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Relative Potency Estimation for
Synthetic Petroleum Skin Carcinogens
by J. M. Holland,* D. A. Wolf,t and B. R. Clark*

A procedure for quantitative analysis of skin carcinogenesis data, for the purpose of
establishing carcinogenic potency, has been applied to observations obtained from C3H mice
exposed continuously to synthetic and natural petroleums. The importance of total polynuclear
aromatic (PNA) content to the skin carcinogenic activity of the crude materials was also
examined.
Of three synthetic petroleums evaluated, all were shown capable of inducing skin neoplasms

within a two-year exposure period. Under comparable exposure conditions a composite sample
of five natural petroleums was noncarcinogenic. Comparison of the distributions of times to
initial skin neoplasm versus dose rate, for groups exposed to synthetic fossil liquids and the
reference skin carcinogen, benzo(a)pyrene, provided estimates of relative carcinotenic potency
for the synthetic petroleums ranging from 1/500 to 1/1400 the potency of benzo(a)pyrene. The
carcinogenic activity of a chemically isolated PNA fraction versus the crude from which it was
derived suggested that this fraction was responsible for the carcinogenic activity of these
synthetic petroleums in mouse skin.

Introduction
The number of chemical and physical agents that

are capable of evoking skin neoplasms is, for all
practical purposes, limitless. Since many of these
known or potential oncogens are valuable commodi-
ty chemicals, it is essential that methods be developed
to rank them in order of carcinogenic potency.
While we are in no position to judge the level of
potency at which risk to human beings becomes
unacceptable, we feel that an accurate means for
estimating relative potency is an essential first step
in this process.

This paper illustrates the approach we are using
to obtain relative potency estimates for various
synthetic and natural petroleum products applied
to the skin. Groups of genetically homogeneous
inbred mice are exposed repetitively to serial
dilutions of the test material. In the simplest case,
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observation establishes time to appearance of a
clinically typical epidermal neoplasm or to death of
the animal before it develops a tumor. A Weibull
distribution is fit to the time to tumor appearance
for each material-dose combination. Tumorigenic
efficiency of a combination is then measured by the
logarithm of the estimated Weibull scale parame-
ter. The Weibull model is preferred over other
alternatives because it has been shown to fit a wide
variety of time to tumor data (1-4).
To relate skin tumorigenic potencies for different

materials and mixtures tested at the same or
different times, we include a reference carcinogen
standard with each series of unknowns; this choice
is arbitrary. For our purposes we have selected
benzo(a)pyrene (BP), which is commercially avail-
able in high purity, chemically stable, and a highly
efficient mouse skin carcinogen.
For estimation of relative potencies, the Weibull

scale parameters are assumed to be a linear func-
tion of dose for each material on a log-log scale; dose
responses for materials in the same strain are also
assumed to be parallel. These assumptions appear
to be reasonable in this and in previous experi-
ments (2, 5). The potency of an unknown material
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Table 1. Materials tested for relative skin carcinogenicity.

Material Treatment group Weekly dose,amg

Synthoil crude A 3.0,0.6,0.12,0.9
Shale oil crude B 7.5,1.5,0.3,0.9
COED syncrude C 2.5,0.5,0.1,0.9
Natural petroleum blend D 6.0,1.2,0.24,0.9
Synthoil PNA isolate AN 0.15,0.03,0.006
Shale oil PNA isolate BN 0.15,0.03,0.006
COED PNA fraction CN 0.15,0.03,0.006
Petroleum PNA fraction DN 0.15,0.03,0.006
Benzo(a)pyrene BP 0.15,0.03,0.006
Acetone-cyclohexane solvent control S 0.15

a Applied in three increments on Monday, Wednesday, and Friday.

relative to the reference carcinogen is estimated by synthetic petroleums, their respective polynuclear
the ratio of dosages required to elicit comparable aromatic (PNA) fractions, reference standard BP,
oncogenic effects. and a vehicle control consisting of 70% acetone and

30% cyclohexane by volume. Exposures were to the

Materials and Methods shaved dorsal skin in a volume of 50 j1l commencingat 10 weeks of age and continuing for 24 months or

Animal Exposure until death. The materials used and absolute amounts
applied are given in Table 1. To simplify presenta-

Groups consisting of 25 male and 25 female tion of the data a letter code for each treatment
C3Hf/Bd mice were exposed to graded dosages of group is also given in Table 1. Details concerning

Table 2. Characteristics of materials tested for skin carcinogenicity.

