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Metabolism of Phenol and Hydroquinone to
Reactive Products by Macrophage
Peroxidase or Purified Prostaglandin H
Synthase
by Michael J. Schlosser,* Robert D. Shurina,* and
George F. Kalf*

Macrophages, an important cell-type of the bone marrow stroma, are possible targets of benzene toxicity
because they contain relatively large amounts of prostaglandin H synthase (PHS), which is capable of
metabolizing phenolic compounds to reactive species. PHS also catalyzes the production of prostaglandins,
negative regulators of myelopoiesis. Studies indicate that the phenolic metabolites7of benzene are oxidized
in bone marrow to reactive products via peroxidases. With respect to macrophages, PHS peroxidase is im-
plicated, as in vivo benzene-induced myelotoxicity is prevented by low doses of nonsteroidal anti-inflammatory
agents, drugs that inhibit PHS. Incubations of either '4C-phenol or '4C-hydroquinone with a lysate of mac-
rophages collected from mouse peritoneum (> 95% macrophages), resulted in an irreversible binding to protein
that was dependent upon H202, incubation time, and concentration of radiolabel. Production of protein-bound
metabolites from phenol or hydroquinone was inhibited by the peroxidase inhibitor aminotriazole. Protein
binding from '4C-phenol also was inhibited by 8 pM hydroquinone, whereas binding from '4C-hydroquinone
was stimulated by 5 mM phenol. The nucleophile cysteine inhibited protein binding of both phenol and hydro-
quinone and increased the formation of radiolabeled water-soluble metabolites. Similar to the macrophage
lysate, purified PHS also catalyzed the conversion of phenol to metabolites that bound to protein and DNA;
this activation was both H202- and arachiodonic acid-dependent. These results indicate a role for macrophage
peroxidase, possibly PHS peroxidase, in the conversion of phenol and hydroquinone to reactive metabolites
and suggest that the macrophage should be considered when assessing the hematopoietic toxicity of benzene.

Introduction
The mononuclear phagocyte, a cell involved in immuno-

logical responses (1,2) and hematopoietic cell regulation
(3,4), has been implicated as a target of benzene-induced
toxicity (5-7). Lewis et al. demonstrated in vitro a selec-
tive and pronounced inhibition of macrophage function
following the addition of various benzene metabolites to
the culture medium (5). Recently, Thomas and Wierda
reported that bone marrow-derived macrophages, ex-
posed to the benzene metabolite hydroquinone or its ox-
idation product 1,4-benzoquinone, secreted less
interleukin-1 (6), a monokine capable of regulating the
synthesis of several hematopoietic factors (8). In addition,
MacEachern et al. reported an activation of resident bone
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marrow macrophages in mice receiving benzene or its
metabolites phenol and hydroquinone (7).
Phenol, hydroquinone, and catechol are major hepatic

metabolites of benzene, and their production appears nec-
essary for benzene-induced myelotoxicity (9,10). These
phenolic metabolites can undergo a peroxidase-catalyzed
activation to compounds that bind to macromolecules
(11-14). Peroxidases catalyze the oxidation of phenolic
compounds to quinones (12-14), which have been impli-
cated as mediating the toxic effects of benzene (15). Mac-
rophages possess peroxidatic activity contained, at least
in part, by prostaglandin H synthase (PHS), an enzyme
with both peroxidase and cyclooxygenase activities
(16,17). Other types of macrophage peroxidases may oc-
cur; however, since gene expression for myeloperoxidase
is lost during macrophage development (18), this peroxi-
dase is probably absent. Since phenol and hydroquinone
are good reducing co-substrates for the peroxidase of
PHS (19), macrophages have the capacity to oxidize these
benzene metabolites to compounds capable of reacting
with cellular macromolecules. Indeed, Post et al. have
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demonstrated that the macrophage can metabolize phe-
nol to protein-binding species (20).
The role of PHS in benzene-induced myelotoxicity

