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Organisms interact with each other mostly over local scales, so the
local density experienced by an individual is of greater importance
than the mean density in a population. This simple observation
poses a tremendous challenge to theoretical ecology, and because
nonlinear stochastic and spatial models cannot be solved exactly,
much effort has been spent in seeking effective approximations.
Several authors have observed that spatial population systems
behave like deterministic nonspatial systems if dispersal averages
the dynamics over a sufficiently large scale. We exploit this fact to
develop an exact series expansion, which allows one to derive
approximations of stochastic individual-based models without
resorting to heuristic assumptions. Our approach makes it possible
to calculate the corrections to mean-field models in the limit where
the interaction range is large, and it provides insight into the
performance of moment closure methods. With this approach, we
demonstrate how the buildup of spatiotemporal correlations slows
down the spread of an invasion, prolongs time lags associated with
extinction debt, and leads to locally oscillating but globally stable
coexistence of a host and a parasite.
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he law of mass action, also called the mean-field assumption,

was first introduced by Waage and Guldberg in 1864 (1), who
related the rates of chemical reactions to the proportional
amounts of the reacting substances. Volterra (2) brought the
concept to ecology by interpreting Lotka’s model (3) of auto-
catalytic reaction in terms of predator—prey interactions. Since
then, most mathematical models in ecology have been derived by
using the mean-field assumption, i.e., by replacing local densities
by global densities. In recent years, theoretical ecologists have
attempted to overcome the assumption by constructing models
that adequately capture spatial and stochastic population pro-
cesses (4—10). One approach is moment closure (11) and the
related methods of pair approximations (12, 13) and corrected
mean-field models (14). These methods have been very widely
used, and they have even provided the basis for advising policy
concerning real epidemics (15). However, the assumptions of
moment closure are justified by heuristic rather than mathemat-
ical arguments. Another approach is to derive stochastic equa-
tions by linearizing around a mean-field model (16, 17). This
method has proved useful for the study of spatial autocorrela-
tions and synchrony but is incapable of studying the impact of
fluctuations, e.g., to mean densities. Here we present a previ-
ously undescribed theory that combines elements from both
approaches and is able to capture the nonlinear effects of
fluctuations without resorting to ad hoc assumptions. Our
approach makes it possible to calculate exactly the corrections to
mean-field models in the limit where the interaction range is
large, and it provides insight into the performance of moment
closure methods.

We develop our theory in the context of the spatial logistic
model for point-like sessile individuals inhabiting d-dimensional
continuous space. We assume that each individual produces
offspring at a constant rate f and that the newborns disperse
according to a dispersal kernel D. An individual at location x is
assumed to have mortality rate p + a2;C(x — x;), where the
parameters w and « refer to density-independent and -depen-
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dent processes, the sum is taken over all individuals present at
the time, and the kernel C quantifies how competitive effects are
distributed in space. We assume that both C and D are radially
symmetric and normalized to integrate to unity over all space.

If interactions were global, the exact locations of the individ-
uals would not matter, and in the case of infinitely many
interacting individuals one would recover the deterministic
mean-field model

d (U)t
th( I (f = wq 0 — aq0?,

where q(©)(¢) describes the density of individuals at time z. In the
spatial case, the equation in corrected to

dq(t
MO _ (1 wao) ~ aq? - RO, [1]
where the additional term R(¢) relates to the covariance between
the density-dependent mortality rate and the distribution of
individuals (see Methods). Equations such as Eq. 1 are called
spatial moment equations (18), and they are an exact description
of the underlying Markov process. Unfortunately, spatial mo-
ment equations are mathematically intractable, because they
form an infinite hierarchy with each moment depending on
higher-order moments. Consequently, an extensive body of
literature (11, 19) has focused on developing moment closures to
approximate the dynamics of second spatial moments, such as
the term R(¢), or more generally the function g(Ax, ¢, At), by
which we denote the covariance between two samples of the
population density, taken at times ¢ and ¢ + A¢ with a spatial lag
Ax (see Methods). Although moment closure methods can be
used to supplement simulation studies, they rely fundamentally
on the ultimately arbitrary choice of the closure. The best closure
has been found not only to depend on the problem but also on
the region of parameter space under consideration (11).