Specific Pour
gravity, Viscosity, point, Sulfur, Nitrogen,

Material Type g/cm sec at 100°F OF Color wt-% wt-%

Synthoil crudea Centrifuged crude 1.136 80(1800F) - Brownish-black 0.52 1.30
product

Shale oil crudeb Centrifuged crude 0.909 66 30 Brownish-black 0.93 1.14
product

COED syncrudec Hydrotreated 0.940 48 43 Pale yellow 0.05 0.05
product oil

Natural petroleum sample
Wilmington, Natural 0.938 470 < 5 Brownish-black 1.59 0.631

Californiad (10%)
South Swan Hills, Alberta,Natural 0.826 37 < 5 Brownish-green 0.11 0.056
Canadad (20%)

Prudhoe Bay, Natural 0.893 84 15 Brownish-black 0.82 0.230
Alaskad (20%)

Gach Saran, Irand (20%) Natural 0.880 72 < 5 Brownish-black 1.57 0.226
Louisiana-Mississippi Natural 0.825 50 < 5 Brownish-green 0.17 0.067

sweete (10%)
Arabian lighte (20%) Natural 0.858 46 < Brownish-black 1.80 0.1-0.2

a Pittsburgh Energy Technology Center. From Run FB46 of western Virginia coal, Pittsburgh seam, Ireland mine; 1/2 ton/day,
24.5-ft catalytic reactor (450°C, 4000 psi), feed rate 25 lb/hr of 35% solid slurry in equilibrium coal-derived oil. Data provided by
Nestor Mazzoco, Pittsburgh Energy Technology Center.

b Laramine Energy Technology Center. Run No. 14, Colorado shale, Rifle, Colorado; Fisher assay 24.4 gal/ton from a 150-ton
above-ground simulated in situ retort. Data provided by John McKay, Laramine Energy Technology Center.

c FMC Corporation, Princeton, New Jersey, from western Kentucky coal. Analysis is not based upon this specific sample but is valid
for generically similar material; therefore, the data are presented for comparison purposes only. Data provided by Dr. C. A.
Hochwalt, Jr., Cogas Development Co., Princeton, New Jersey.

d Bureau of Mines routine crude oil analysis. Data provided by J. Dooley, Bartelsville Energy Technology Center, Bartlesville,
Oklahoma. Numbers in parentheses refer to the volume percent of each component in the composite sample.

e Analysis is not based on these specific samples, therefore the data are approximate and given for comparison purposes only; data
provided by J. Dooley. Numbers in parentheses as in footnote d.
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the source and history of the crude materials are
given in Table 2. The natural petroleum sample
consisted of six separate components, present in
the percentage listed in Table 2.
Mice were treated three times weekly, and at

each exposure were examined for evidence of skin
neoplasia arising in the area directly exposed to the
test material. When grossly typical skin neoplasms
were observed, the exact date of initial observation
was recorded. Only animals in which the initial
tumor grew progressively were included in the
analysis. When an animal died or was killed at the
end of an experiment, the skin tumors were excised
and the animal was subjected to gross necropsy for
detection of internal lesions and evidence of region-
al metastasis of skin neoplasms.
The observations, consisting of an animal

identification number, birth date, date of initial
treatment, and observation of initial skin neoplasm
(if any), and death or sacrifice date, were coded and
verified. Two computer programs provided by the
National Cancer Institute were used to estimate
the statistical distribution of time to tumor obser-
vation for each material-dose combination (6). One
program fits the Weibull distribution (D. G. Thomas,
personal communication), and the other obtains the
Kaplan-Meier nonparametric estimate of the distri-
bution. Each program utilizes the information on
animals that die or are killed before a treatment-
related tumor is observed.

Dosage Selection
These experiments were designed to evaluate

the relative contributions of PNA components of a
fossil liquid as determining factors in skin tumor
induction. If additivity of the effect of active
components is assumed, it should be possible to
correlate skin carcinogenicity with the amount and
composition of the PNA fraction.
To accomplish this we determined the weight

percent of the crude contributed by the PNA
fraction. Details concerning the methods used and
results for the remaining chemical class fractions of
these materials can be found elsewhere (7-9).
Gravimetrically determined percent PNA materi-
als were 5.1, 2.0, 6.0, and 2.6% for materials A, B,
C, and D, respectively. Under the assumption that
the PNA fraction of each crude was equivalent in
potency to BP, we set the weekly exposure for each
whole crude at a level equivalent to 0.15, 0.03, and
0.006 mg of BP. Since each crude differed in the
amount of material recovered as the PNA fraction,
the doses differed accordingly. To compare the
oncogenic potency of the whole material with that
of its respective PNA isolate and to compare
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isolates with each other, we treated separate groups
with equal quantities of each isolate.