seems particularly relevant, as benzene administration
elevates bone marrow levels of prostaglandin E2 (21,22),
a negative regulator of myelopoiesis (4,23). Nonsteriodal
anti-inflammatory drugs, known inhibitors of cyclo-
oxygenase, have been reported not only to inhibit this
rise in prostaglandin, but to prevent benzene-induced my-
elotoxicity as well (21,22). Because nonsteroidal anti-
inflammatory drugs inhibit the cyclooxygenase-catalyzed
formation of prostaglandin G2 (PGG2), treatment with
these agents would also eliminate the peroxidase-
catalyzed reduction of PGG2, thereby avoiding the oxida-
tion of phenolic co-substrates, if present, to reactive com-
pounds.
The above evidence suggests that a) the macrophage

may be a target of benzene toxicity, b) PHS may be in-
volved with benzene's myelotoxicity, and c) the peroxi-
dase component of PHS in macrophages may activate
benzene metabolites to reactive products. The experi-
ments reported here were designed to investigate the ac-
tivation of two benzene metabolites, phenol and hydro-
quinone, by macrophage peroxidase and, in the case of
phenol, by PHS, a source of peroxidatic activity in mac-
rophages.

Materials and Methods
Materials
'4C-Phenol (110 mCi/mmole) and 14C-hydroquinone (22

mCi/mmole) were obtained from Amersham Corp.
(Arlington Heights, IL). Purified prostaglandin H syn-
thase (PHS; 42,000 units/mg protein) was purchased from
Oxford Biomedical Research, Inc. (Oxford, MI). Ultra-
pure phenol (+99%), hydroquinone, and 1,4-benzoquinone
were purchased from Fisher Scientific (Pittsburgh, PA).
Protosol and DNA markers were obtained from
NEN/Dupont (Boston, MA). Bovine serum albumin
(BSA), calf thymus DNA (type 1), Pronase, arachidonic
acid, hydrogen peroxide, L-cysteine-HCl, 3-amino-1,2,4-
triazole, and cetyltrialkylammonium bromide (CTAB)
were purchased from Sigma Chemical Co. (St. Louis,
MO). All other chemicals were purchased at the highest
available grade of purity.

Preparation of Macrophage Lysate
Macrophages were obtained from the peritoneal cavity

of male C57BL/6 mice (7-12 weeks old) 5 days following
an IP injection of 1.5 mL of a sterile 10% protease pep-
tone solution. Peritoneal cells were collected by centrifu-
gation, and erythrocytes were lysed with 155mM NH4Cl,
0.1 mM EDTA, and 10 mM KHCO3. Macrophages were
purified by adherence to plastic Petri dishes, which in-
volved incubating peritoneal cells (2 x 106/mL) in
RPMI-1640, containing 10% fetal calf serum, for 2 hr at
370 C with 5% CO2. Over 95% of adherent cells are mac-
rophages as assessed in this laboratory by morphology,

nonspecific esterase-positive staining, and phagocytosis
of sheep red blood cells. Macrophages were scraped from
the dishes, and cells (2 x 106/mL) were lysed by
homogenization in ice-cold 0.1 M phosphate buffer, pH
7.0, containing 0.1% CTAB. The resulting lysate was cen-
trifuged (1500g, 10 min), and the supernatant was col-
lected and used as the source of macrophage peroxidase.

Activation of "'C-Phenol and
"'C-Hydroquinone by Macrophage
Peroxidase or Prostaglandin H Synthase
Standard incubation mixtures (complete system) con-

