Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1982 Apr;44:63–66. doi: 10.1289/ehp.824463

Sensitive periods of susceptibility to auditory trauma in mammals.

J C Saunders, C S Chen
PMCID: PMC1568963  PMID: 7044777

Abstract

Evidence is presented to support the hypothesis that the cochleae of young animals are more susceptible to auditory trauma than the cochleae of the adult. A sensitive period of heightened susceptibility to acoustic trauma from noise exposure has been demonstrated in three mammalian species. The cochlear pathology associated with this trauma is severe damage to the outer hair cell system. Abnormal growth of auditory evoked responses recorded in central auditory nuclei accompanies the receptor damage during the sensitive period. There is evidence of a similar sensitive period of susceptibility to cochlear insult from ototoxic drugs. The time frame of the sensitive period may be different for drug or noise insult to the cochlea, but the principal pathology of outer hair cell loss remains the same in both cases. The implication of these sensitive periods to auditory trauma, for human development is considered.

Full text

PDF
66

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bock G. R., Saunders J. C. A critical period for acoustic trauma in the hamster and its relation to cochlear development. Science. 1977 Jul 22;197(4301):396–398. doi: 10.1126/science.877565. [DOI] [PubMed] [Google Scholar]
  2. Bock G. R., Seifter E. J. Developmental changes of susceptibility to auditory fatigue in young hamsters. Audiology. 1978 May-Jun;17(3):193–203. doi: 10.1080/00206097809086951. [DOI] [PubMed] [Google Scholar]
  3. Dodson H. C., Bannister L. H., Douek E. E. Further studies of the effects of continuous white noise of moderate intensity (70--80 dB SPL) on the cochlea in young guinea pigs. Time course and distribution of hair cell degeneration. Acta Otolaryngol. 1978 Sep-Oct;86(3-4):195–200. doi: 10.3109/00016487809124736. [DOI] [PubMed] [Google Scholar]
  4. Ehret G. Correlations between cochlear hair cell loss and shifts of masked and absolute behavioral auditory thresholds in the house mouse. Acta Otolaryngol. 1979 Jan-Feb;87(1-2):28–38. doi: 10.3109/00016487909126384. [DOI] [PubMed] [Google Scholar]
  5. Falk S. A., Cook R. O., Haseman J. K., Sanders G. M. Noise-induced inner ear damage in newborn and adult guinea pigs. Laryngoscope. 1974 Mar;84(3):444–453. doi: 10.1288/00005537-197403000-00008. [DOI] [PubMed] [Google Scholar]
  6. Lenoir M., Bock G. R., Pujol R. Supra-normal susceptibility to acoustic trauma of the rat pup cochlea. J Physiol (Paris) 1979;75(5):521–524. [PubMed] [Google Scholar]
  7. Norris C. H., Cawthon T. H., Carroll R. C. Kanamycin priming for audiogenic seizures in mice. Neuropharmacology. 1977 May;16(5):375–380. doi: 10.1016/0028-3908(77)90075-2. [DOI] [PubMed] [Google Scholar]
  8. Osako S., Tokimoto T., Matsuura S. Effects of kanamycin on the auditory evoked responses during postnatal development of the hearing of the rat. Acta Otolaryngol. 1979;88(5-6):359–368. doi: 10.3109/00016487909137180. [DOI] [PubMed] [Google Scholar]
  9. Price G. R. Age as a factor in susceptibility to hearing loss: young versus adult ears. J Acoust Soc Am. 1976 Oct;60(4):886–892. doi: 10.1121/1.381169. [DOI] [PubMed] [Google Scholar]
  10. Saunders J. C., Bock G. R., James R., Chen C. S. Effects of priming for audiogenic seizure on auditory evoked responses in the cochlear nucleus and inferior colliculus of BALB-c mice. Exp Neurol. 1972 Nov;37(2):388–394. doi: 10.1016/0014-4886(72)90082-9. [DOI] [PubMed] [Google Scholar]
  11. Saunders J. C., Bock G. R., James R., Chen C. S. Effects of priming for audiogenic seizure on auditory evoked responses in the cochlear nucleus and inferior colliculus of BALB-c mice. Exp Neurol. 1972 Nov;37(2):388–394. doi: 10.1016/0014-4886(72)90082-9. [DOI] [PubMed] [Google Scholar]
  12. Saunders J. C., Hirsch K. A. Changes in cochlear microphonic sensitivity after priming C57BL/6j mice at various ages for audiogenic seizures. J Comp Physiol Psychol. 1976 Feb;90(2):212–220. doi: 10.1037/h0077198. [DOI] [PubMed] [Google Scholar]
  13. Stanek R., Bock G. R., Goran M. L., Saunders J. C. Age dependent susceptibility to auditory trauma in the hamster: behavioral and electrophysiologic consequences. Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol. 1977 Mar-Apr;84(2):465–472. [PubMed] [Google Scholar]
  14. Tepper J. M., Schlesinger K. Acoustic priming and kanamycin-induced chochlear damage. Brain Res. 1980 Apr 7;187(1):81–95. doi: 10.1016/0006-8993(80)90496-5. [DOI] [PubMed] [Google Scholar]
  15. Urban G. P., Willott J. F. Response properties of neurons in inferior colliculi of mice made susceptible to audiogenic seizures by acoustic priming. Exp Neurol. 1979 Feb;63(2):229–243. doi: 10.1016/0014-4886(79)90120-1. [DOI] [PubMed] [Google Scholar]
  16. Willott J. F., Henry K. R. Auditory evoked potentials: developmental changes of threshold and amplitude following early acoustic trauma. J Comp Physiol Psychol. 1974 Jan;86(1):1–7. doi: 10.1037/h0035922. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES