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Review of Published Studies on Gut
Penetration by Ingested Asbhestos Fibers

by Philip M. Cook*

During the 1970s, potential health risks associated with exposure to asbestos in drink-
ing water became a national concern. One of the key questions that arose from debate
over whether ingestion of mineral fibers could result in increased gastrointestinal cancer
risk was whether fibers can penetrate the gastrointestinal mucosa and thus have some
chance of residing in tissue. It is likely that such movement of a large number of fibers is a
necessary precursor for carcinogenesis following ingestion of asbestos. Studies of the
potential for fiber accumulation in tissues and body fluids following introduction of
asbestos to the alimentary canal have provided seemingly contradictory observations.
This review, which places particular emphasis on the impact of experimental and
analytical limitations on the evidential strengths of each study, indicates the likelihood
that a very small fraction of ingested microscopic asbestos fibers penetrates the gastroin-
testinal mucosa. A reliable estimate of the magnitude of long-term fiber retention in
tissues as a consequence of chronic human ingestion of asbestos cannot be made at this

time.

During the 1970s, potential health risks asso-
ciated with exposure to mineral fibers in drinking
water became a national concern. This concern
developed primarily because of reports of some
drinking water fiber concentrations in the range
of 108-109 fibers/L (1) and published observations
of increased risk of gastrointestinal and perito-
neal cancer among asbestos workers (2). Inhala-
tion of asbestos dust is accompanied by ingestion
of many fibers cleared from the respiratory tract
by mucociliary action. Thus a key question in the
evaluation of cancer risks associated with the
ingestion of asbestos involves the extent to which
microscopic fibers, under normal alimentary ca-
nal conditions, can migrate through the gastroin-
testinal mucosa. Such movement of fibers could
enable their residence in the bowel wall or, fol-
lowing hematogenous or lymphatic transport, the
peritoneum and tissues at other sites. It is likely
that such a movement of a large number of fibers
is a necessary precursor for carcinogensis follow-
ing ingestion of asbestos.

This paper will evaluate the published evidence

*Environmental Research Laboratory-Duluth, U.S. Environ-
mental Protection Agency, 6201 Congdon Boulevard, MN
55804.

for and against gut penetration and tissue accu-
mulation of ingested mineral fibers. Particular
attention will be paid to the influences of analyti-
cal techniques employed, fiber properties, and
physiological factors on the capability of each
investigation to provide useful information about
fiber penetration. Most of the work on this ques-
tion involves microscopic examination of tissues
or body fluids for the presence of fibers as a
consequence of a known ingestion exposure.
Many of these exposures involve controlled la-
boratory tests with rodents, but a number of
human environmental exposures have also been
investigated.

Gut Penetration by Durable
Particles Other Than Mineral or
Synthetic Fibers

Studies involving ingestion of particles other
than asbestos, mineral, or synthetic fibers provide
some background information generally in sup-
port of the movement of a variety of durable
particles through the gastrointestinal mucosa as
at least an occasional event. Evidence for human
intestinal uptake of particles as large as 75 pm is
provided by the observation of starch granules in
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blood minutes after ingestion (3). Volkheimer re-
ported that sleep, smoking, and caffeine increase
the number of starch particles in the blood. Dyed
cellulose particles were also identified in human
blood and urine following ingestion of specially
stained food (4). The cellulose fibers were found in
urine several weeks after ingestion.

Various sizes of latex spheres have been stud-
ied. Latex particles of 0.22 wm diameter were
reported to migrate from rat stomachs to lym-
phatics of the gastrointestinal mucosa and also to
liver and kidney tissues (5). Mice that drank
water suspensions of 2-um diameter latex spheres
for 2 months were found to have latex particles in
macrophages in intestinal Peyer’s patches (6).
LeFevre et al. (7) later reported that mice that
ingested 5.1-pm latex spheres had demonstrable
accumulations of the particles in intestinal Pey-
er’s patches, lungs, and mesenteric lymph nodes.
The frequency of penetration was very small, and
evidence for intestinal uptake of very large 15.8-
pwm latex spheres was not found. Although the
difference in size may explain the absence of 15.8-
pm sphere in tissues, a 50-fold lower number of
large particles ingested appears to have created a
corresponding loss of sensitivity for detection of
the large particles by optical microscopy.