tained 0.5mL of macrophage lysate (2 x 106 cells
lysate/mL), 0.5 mM of either "4C-labeled phenol or hydro-
quinone (1500 dpm/nmole), 0.5 mM H202, and 2 mg/mL
BSA diluted to a final volume of 1 mL with 0.1 M phos-
phate buffer, pH 7.0. Reactions were run at 370C and
were initiated by the addition of H202. In some experi-
ments, purified PHS (250 units/mL) replaced the macro-
phage lysate. These reactions were initiated with either
H202 (0.5 mM) or arachidonic acid (0.15 mM) and were
contained in a total volume of 0.5 mL. The cycloox-
ygenase activity of purified PHS was determined prior
to experiments by monitoring oxygen uptake using a Yel-
low Springs oxygen nionitor. Generally, reactions were
terminated after 60 min by the addition of trichloroacetic
acid (TCA). TCA-precipitable material was washed
several times with acetone, hexane:acetone (1:1) and
methanol:acetone (1:1). The extracted TCA pellets were
solubilized in NaOH and then neutralized with HCl.
Radioactivity of the pellets was determined by liquid
scintillation spectrophotometry.
For DNA binding studies, incubation mixtures con-

sisted of "4C-phenol, calfthymus DNA (1 mg/mL), and pu-
rified PHS (250 units/mL). When DNA was purified from
the incubation mixtures, the method of Boyd and Eling
(24) was followed, except that RNAase treatment was not
employed. The purity of DNA was determined by mea-
suring the A260/A280 ratio, which was consistently greater
than 1.9. Label irreversibly bound to DNA was deter-
mined by pipetting an aliquot onto filter paper discs and
washing with TCA, ethanol, and acetone (25). The discs
were dried, digested with Protosol, and radioactivity de-
termined by scintillation spectrophotometry.

DNA Binding Assessed with Neutral and
Alkaline Gel Electrophoresis
Mitochondrial DNA (mtDNA) was purified from the

livers of male Swiss-Webster mice as previously de-
scribed (26). Aliquots from incubations containing
mtDNA (0.1 mg/mL), '4C-phenol (0.5 mM, 5000
dpmlnmole), PHS (250 units/mL), and either arachidonic
acid (0.1 mM) or H202 (0.5 mM) were subjected to elec-
trophoresis following the procedure of Backer and Wein-
stein (27). Samples (1 ,*g DNA/well) were loaded onto a
0.7% agarose gel in a Tris (0.09 M)-borate (0.09 M)EDTA
buffer at pH 8.3 and electrophoresed at 25 volts for 16 hr
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at 220C. Gels were stained with ethidium bromide (10
Hg/mL) and photographed under ultraviolet light. Gels
were then dried and autoradiographed for 5 days at
-700C. In another experiment, mtDNA was elec-
trophoresed in an alkaline gel according to established
procedures (28,29). Alkaline gel electrophoresis dissoci-
ates double-stranded DNA into unfolded, single strands
(28).

Statistical Analyses
Results are expressed as the mean ± standard devia-

tion of triplicate incubations. Reaction mixtures that con-
tained various treatment regimes were compared to the
standard incubation (complete system) with one-way
ANOVA followed by Dunnett's t-test. (30). The criterion
for significance was set at p s 0.01.

Results
Activation of 14C-Phenol and
'4C-Hydroquinone to Protein-Binding
Metabolites
Incubations of the macrophage lysate with BSA and

"4C-phenol or 14C-hydroquinone resulted in an irreversi-
ble binding to TCA-precipitable material that was depen-
dent upon H202, incubation time, and the concentration
of radiolabeled phenol and hydroquinone (Figs. 1 and 2).
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FIGURE 1. The effect of H202 and incubation time on the activation of
"C-phenol (a) and "'C-hydroquinone (b) to protein-binding metabo-
lites catalyzed by the macrophage lysate.
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FIGURE 2. The effect of '4C-phenol and '4C-hydroquinone concentration

on their conversion to protein-binding metabolites catalyzed by the
macrophage lysate. Data points represent the net binding of radiola-
beled equivalents (i.e., reactions without H202 were subtracted from
the complete system).