Results and Discussion

Skin Tumor Dose Responses
The skin tumor data were analyzed separately

for each sex; however, significant (p < 0.05) differ-
ences were not observed, thus estimations and
comparisons were made after the data were pooled.
Skin tumors were induced in groups exposed to A,
B, C, AN, BN, and BP (Table 3). At the very low
rates used in this study, skin tumors were not
induced in mice exposed to natural petroleum or its
PNA fraction. Neither were skin tumors observed
in mice exposed to the PNA isolate derived from
the COED process hydrotreated coal liquid. On this
basis we conclude that the PNA compositions of
these materials differ considerably, a conclusion
amply illustrated by chemical analysis (7-9). Mean
time to tumor is also given in Table 3, but very little
can be concluded from this summary, primarily
because so few responses were obtained in many
groups. Pulmonary metastasis of syncrude induced
squamous carcinomas was confirmed histologically
in animals exposed to synthoil, shale oil and
benzo(a)pyrene. The frequency of metastasis paralled
the frequency of skin tumor induction. The true
metastatic potential of the skin tumors induced at
the two highest B(a)P concentrations could not be
determined because these groups were killed early
in the study, after nearly 100% of the animals had
developed a tumor.

Mortality
Over the 24-month duration of the experiment,

differences in mortality rate between treated and
vehicle control mice were also noted in mice ex-
posed to whole crudes. A chi-square and exact p
value (Cox's test) were used for the comparison of
treated with vehicle control mice. The results are
given in Table 4. Mortality significantly greater
than in controls (p < 0.05) occurred in groups A and
B at the highest dosage and in group C at next to
the lowest dosage. Mortality in BP-treated mice is
reported at the lowest dosage only, since the two
higher dosage groups were killed at 250 and 360
days of exposure, respectively. With the exception
of the 0.5-mg dose of C, mortality significantly
greater than in controls occurred in groups with a
high incidence of skin tumor. The most likely
interpretation of this observation is that skin tu-
mors were lethal, as a result of either metastasis,
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Table 3. Summary of the skin tumor response obtained in mice exposed repetitively to synthetic fossil liquids.

No. mice with
No. mice pulmonary Mean time to tumor,

Material Group Weekly dose, mg skin tumors metastases days (+ SE)

Synthoil crude A 3.0 46 9 490 (12.7)
D 0.9 13 2 569 (17.8)
B 0.6 1 0 596

Shale oil crude A 7.5 45 7 482 (14.8)
B 1.5 1 0 315

COED crude A 2.4 4 0 549 (45.8)
D 0.9 1 0 494
B 0.5 1 0 658

Synthoil PNA-isolate A 0.15 4 0 573 (38.9)
Shale oil PNA isolate A 0.15 2 0 541 (55.5)

B 0.03 1 0 485
C 0.006 1 0 392

Benzo(a)pyrene A 0.15 48 n.d. 146 (2.6)
B 0.03 49 2 216 (5.2)
C 0.006 43 7 513 (14.3)

Solvent control 0.15 0 - -

toxemia, or both. Other than mortality associated
with the presence of a skin tumor there was no
evidence of systemic toxicity as reflected by dose
dependent differences in mortality rate in treated
versus vehicle control groups. Microscopic effects
were restricted to the skin and consisted of hyper-
keratosis, epiliation and occasional ulceration due
to the non-specific irritant properties of the various
compounds.