Systematic Perturbation Expansion

We can, however, proceed in a mathematically rigorous manner
by developing a perturbation theory that assumes that the
interactions act over a long but finite range. In other words, we
may write

"0 4?0
Ld + L2d +oo

q() = q" @) +

where L is the characteristic length scale involved in the inter-
action kernels, and the coefficients ¢()(¢) can in principle be
derived up to arbitrary order (see Methods for details). In
Supporting Text and Table 1, which are published as supporting
information on the PNAS web site, we compute the terms ¢(V)(¢)
and ¢)(¢) specifically for the spatial logistic model. The major
advantage of the perturbative approach is that it becomes exact
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at the limit L — o, and that we know a priori that the error
behaves as O(L ~*"14) where n is the order of the approxima-
tion. Not surprisingly, the algebra involved in the computation of
the higher-order terms becomes increasingly complex. We there-
fore also propose a previously undescribed moment closure
scheme §(¢), which captures the first-order term g(1(z) exactly,
but summarizes the remaining terms by an approximation
derived from the linearization of the underlying stochastic
differential equation (20).

Denoting the Fourier transform with respect to the spatial
variable by ~, the core of the approximation §(¢) is given by the
equations

dglo,1,0) _
T Wle 08w, 1, 0) + V), [2]
dgle,t, A)) ]

which describe how spatiotemporal correlations evolve in space
and time. Whereas the variance of the noise V(¢) works as the
source, the term W(w, ) describes how correlations are built up
(due to dispersal) and dissolved (due to competition) at a given
spatial frequency (see Methods). Knowledge of the function
g(Ax, t, Ar) allows one not only to assess mean densities such as
q(t), but also more localized quantities. For example, by defining
the sampling variance Vy(t, At) as the expected variance in
population density within a sampling kernel % (see Methods), it
holds that

mm-f%m@@mmm

Examples

We next illustrate the general theory with three biological
examples, in which we assume an exponential dispersal kernel
and a “top-hat” competition kernel in the two-dimensional
space. Denoting the characteristic length scales for dispersal and
competition by L and L, we define D(x) = e "ML/ (27x|L 1),
and C(x) = 1/(wL?) if [x| = Lcand C(x) = 0 if [x| > L. Here
we assume for simplicity that the two length scales are equal,
although our method is not restricted to this case.

We first examine an invasion process in which a species
increases from a low density toward the stationary state. Both
during the invasion and at the stationary state, the spatial model
predicts a lower density than the mean-field model (Fig. 14). As
spatial correlations build up (Fig. 1B), the local density experi-
enced by a randomly selected individual becomes higher than the
global density, and thus mortality is elevated over the mean-field
level. The correlations are especially long-ranged in the invasive
phase (blue line in Fig. 1B), during which the population grows
patchily around initial foci (21, 22). Intriguingly, spatial corre-
lations do not necessarily decay monotonically with distance but
may become even negative (black line in Fig. 1B). This result is
due to the shape of the top-hat competition kernel, which
imposes strong competition at distances close to L, at which the
likelihood of dispersal is already limited. Fig. 1C shows that the
first-order correction g((¢) is always negative, but the second-
order term g®(¢) switches from positive to negative during the
invasive phase. As expected, the inclusion of the first-order term
leads to an asymptotically exact match with simulations, and the
second-order term improves the quantitative match (Fig. 1D).
The heuristic approximation §(¢) is asymptotically exact to the
first order and mimics the higher-order terms with reasonable
success.

Law et al. (23) suggested that a particular asymmetric power-2
closure describes well the dynamics of the spatial logistic model
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Fig. 1. Aninvasion process. (A) The time evolution of the density of individ-
uals based on the mean-field theory (dashed line), the first-order approxima-
tion (blue line), and the approximation §(t) (at this scale identical to the
second-order approximation) = one standard deviation (SD) of the sampling
distribution (solid lines). The bars show the mean =+ 2 standard errors from 250
simulation replicates, and the boxes show 1 SD among samples taken from Q.
(B) The spatial correlation function g [based on §(t) and simulations] is shown
attimes t = 1, 4, 10 (red, blue, and black lines). (C) The functions q(©(t) (black
line), g™(t) (red line), and g@(t) (blue line). (D) The performance of various
approximations against simulations at time t = 6. The black lines depict the
purely perturbative approach taken to order 0 (dotted line), 1 (dashed line),
and 2 (solid line). Red shows the approximation §(t), and the solid and dashed
blue lines show the symmetric and asymmetric (4-1-1) power-2 moment
closures, respectively. The simulations were run on a torus, the area of which
was adjusted as a function of L in such a way that the expected number of
individuals [according to §(t)] was 1,000. Parameters are as follows: f = 2,
n=1a=1L=Lc=Lp=2, L¢ys=10. Initial density was Poisson distributed
with g(0) = 1/10. Numerical integration in all figures was done by the classical
Runge-Kutta method.