The H202-dependent binding of phenol metabolites in-
creased linearly with time up to 30 min, while binding of
hydroquinone equivalents was essentially linear over the
60-min incubation period (Fig. 1). When different concen-
trations of phenol and hydroquinone were incubated with
macrophage lysates and BSA, binding increased linearly
up to 2 mM for phenol and up to 1 mM for hydroquinone
(Fig. 2).
The binding of phenol or hydroquinone equivalents to

protein was decreased significantly, compared to the com-
plete system, for incubations containing the peroxidase
inhibitor aminotriazole and for reactions caried out in the
absence of either the macrophage lysate or H202 (Fig. 3).
The effect of hydroxyl radical scavengers was inves-
tigated to determine if the macrophage lysate indirectly
activated phenol and hydroquinine through the genera-
tion of hydroxyl radicals. The addition of dimethysulfox-
ide (DMSO) or mannitol to standard incubation mixtures
unexpectedly resulted in a slight but significant increase
in both phenol and hydroquinone equivalents bound to
TCA-precipitable materials (Fig. 3).
Figure 4 illustrates the effect of the nucleophile cys-

teine on the conversion of phenol and hydroquinone to
protein-binding metabolites and on the formation of 14C-
labeled water-soluble metabolites by macrophage lysates.
The reduction of protein binding of phenol and hydro-
quinone equivalents by cysteine was accompanied by an
increase in the formation of water-soluble metabolites, in-
dicating that the reduction in protein binding was due, in
part, to a shift in the binding of "'C-labeled metabolites
to cysteine.
The effect of phenol on the macrophage-dependent me-

tabolism of "4C-hydroquinone and that of hydroquinone
on the activation of "4C-phenol are presented in Figure
5. The addition of 5 mM phenol to standard incubation
mixtures containing "4C-hydroquinone resulted in a sig-
nificant increase in hydroquinone equivalents bound to
protein (Fig. 5a). Similarly, a significant increase in the
formation of 1,4-benzoquinone, the oxidation product of
hydroquinone, was seen in the presence of 10 mM phe-
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FIGURE 3. The effect of aminotriazole, DMSO, and mannitol on the
H202-dependent activation of (a) "'C-phenol and (b) 14 C-hydroquinone
to protein-binding metabolites catalyzed by the macrophage lysate.

nol (Fig. 6). In contrast, the addition of hydroquinone to
incubations containing "4C-phenol resulted in a significant
decrease in phenol equivalents bound to protein (Fig. 5b).

Prostaglandin H Synthase-Catalyzed
Activation of 14C-Phenol
The conversion of phenol to protein-binding metabolites

was also catalyzed by purified PHS; this bindin was both
H202 and arachidonic acid-dependent (Fig. 7). 4C-Phenol
equivalents bound to TCA-precipitable material, from in-
cubation mixtures containing calf thymus DNA and PHS
or PHS only, were dependent on either H202 or arachi-
donic acid (Fig. 8). Reaction mixtures that contained
DNA, PHS, and either H202 or arachidonic acid demon-
strated an approximate 120% increase in phenol equiva-
lents bound compared to incubation mixtures in which
DNA was absent. As expected, arachidonic acid-depen-
dent binding of phenol equivalents to DNA that was ex-
tracted and purified from the incubation mixture yielded
results similar to those in Figure 8 (10.3 ± 0.6 nmole
bound/mL of incubation).
Incubation mixtures ofmtDNA with purified PHS, 14C-

phenol, and either arachidonic acid or H202, generated
two discrete mtDNA (ethidium bromide-staining) bands
after electrophoresis (Fig. 9). A mtDNA band co-
migrated with both the 21.8-kb phage DNA standard and
the control mtDNA; a smaller nonmigrating band re-
mained at the origin. Autoradiograms of the gels demon-
strated that 14C-phenol equivalents were bound to
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FIGURE 4. The effect of cysteine on the binding of radiolabeled metabo-
lites to protein and on the formation of radiolabeled water-soluble
metabolites generated from the macrophage lysate-catalyzed metab-
olism of (a) "4C-phenol and (b) 14C-hydroquinone. Water-soluble
metabolites were obtained from the supernatant of TCA-treated in-
cubation mixtures by extracting four times with an equal volume of
ethyl acetate.

mtDNA remaining at the origin (Fig. 10), which suggests
that phenol metabolites formed a macromolecular com-
plex with the mtDNA. Similar radioactive patterns were
seen for mtDNA electrophoresed in an alkaline denatur-
ing gel (results not shown).