Estimation of Time-to-Tumor
Distributions
The time-to-tumor distributions provide a clear

picture of the tumorigenic effects of the various
treatments by illustrating the patterns of tumor

occurrences. Furthermore, ifa particular parametric
form for the distribution is assumed, relative po-
tency estimates can be calculated. The distribution
of the time to tumor is estimated parametrically
and nonparametrically by methods that fully utilize
the information in both the uncensored and cen-
sored observations ("censored observations" repre-
sent mice that die from natural or accidental causes
or are killed at the end of the study before a
treatment-related skin tumor is induced).
The nonparametric estimates are calculated by

the Kaplan-Meier method (10). With unique obser-
vation times and no censoring, the Kaplan-Meier
estimate is a step function starting at 1 at the first
exposure time and decreasing at each of the or-
dered times to tumor by increments of the recipro-

Table 4. Differences in survival rate between mice treated continuously with either fossil liquids or vehicle alone

Material Weekly dose, mg No. of deaths Chi square Exact p (Cox's test)

Synthoild crude 3.0 38 24.6 < 0.01
0.9 19 0.8 0.36
0.6 18 0.8 0.37
0.12 13 0.04 0.85

Shale oil crude 7.5 32 13.1 <0.01
1.5 20 1.2 0.26
0.9 20 1.7 0.20
0.3 11 0.08 0.77

COED syncrude 2.5 22 2.4 0.12
0.9 18 1.0 0.32
0.5 23 3.8 0.05
0.1 22 3.0 0.08

Petroleum blend 6.0 10 0.2 0.68
1.2 14 0.02 0.89
0.9 11 0.4 0.50
0.24 15 0.02 0.89

Benzo(a)pyrene 0.006 28 9.1 <0.01
Solvent control 0.15 14
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TIME (days)

FIGURE 1. Proportions of mice without tumor associated with
continuous exposure to synthoil crude at various dosages:
(El) 3.0 mg/week, (0) 0.9 mg/week, (A) 0.6 mg/week; (-)
Kaplan-Meier estimates; (- -) (the Weibull fitted curve.

cal of the number of animals in the group. When the
observation times are not unique and there is
censoring, the step size is modified appropriately,
so that steps occur only when new skin-tumor-
bearing animals are observed.
The Kaplan-Meier estimates were used to visual-

ly compare dose groups for each material without
assumption of a distribution for the data. These
curves are represented in Figures 1-4 by solid lines.
To assess the explicit dose-response relationship
and, subsequently, to compare these estimates for
purposes of establishing relative potency, we have
assumed a parametric form for the distribution.
The model we have chosen is the three-parameter

0 100 200 300 400 500 600 700
TIME (days)

FIGURE 2. Proportions of mice without tumor associated with
continuous exposure to shale oil at approximately (O) 7.5
mg/week and (A) 1.5 mg/week; (-) Kaplan-Meier; (- -)
fitted Weibull.

Weibull model, under which the distribution func-
tion is 1- exp [-b(t - W)k], where t > w, b > O, k > 0.
The parameters k, w, and b are the shape, location,
and scale parameters, respectively, and t is the
time (days) to initial observation of a skin tumor.
The survivor function gives the probability that the
time to tumor exceeds t; w being a minimum latency
period before which no tumor can occur. Pike (1)
suggested that for a particular pure strain of animal
the k and w would be independent of the treatment.
Maximum likelihood estimates of a common k and a
common w for all groups in which two or more skin
tumors were observed gave values of 5.97 for k and
43.4 for w. On using these values for k and w, it was

100 200 300 400
TIME (days)

500 600 700

FIGURE 3. Proportions of mice without tumor associated with
continuous exposure to COED process coal liquid at
approximately (O) 2.4 mg/week and (0) 0.9 mg/week; (-)
Kaplan-Meier; (- -) fitted Weibull.
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FIGURE 4. Proportions of mice without tumor associated with
continuous exposure to BP at (O) 0.15 mg/week, (A) 0.03
mg/week, (0) 0.006 mg/week; (-) Kaplan-Meier; (- -) fitted
Weibull.
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possible to estimate the parameter b for each
material-dose combination. The estimated Weibull
time distributions for skin tumors are also shown in
Figures 1-4 by dashed lines superimposed over the
corresponding Kaplan-Meier nonparametric esti-
mates. The observed agreement between these two
methods is remarkable given the wide variation in
tumor frequencies and temporal distributions across
the different treatment groups.