LeFevre et al. (7) did not find evidence for
passage of large latex spheres from the intestinal
lumen to the portal and peripheral blood as re-
ported for larger starch granules by Volkheimer
(3). The finding of some particles in mesenteric
lymph nodes with a relative absence in the liver
was offered as evidence for the restriction of
transported particles to the lymphatic system.
Most particles that penetrate the Peyer’s patch
epithelium are sequestered in macrophages and
may be transported back into the intestinal lu-
men without further transport into the body (7).

Penetration of mouse intestine by 20- to 50-nm
diameter carbon particles occurs almost exclu-
sively through the epithelium covering Peyer’s
patches (8). India ink and ferritin microparticles
are rapidly transported from the intestinal lumen
by means of pinocytosis observed by electron mi-
croscopy of mouse Peyer’s patch epithelial cells
(9). Horseradish peroxidase uptake has been simi-
larly described (10). Carbon particles from a 0.5%
India ink suspension (20-25 nm diameter) were
observed to pass almost exclusively through the
posterior intestine of the Amazon molly, Poecilia
formosa (11). Peyer’s patches are apparently ab-
sent from the intestine of lower vertebrates. In-
traperitoneal injection resulted in carbon particle
accumulation in the heart, mesentery, and espe-
cially the head kidney of the fish.

A final observation of apparent passage of rela-
tively large particles through the intestinal mu-
cosa is provided by the presence of opal-phytoliths
in digests of lymph nodes (12), and kidneys (13) of
sheep that are thought to ingest up to 20 g of such
particles with a daily intake of plant material.

As with many studies of ingested asbestos fi-
bers, insufficient information is available con-
cerning numbers of particles in nonasbestos expo-
sures and particle detection limits achieved for
the tissue preparation and microscope procedures
employed to allow a comparison of the observa-
tions summarized above. In some regards, at-
tempts to determine if ingested asbestos fibers
penetrate the gastrointestinal mucosa provide a
better test of durable particulate behavior in gen-
eral. Fiber exposures can provide large numbers
of particles available for penetration and the dis-
tinctive shapes and elemental compositions of
mineral fibers allow better positive identification
of the particles in the tissue milieu. On the other
hand, the small size of most mineral fibers re-
quires electron microscopic observation of tissues
and consequent restrictions on the volume of tis-
sue capable of being searched for fibers.

Experimental Factors to Consider
in Evaluating Studies of Fiber
Penetration of Tissues

Examination of tissues or body fluids with opti-
cal or electron microscopic techniques for identifi-
cation of mineral fibers can be accomplished
either by examination of thin tissue sections or
bulk sample residues prepared by removal of car-
bonaceous and soluble material to concentrate
inorganic particles. Thin-section examination
provides information about the location of parti-
cle contaminants with respect to cells but is very
insensitive for finding microscopic particles be-
cause of the very small volume of tissue present
in a microscope field of view. A multitude of
biological, analytical, mineralogical, and kinetic
factors must be considered in order to evaluate
the significance of a particular finding of the
presence or absence of fibers in a sample.

Exposure

Important characteristics of the exposure dose
include the size and number of fibers available for
penetration of the gastrointestinal mucosa. Use of
very large fibers or preparations in which fibers
occur in large bundles or clumps for animal expo-
sures may provide few particles capable of pene-
tration. The ability to detect the passage of in-
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gested fibers to tissues or body fluids is increased
by the ease with which the fibers can be identified
microscopically. Durable, easily identified fibers,
which are unlikely to be present through contam-
ination of the samples or as a result of another
exposure route (inhalation), are especially good
tracers for ingested particle studies.