Discussion
This laboratory has previously reported that macro-

phages convert phenol to protein-binding metabolites
(20). In the experiments presented here, binding of phe-
nol and hydroquinone to protein was dependent on the
macrophage lysate and H202 and was prevented by the
peroxidase inhibitor aminotriazole. Hydroxyl radical
scavengers were studied to determine if the macrophage
lysate played an indirect role in protein binding through
the generation of hydroxyl radicals, which can occur by
either a Fenton or Haber-Weiss reaction. Since hydroxyl
radical scavengers did not inhibit the protein binding, but
rather had a slight stimulatory effect, our results dem-
onstrated that the activation of phenol and hydroquinone
to protein-binding compounds is mediated by a macro-
phage peroxidase. Previous studies have also demon-
strated a peroxidase-catalyzed conversion of phenol and
hydroquinone to protein- or DNA-binding compounds;
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FIGURE 5. Effect of (a) phenol on the conversion of 4C-hydroquinone to
protein-binding metabolites and of (b) hydroquinone on the protein-
binding of '4C-phenol catalyzed by the macrophage lysate.
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however, these investigations used either isolated en-
zyme preparations or peripheral blood leukocyte perox-
idase (11-14).
Cysteine, a nucleophilic amino acid, markedly inhibited

the protein binding of phenol and hydroquinone, whereas
the formation of water-soluble metabolites increased with
the increase in cysteine concentration. These results in-
dicate a reaction of the phenolic reactive metabolites with
cysteine. With respect to phenol, about 75% of the reduc-
tion in protein binding at 1 mM cysteine could be recov-
ered as water-soluble metabolites, indicating that
cysteine-bound metabolites were extracted into ethyl ace-
tate or that cysteine was acting as an antioxidant reduc-
ing the phenoxy radical back to phenol. The latter has
been demonstrated with another-SH nucleophile,
glutathione, which has been shown to reduce phenolic
reactive intermediates back to their parent species (32).
At 1 mM cysteine, water-soluble metabolites of hydro-
quinone were dramatically increased, even though not
much effect on protein binding was observed, suggesting
that cysteine may have bound to metabolites that did not
bind protein.
The presence of phenol in reaction mixtures containing
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FIGURE 9. A 0.7% agarose gel stained with ethidium bromide and photographed under ultraviolet light. Lane 1, phage-DNA standards; lane 3,
mtDNA, '4C-phenol and arachidonic acid; lane 4, mtDNA, PHS, '4C-phenol and arachidonic acid; lane 5, mtDNA, '4C-phenol and H202; lane
6, mtDNA, PHS, '4C-phenol and H202; lane 8, mtDNA only.

hydroquinone, macrophage lysate, and H202 resulted in
a significant increase in the formation of 1,4-benzo-
quinone, a putative reactive metabolite of benzene (15).
The ability of phenol to stimulate the oxidation of hydro-
quinone, as well as other phenolic compounds, has been
previously demonstrated with purified peroxidase en-
zymes (14,33). These phenolic compounds are thought to
be directly oxidized by the phenoxy radical generated
from phenol, with this phenol-mediated oxidation occur-
ring in addition to the peroxidase-catalyzed oxidation.
Phenol not only stimulated the formation of 1,4-benzo-
quinone by the macrophage lysate, but significantly

elevated '4C-hydroquinone equivalents bound to protein,
which was first demonstrated in a peroxidase system by
Eastmond et al. (14). On the other hand, hydroquinone in-
hibited the macrophage-mediated conversion of 14C-
phenol to protein-binding metabolites. This inhibition was
expected since hydroquinone and phenol compete as
reducing substrates for peroxidases (14,19).
The nature of the macrophage peroxidase is not known;

however, the peroxidatic activity of PHS is likely since
macrophages have the capacity to secrete relatively large
amounts of prostaglandins (16). The peroxidase compo-
nent ofPHS is known to catalyze a variety of compounds
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FIGURE 10. Autoradiogram of a 0.7% agarose gel. Lane 1, mtDNA, PHS, "'C-phenol and H202; lane 2, mtDNA, PHS, "'C-phenol and arachidonic
acid; lane 3, mtDNA, " C-phenol and H202; lane 4, mtDNA, "'C-phenol and arachidonic acid.