under strongly aggregated patterns. They noted that although
their closure works well in practice, it breaks down the sixfold
symmetry of third moments, and should be seen as a convenient
practical tool rather than rigorous theory. As shown in Fig. 1D,
the closure of ref. 23 actually performs very poorly in the
parameter regime we have studied, whereas the symmetric
power-2 closure performs very well, as observed before (24). The
present results give insight to the performance of existing
moment closures: The symmetric power-1, -2, and -3 closures
actually lead to an asymptotically exact approximation, capturing
the first-order term ¢(1)(¢) correctly (as suggested by Fig. 1D),
whereas the asymmetric closures fail to do so (Supporting Text).
However, asymmetric closures have largely replaced symmetric
closures because the latter often perform poorly with short-
range interaction kernels (the opposite limit from the one we
consider here). In our view, the insight given by such carefully
tailored closures is limited, because they cannot be expected to
behave robustly over a wide range of parameters. This limitation
is illustrated by the poor performance of the closure of ref. 23,
which was designed specifically for the spatial logistic model, but
using different interaction kernels and different parameter
values.

We next consider a situation in which a species declines after
a sudden adverse change in the environment, caused, e.g., by
habitat degradation or climate change. We assume that the
environmental change causes a drop in the fecundity parameter
f, which makes the species decline either to extinction or to a
lower but positive stationary state (Fig. 24). If the species
declines below the extinction threshold, it is doomed to extinc-
tion, but the process will take some time. The number of species
that have fallen below the extinction threshold but have not yet
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Fig. 2. Decline after a sudden adverse environmental change. We assume
that the parameter f of the species considered in Fig. 1 drops attime t = 5to
a lower value 7. (A) The time evolution of the density of individuals with f=
0.5 (lower lines) and = 1.5 (upper lines), with symbols as in Fig. 1A. (B) The
black lines depict the length of the transient time Ty g5, measured as the time
from t = 5 until the density of individuals first differs at most by 0.05 from the
stationary density, |q(To.0s) — g(°)| < 0.05.Thered linesshow the equilibrium
density q(»). The dashed lines are based on the mean-field model, the solid
lines represent the approximation §(t), and the boxes (depicting mean)
and bars (depicting mean *+ 2 standard errors) are based on 65 simulation
replicates performed as in Fig. 1. Initial density was Poisson distributed with
q(0) = 1.

had time to go extinct has been called the extinction debt (25, 26),
a concept that is fundamental in conservation (27, 28).

Understanding the factors that affect the length of the tran-
sient period is a key component in the assessment of extinction
debt. In the context of a spatial but deterministic metapopula-
tion model, the length of the transient period 7 has been shown
to depend on the magnitude of the change in the environmental
conditions and on the species- and landscape-specific turnover
rate of populations (29). Most importantly, the transient time
depends on the distance to the extinction threshold, the transient
being especially long if the long-term survival of the species is
uncertain (29) (dashed lines in Fig. 2B). The individual-based
spatial and stochastic model considered here adds one critical
component to the formula of 7: Species with distance-limited
dispersal have a longer transient than species that disperse over
long distances (solid lines in Fig. 2B). This finding is due to the
fact that above and especially around the extinction threshold,
the new stationary state involves strong long-range correlations
that take time to build up.

