of
expressing high levels of stromelysin, we speculate that
this enzyme plays a causal role in promoting invasion
through basement membrane barriers. Experiments
being conducted in our laboratory are testing the hy-
pothesis that the overexpression of the stromelysin
gene is both necessary and sufficient for progression of
benign papilloma cells to malignant tumor cells and the
hypothesis that the overexpression of this gene is nec-
essary but not sufficient for progression.
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