to reactive intermediates (34). In the current study, the bound to mtDNA forned a macromolecular complex that
arachidonic acid-dependent activation of hydroquinone no longer migrated into either a neutral or alkaline gel.
and phenol by the macrophage lysate was not attempted, Similar electrophoretic patterns of DNA have been
since the concentration of CTAB used to solubilize the described for several carcinogens activated by horserad-
membrane-bound peroxidase also inhibits the cycloox- ish peroxidase (35). Alkaline gel electrophoresis would be
ygenase activity ofPHS (data not presented). However, expected to dissociate double-standed DNA into single
the addition of increasing concentrations of arachidonic stands migrating into the gel (28). Therefore, oxidized
acid to whole cell macrophages resulted in a linear in- products of phenol that bound to mtDNA probably
crease in 14C-phenol equivalents bound to protein (22). prevented its separation into distinct single stands.
The present study demonstrated a PHS-catalyzed ac- Subrahmanyam and O'Brien examined the nature of the

tivation of phenol to metabolites that bound to albumin, reactive species involved in the horseradish peroxidase-
calf thymus DNA, and mtDNA. The phenol metabolites catalyzed binding of 14C-phenol to calf thymus DNA, and
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concluded that polymers or polymeric-radical intermedi-
ates formed from phenol bound noncovalently to DNA
(12). The nature of mtDNA binding in the current study
is not known, but it may involve mtDNA cross-linking,
aggregation, or a noncovalent intercalation of polymeric
phenol metabolites.
The presence of peroxidases (i.e., myeloperoxidase)

other than PHS-peroxidase in our macrophage prepara-
tion is unlikely since macrophages, elicited into the rab-
bit peritoneal cavity with various stimuli and then puri-
fied by active adherence for 2 hr, contained peroxidatic
activity located in the rough endoplasmic reticulum (rER)
and perinuclear envelope (36). Peroxidatic activity in
these subcellular regions has been reported to be asso-
ciated with PHS (37,38). Also, macrophages formed dur-
ing differentiation of the HL-60 promyelocyte cell line
lose their gene expression for myeloperoxidase and be-
gin to synthesize PHS (18,39). In addition, the peroxidase
of elicited peritoneal macrophages lack the ability to cata-
lyze the decarboxylation of amino acids, which indicates
it is not a myeloperoxidase-type enzyme (40). Further-
more, monocytes isolated from the blood of a patient defi-
cient in myeloperoxidase developed peroxidatic activity
in the rER after surface adhesion, indicating that this en-
zyme was distinct from myeloperoxidase (41). Since these
studies only provide indirect evidence that the macro-
phage peroxidase of the current study is associated pri-
marily with PHS, future experiments are needed to de-
fine the exact nature of the macrophage peroxidase(s).
In summary, we have shown that macrophages activate

the benzene metabolites phenol and hydroquinone to
reactive compounds and that phenol stimulates the oxi-
dation and activation of hydroquinone. These data sug-
gest that activation is catalyzed by a macrophage perox-
idase, possibly PHS. We also demonstrated that PHS
catalyzed the activation of phenol to compounds that
bound to protein and DNA. Because the macrophage is
thought to play a key role in regulating hematopoiesis
(3,4), and since known inhibitors of PHS (i.e., nonsteroi-
dal anti-inflammatory drugs) prevent in vivo benzene-
induced myelotoxicity (21,22), the macrophage, a cell
abundant in PHS (16), should be considered when assess-
ing the hematopoietic toxicity of benzene.

This study was supported by the National Institute of Environmen-
tal Health Sciences ES03724-02.
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