The theory that we have developed here in the context of the
spatial logistic model generalizes to a wide range of spatiotem-
poral point process. For example, it can be used to study systems
of n interacting species and dynamics that do not converge to a
fixed point in the mean-field. To illustrate, we consider a spatial
version of the Lotka—Volterra host—parasite model (see Meth-
ods). The mean-field model leads to cyclic dynamics, where both
the amplitude and the frequency of the cycles depend on the
initial condition for an infinitely long time. Although the spatial
model initially follows the mean-field, small random fluctuations
develop gradually into spatial asynchrony, which leads to statis-
tical stabilization (30) of the mean density (Fig. 34). However,
locally the dynamics also continue to be cyclic at the stationary
state (Fig. 3 B and C), the characteristics of which are indepen-
dent of the initial state in contrast to the mean-field prediction.
Local synchrony extends over a considerable spatial scale, sev-
eral times the characteristic dispersal distance, and locally the
signal of periodicity remains strong over several cycles (Fig. 3 B
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Fig.3. Host—parasite dynamics. (A) The time evolution of the density of hosts
(red) and parasites (black). The dashed lines show the mean-field prediction,
and the solid lines show the approximation §(t). The bars show the mean * 2
standard errors from 100 simulation replicates run in a torus of area 5,000. (B
and C) The spatiotemporal correlation function of the hosts (gn) is based on
the approximation §(t) (B) and simulations (C), both continued from A to the
period t € [50, 70]. Parameter values are as follows: f=pu=1, a=2,
P(x) = e WL?/(27Ly), Lo = Lp=1.5. Initial density was Poisson distributed
with h(0) = 1, p(0) = 0.2.

and C). Similar qualitative results have been obtained before for
predator—prey systems (7, 31), the main difference being that our
results are asymptotically exact in the sense discussed above. As
illustrated in Fig. 3, the match between simulations and our
analytical results is indeed very good.

Discussion

Although many processes in theoretical physics can be viewed to
take place in a discrete lattice, it is often more natural to model
ecological and evolutionary processes in continuous space. In the
past decade, the emphasis in spatial ecology has shifted from
cellular automata toward such spatiotemporal point processes in
which interactions among individuals are described in terms of
distance-dependent kernels. Unfortunately, the theoretical ma-
chinery developed in physics for lattice models (32, 33) does not
apply to continuous-space models, and theoretical ecologists
have developed a diverse set of approximative methods. As well
as being related to moment closure methods, our perturbation
expansion shares some features with other techniques for study-
ing birth—death processes. The van Kampen system size expan-
sion (34) and the Urn model used in ref. 17 both assume that
individuals are well mixed within a large container or patch.
Within our model, the role of the “container” is played by the
interaction kernels, which effectively average the population
over a volume of order L?. However, previous series expansions
in population dynamics have focussed on the linearized fluctu-
ations about a mean-field limit and on the study of spatial
autocorrelation functions (7, 16, 17). The impact of stochastic
fluctuations on the spatially averaged population density re-
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quires the consideration of higher-order terms in the expansion,
as shown in ref. 20.

The results of this work demonstrate that the analysis of
continuous-space stochastic models is possible without resort-
ing to ad hoc assumptions. Our perturbation technique might
also be applicable to physical systems on a lattice if the
particles’ motion or interactions extended over many lattice
spacings, although the expansion would break down near a
critical point because it requires the correlation length to not
be larger than the interaction length. Although the systematic
perturbation approach provides an arbitrarily accurate solu-
tion within its radius of convergence, the increasing complexity
involved both in the algebra and in the numerics makes it
difficult to go beyond the second-order theory. The approxi-
mation §(¢), which can be viewed as a mixture of symmetric
power-1 and power-2 closures, provides an alternative that is
asymptotically exact and also performs reasonably well for
relatively short-ranged interaction kernels. Because it is based
on mathematical arguments rather than on a fit to simulations,
it is expected to behave robustly over a wide range of models
and parameter space.

Methods

We rewrite the spatial logistic model by associating with each
individual a delta distribution, so that the state of the system is
described by a(x, t) = 2;8(x — x;), where the sum runs over all
individuals present at time ¢. We split the distribution of
individuals as a(x, t) = q(t) + s(x, t), where q(¢) = Ela(x, t)]
is the expectation over stochastic realizations, and s(x, ¢) rep-
resents the stochastic fluctuations. We assume that the initial
condition is drawn from a probability distribution that is homo-
geneous with respect to space, so that g(¢) does not depend on
x. In this notation, the second moments g(Ax, #, At) and R(¢) and
the sampling variance Vy(¢) are defined as

g(Ax, t, At) = E[s(x, t)s(x + Ax, t + Ar)],
R(t) = aE[(C * s)(x, t)s(x, t)],
Volt) = E[(H * 5)(x, 1)].

Systematic Perturbation Expansion. The systematic perturbation
expansion is based on the hierarchical set of spatial moment
equations that describe the dynamics of the nth order moment
with the help of moments up to order n + 1. Such equations are
exact, and they have been derived in the moment closure
literature. The key to our method is the observation that we can
assess the leading order (in terms of 1/L¢) of the nth order
central moment, which we define as

G,(x1, ..., x,, 1) = E[s(x, 1) - -s(x,,, 1)].