Estimation of Relative Potency
The calculated scale parameter b, derived from

the Weibull fit to each material-dose combination, is
used to obtain estimates of relative carcinogenic
potency for materials tested in a common inbred
mouse strain under reasonably stable and reproduci-
ble environmental conditions. A weighted linear
regression of the logarithm of b on the logarithm of
dose in milligrams per week is performed for each
material for which responses were obtained in two
or more dose groups. Weighting for each data point
was the reciprocal of the number of tumors for that
material-dose combination. The additional constraint
that the regression lines be parallel for all test
materials and the reference carcinogen, an assump-
tion that appears to be reasonable when compounds
are compared in the same strain, makes it possible
to obtain estimates of relative potency, even when
responses are limited to occurrences in one group
or are low in frequency. Only data sets for materi-
als with responses in two or more dose groups
contribute to the common slope of the regression
lines.
The dose-response lines for these materials and

their respective tumor-inducing PNA fractions are
shown graphically in Figure 5. Open circles corre-
spond to the logarithms of the estimated b values,
and squares are the corresponding values on the
regression lines. The potency of a syncrude relative
to BP is the antilog of the absolute difference
between the synthetic petroleum's log b intercept
and the BP's log b intercept divided by the common
slope, these values coming from the fitted regres-
sion lines shown in Figure 5. Approximate 95%
confidence limits on the relative potencies were
calculated by use of Fieller's theorem (11). For
comparisons in which the unknown material is
unlikely to be as potent as BP, only upper 95%
confidence limits are provided. However, when
there is no justification for this both the upper and
lower limits are provided. By these procedures the
carcinogenic potencies of the three syncrudes and
their respective PNA isolates were determined
relative to BP. The results are summarized in Table
5.-
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FIGURE 5. The relationship between log b, a scale parameter
obtained from the Weibull fits with a constant k and w for all
comparisons, and the log dose rate: (0) log b from Weibull;
(C]) weighted, linear-parallel, least-squares fitted values at
each data point. Parallel lines drawn through the latter
points are the basis for the calculation of relative potency.
Treatment groups are identified by the letter codes in Table
1.

In the context of the original objectives of this
experiment, these observations permit several con-
clusions. (1) Diluting the crude materials so that
dosages of total PNA's were approximately equal
failed to equalize the skin tumorigenic potency of
the syncrudes; therefore factors other than PNA's
were contributing to the response, or qualitative
and quantitative differences in the composition of
the PNA class affected the response. (2) None of
the crudes was more than 1/500 as active as BP, and
the single coal liquid that had been upgraded by
hydrotreatment (COED syncrude) was 1/1400 as
potent a skin carcinogen as an equivalent amount of
BP. (3) The composite sample of natural petrole-
ums, while containing materials recoverable in a
PNA fraction, failed to elicit a measurable response
under the conditions of this bioassay. (4) A three-
fold difference in the skin carcinogenic potency of
this set of three active syncrudes was demonstrat-
ed. (5) The activity ofPNA isolates was substantially
greater than that of the parent mixture. This is

Table 5. Skin carcinogenic potency of synthetic petroleums
and PNA fractions relative to BP.

Relative Upper 95%
Material potency confidence limit

Synthoil crude 1/503 1/128
Shale oil crude 1/1380 1/275
COED syncrude 1/1440 1/263
Synthoil PNA isolate 1/119 1/27
Shale oil PNA isolate 1/51 1/13
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consistent with the view that skin carcinogenic
principles present within these complex materials
are concentrated within this chemical class.
Comparison of the potency of the parent mixture

with that of the respective PNA isolate will reveal
the likelihood that components present within this
fraction determine the mixture's activity. Table 6
gives these comparisons for both synthoil and shale
oil versus their respective PNA isolates. In this
instance, the relative potency of the synthoil crude
is 1/4 that of its isolate, and shale oil is 1/27 as potent
as its isolate. This suggests that components pres-
ent within the PNA fraction are accountable for
most of the skin carcinogenicity of the crude and
that differences that persist after normalization
reflect qualitative or quantitative differences in the
composition of this fraction.
The question of whether differences in the com-

position of the PNA isolates were responsible for
differences in the activity of the whole mixture
could be addressed by comparing the potency of the
two isolates. In this case the shale oil PNA fraction
was observed to be 2.3 times more potent than the
synthoil PNA fraction but the 95% confidence limits
on this estimate were 0.3-22.3. Thus the data were
inadequate to establish a statistically significant
difference between these fractions.

This study provides a basis for comparison of
other mixtures and chemical fractions of these
mixtures with the current materials. We anticipate
that as our quantitative data base expands for a
wide variety of contemporary synthetic fossil liq-
uids, it will become feasible to search for short-
term in vitro and in vivo biochemical correlates of
both exposure and effect. If these efforts are
successful, then an approach toward direct estima-
tion of human exposure risk may be developed with
organ-cultured human skin or human skin grafts
maintained on athymic nude mice.
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