To do so, we extract from G, a combination of lower-order
moments in such a way that the residual term G, is smooth and
vanishes as the maximum distance between the n points diverges.
To illustrate, we describe here such a decomposition for the
second, third, and fourth moments. For the second moment, this
decomposition reads simply as

Go(xy, %2, 1) = q(1)8(x; — x2) + G3(x1, X2, 1), [4]
where the term with the delta distribution arises as the two
points may coincide (x; = x»). Similarly, we may write the third
moment as

G3(X1, X2, X3, [) = q(t)5(x1 - X2)8(X1 - X3)
+ 2y kep G5, xp, 1)80x; — x;)

+ G?;(XI,XQ,X'V:., t)’ [5]
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where the three permutations P = {{1, 2, 3}, {1, 3, 2}, {2, 3,
1}} correspond to the possibilities by which two of the three
points may coincide. The fourth moment can be written as

Gy(xy, X2, X3, X4, 1)
= q(0)30c; —x2)80x; — x3)8(r; — x4)
+ 2 jkner, G0, x5, 1)8(x; — x) 8(x; — x)
+ 2y janer, [q(02 + Gh(x;, xp, 1)]80x; = x)8(xx — x)]
+ 2 jkner, [ G5 (xk, xp, 1)+G 50X 0,X1,1) 18 (x; — X))
+ 24 jxner, G5y, x5, )G 5(xy, x4, 1)
+ Gh(xy, X2, X3, X4, 1), [6]
where the permutations are defined as
Py ={{1,2,3,4},{1, 3, 2,4}, {1, 4, 2, 3}},
P,={{1,2,3,4},{2,1,3,4},{3,1,2,4}, {4, 1, 2, 3}},
Po={{1,2,3,4},{1,3,2,4},{1,4, 2,3}, {2, 3, 1, 4},
{2,4,1,3},{3,4, 1, 2}}. [71

Here the terms with the delta distributions refer again to cases
in which some of the four points coincide. However, for the
fourth moment and moments beyond that, it is not enough to
account just for such singular terms. To see why this is the case
assume that all of the four points are different but located so that
x1 and x, are close to each other, but far away from x3 and x4,
which in turn are close to each other. In such a case, even if the
distance between the two pairs of points diverges, the fourth
moment will attain a nonzero value, which is captured in our
decomposition by the term G3(x;, x;, £)G5(xk, X1, 1). After the
extraction of this term, it holds that G vanishes as the maximum
distance between the four points diverges, and the contribution
from G} is of lower order. By ignoring G4, we can describe the
dynamics of the third moment up to leading order, which in turn
gives the dynamics of g(¢) up to the order L~2¢. In general,
ignoring the residual G;, gives the dynamics of g(¢) up to the
order L~=("=2_The rest of the derivation is basically algebra, in
which the key is to drop systematically all terms that are of higher
order than the one under construction. The resulting second-
order expansion for the spatial logistic model and its derivation
is given in full detail in Supporting Text.

Approximation §(t). The Markov process can be written as the
stochastic differential equation (20)

da =[f(D*a)— pa — a(C* a)aldt + dn, [81

where dn represents spatial shot noise, the properties of which
are determined by the underlying Markov process. As shown in
Supporting Text, the covariance of the noise is given by

Eldn(x, )dn(x', t")] = V(£)8(x — x")d(t — t')dtdt’,
where V/(¢) is given by
V(o) = (f + wq(t) + aq(t)® + R(). [9]

By subtracting the expected value from both sides of Eq. 8 we
find that the stochastic term satisfies

ds =[f(D*s)— us — aq(s + (C*s))]dt +dn + Zdt, [10]

Ovaskainen and Cornell
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where Z = R — a(C * s)s. Because Z is a combination of a
product and a convolution, the equation can not be solved in the
closed form. We approximate Z by Z = —Rs/q, which can be
justified by matching the expectation of Z both at points in which
there is an individual and at points where there are no individuals
(see below). Taking the Fourier transform f(w) = J
f(x)e2mexdx gives

di(w, 1) = A(w, )§(o, Hdt + di(o, t) + Z(o, t)dt,
where A(w, 1) is given by
Ao, 1) = fD(w) = p = aq()[1 + C(w)]. (1
We define
G(wy, wy, t, At) = E[§(w1, 1)§(w,, t + AD)],
W(w) = A(w) = R/q.

Because the second moment does not depend on the absolute
location, it holds that G(w1, wa, t, At) = g(w1, t, Af)8(w; + w2).
We obtain

dG(wy, wy, t, 0)
= E[((wy, 1) + ds(wy, 1)) (S, 1) + dS(wy, 1))]
— G(wy, wy, t, 0)
= [W(wy, t) + W, )]G(wy, w,, t, 0)dt
+ V() dtd(w; + ),
from which Eq. 2 follows. Eq. 3 follows as
G(wy, wy, t, At + dt) — G(wy, wy, t, At)
= E[(5(w1, 1)(§(wa, t + At) + d§(w,, t + Al))]
— G(wy, 0y, t, Ab)
= W(w,, t + A)G(wy, w,, t, Ab)dt.

We next justify the approximation Z ~ Z, = —Rs/q by
showing that it captures the expected value of Z both at points
in which there are and are not individuals. Let us first assume
that a point x has been chosen randomly from R?, in which case
it is also (with probability 1) a point in which there is no
individual. Because the point has been chosen randomly, E[(C *
$)(x, t)] = 0. Because the point does not contain an individual,
s(x,t) = —q(t). Thus, E[(C*s)(x, t)s(x, t)] = 0 and E[Z(x, t)] =
R(t) = Zo(x, t).

Let us then assume that the point xo has been chosen
randomly among the locations of the individuals and restrict x
here to a small neighborhood around the point x¢, so that s(x,
t) = 8, (x) — q(t). Because aE[(C * s)s] = R(t) over the entire
space, and because the expectation is zero excluding the
locations of the individuals, we have aq(t)E[(C * s)(xo, 1)] =
R(t). Thus, E[Z(x, )] = —(R(t)/q(t))b:(x) + 2R(t). Because
Zo(x, 1) = —(R(t)/q(t))b,(x) + R(t), Zy captures the expecta-
tion of Z (in the sense of a distribution, so the discrepancy in
the constant does not count) in the small neighborhood around
the point xy.

Host-Parasite Model. We assume that each host (%) individual
produces offspring at a constant rate f, and the newborns are
redistributed according to a dispersal kernel D. The parasite (p)
attacks the hosts at rate o and with a kernel P, so that the rate
at which a host individual at location x is turned into a parasite
individual is a( P * p)(x). Hosts have no other mortality than that
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caused by the parasite, and parasites have a density-independent
death rate w. The mean-field model reads as

hO'(t) = fh) — ap@(O)h (1),
P() = ap(Oh (1) — up V),

and leads to cyclic dynamics. In the spatial case, the equations are
corrected to

h'(t) = fh(t) — ap(Oh(t) — R(),
p'(®) = ap(Oh(t) — pp(1) + R(@),

where

R(1) = aE[(P * py)(x, Dhy(x, )] = a J P(0)gp(t, w, 0)dw,

and where g is the matrix of intra- and interspecific correlations
g(Ax, t, At) = E[s(x, t)s(x + Ax, t + A)T].

To derive the approximation (A(¢), p(t)), we write the Markov
process as the coupled stochastic differential equation

dh =[f(D* h) — a(P * p)h]dt + dny,
dp = [a(P* p)h — ppldt + dm,.

To utilize vector notation, we define @ = (h p)?, ¢ = Ela] =
(gn qp)T.s =a — q,and dn = (dn;, dm,)T. The covariance of the
noise is given by

E[dn(x, )ydn&', t')T] = V(t)8(x — x')8(t — t')dtdt’,
where

Vo) = (fqh + aq,q, + R

—aq,q, — R )
—aqpqn — R ’

nq, + aq,qn + R

Proceeding as in the single species case and making the
approximation

R - a(q)*ps)h: = _th/qhy

we obtain
dg(w, t,0) - _ _ B r
a W(w, H§(w, t, 0) + [W(o, H§(w, t, 0)]" + V1),
where
_ (fD(w) = ag, — R/q;, —aq,P(w)
Ww, 1) = (aqp + R/qz —p aqﬂ’(w))‘

Eq. 3 holds as such also in the matrix notation. We note that the
sampling variance generalizes simply as

Vgt At) = E{L(9H % a)(x, 1) — g,0)]

[(H*a)(x, t + At) — q;(t + A}
= J j{(w)zgij(a}, t, At)dw.
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