Asbestos and other mineral fibers possess suffi-
cient durability to pass through the acid condi-
tions of the stomach and penetrate the intestinal
wall without extensive dissolution. Recent work
demonstrates, however, that mineral fibers do
differ considerably in their long-term resistance
to dissolution while residing in the lungs or in
acid solutions (14). Alteration of fiber sizes and
shapes and splitting of some fibers to increase the
number of fibers in tissue can occur during the
dissolution process (14). Thus it is possible that
the dissolution of less durable fibers following
penetration of the gut may remove them prior to
examination of tissues, whereas other types of
fibers may undergo little change or be altered to
create many thinner fibers. Phagocytosis, trans-
port, and clearance of fibers are thought to be
dependent on fiber size with smaller fibers more
mobile. Thus, as these time-dependent processes
take place, the number and sizes of fibers at any
particular tissue site are likely to be changing.
The time from last exposure, the number of parti-
cles, and the characteristics of the particles can
therefore strongly influence the probability that
detectable numbers of fibers will reside in tissue
as a result of gut penetration.

Biological Factors

Since so little is known about mechanisms for
passage through the gastrointestinal mucosa and
subsequent movement of microscopic particles,
physiological factors that may influence penetra-
tion are unknown. The time over which exposure
takes place; the impact of massive fiber doses
such as used in some animal ingestion studies;
the nature of foods or fluids ingested with the
fibers; the species of animal exposed and the rela-
tive permeability of its gastrointestinal mucosa;
the role of mucosal tissue abnormalities; the age,
sex, health, and other characteristics of individ-
ual exposed animals; dietary or environmental
influences on the motility of the gut; and other
factors may determine whether fibers are found
when tissues from exposed animals are examined.

The selection of tissues or fluids for microscopic
analysis is complicated by a number of consider-
ations. The choice of any particular organ or site
for analysis ultimately involves guesswork about

where particles would travel after passing
through the gastrointestinal mucosa, how long
they would take to get there, how long they would
reside there, and whether they would concentrate
selectively in certain components of the organ.
The sampling of portions of organs or body fluids
is always coupled with the question of how repre-
sentative the sample is of the whole. Sample
selection must also consider the probability that
the finding of a particular kind of fiber in the
organ can be associated with a particular route of
exposure such as ingestion rather than inhala-
tion. '

Analytical Factors

Electron microscopic methods for quantitative
assessment of fiber concentrations in air and wa-
ter have in recent years been successfully adapted
to allow determinations of fiber concentrations in
tissues and biological fluids. Analytical limita-
tions present for air and water samples (15) are
generally more severe for tissue analysis, partic-
ularly when trace concentrations must be mea-
sured (16). The primary concerns for tissue analy-
sis are analytical sensitivity, accuracy, and
prevention of sample contamination.

Sample characteristics, choice of sample prepa-
ration method, and choice of microscope type and
conditions all determine the sensitivity of the
analysis. Tissues from different organs vary
greatly in their reaction to procedures for isolat-
ing inorganic particles from the organic matrix,
so that the particles can be concentrated into
smaller areas for microscope observation. Exami-
nation of thin sections frequently is incapable of
detecting fiber concentrations likely to be present
except in the case of lung tissue following high
inhalation exposure. Electron microscopy is re-
quired to detect most asbestos fibers that gener-
ally have diameters less than 0.5 pm when
present in tissues. Sensitivity is maximized
through digestion and/or low-temperature ashing
of large tissue volumes to produce concentrated
residues that are examined by transmission elec-
tron microscopy (TEM). Scanning electron mi-
croscopy (SEM), although capable of sufficiently
high magnification, produces images of sample
surface features that are more difficult to search
for individual asbestos fibers than TEM images.

Evaluation of reports of tissue analyses for
fiber concentrations is impossible without knowl-
edge of the detection limit achieved for each anal-
ysis. The detection limit is generally expressed as
the concentration of fibers equal to the finding of
one fiber in the portion of the sample examined.
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Reported concentrations must exceed the detec-
tion limit by a factor of at least three or four
before any degree of statistical significance is
achieved.

The presence of the fibers in blank or control
samples as a result of contamination obviously
raises the number of fibers that must be observed
in order to conclude that the fibers actually accu-
mulated in the tissue. Conclusions made regard-
ing the absence of fibers in tissue are weakened
when presented without a demonstration of capa-
bility to count the fibers in positive control or
spiked samples. When the percentage of recovery
is found to be low, it should be used to estimate a
more realistic detection limit for the analysis.

Some sample preparation techniques can pro-
duce large systematic losses of fibers. Other tech-
niques can increase the number of fibers by fiber
comminution. Chrysotile asbestos fiber concen-
trations are the most difficult to estimate because,
in addition to difficulty in identification due to
extremely thin diameters and the ease of intro-
duction as contamination, these fibers are readily
reduced to individual fibrils by surfactants, ultra-
sound, and other factors associated with sample
preparation. Analytical precision is enhanced
when sample preparations observed on the micro-
scope contain a uniform distribution of particles.
TEM grids produced by the carbon-coated Nucle-
pore filter method (16) are favored by many ana-
lysts for achieving uniform particle distributions
in which the number of particles observed in
replicate preparations by different laboratories is
in reasonable agreement (17).

Evidence for and against Fiber
Penetration

Several studies of tissues from subjects with
occupational exposure to asbestos have resulted
in reports of fibers in extrapulmonary tissues and
fluids. Wyss (18) reported fibers observable by
optical microscope in urine samples from asbestos
workers. Langer (19) reported concentrations of
asbestos bodies and uncoated fibers in the order
lungs >> kidneys > pancreas > liver for asbestos
workmen. Whether fibers arrived at these extra-
pulmonary sites via lung clearance and ingestion
or via migration from the lungs and dissemina-
tion throughout the body cannot be determined.

The dissemination of fibers throughout the
body has been demonstrated for fibers when intro-
duced by injection into the blood (20) or subcuta-
neously (21). Occasional passage of fibers through
membranes is suggested by the apparent cross-
placental transfer of fibers to fetuses in pregnant

rats injected through the femoral vein with chrys-
otile asbestos (23). SEM examination of tissues
from mice injected intraperitoneally with amo-
site, crocidolite, or chrysotile asbestos demon-
strated the penetration of the mesothelium by the
fibers (23). Amphibole fibers have also been ob-
served to migrate from the pleural cavity to the
interior of the lungs and the kidneys (P. M. Cook,
unpublished data).

More than 30 reports of examinations of tissues
from animals and human subjects exposed to as-
bestos through ingestion (without inhalation ex-
posure) were reviewed. Exclusion of multiple re-
ports of the same observations reduced the
number of reports to 19. Rather than discuss the
experimental details and results reported for
each study separately, Table 1 is provided as a
summary and comparison of all 19 studies. Much
of the information in Table 1 is presented to allow
the reader some idea of how each study meets
some of the criteria set forth in this review for
evaluating studies of fiber penetration of tissues.
Each reference should be consulted for a more
detailed evaluation of its experimental design,
data quality, and evidence for or against fiber
penetration of the gastrointestinal mucosa. In
many cases, incomplete information is available
in these reports for defining analytical sensitiv-
ity, significance of sample contamination, fiber
recovery efficiency of the sample preparation pro-
cedures, etc. The reduction of complex experimen-
tal design and results information to a few words
that will fit in the table also requires that only
the most generally correct characterizations can
be present. For example, the microscope tech-
nique is listed as SEM where that technique was
the primary method for determining fiber concen-
trations even though some tissue may have been
qualitatively examined by TEM. Other relevant
information, such as length of time from exposure
to tissue collection, is not presented in the table.

Most of the headings in Table 1 are self-explan-
atory. The plus or minus symbols for “evidence
for/against” indicate each author’s conclusions
with regard to whether the data reported sup-
ports fiber penetration. The fiber dose characteri-
zation ideally would provide the total number of
fibers passing through the digestive tract. Many
studies only report the mass of asbestos or per-
cent of the diet. The duration of exposure varies,
as shown in Table 1. In many cases, tissues were
analyzed from animals at different time intervals
following exposure. The variety of tissues ana-
lyzed in some cases is quite large. Positive or
negative results for each type of tissue are indi-
cated primarily on the basis of each author’s
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conclusions. Question marks are entered where a
reasonable uncertainty exists as to whether fibers
identified in the tissue are from sample contami-
nation or actually resided in the tissue.

The complexities of tissue sample preparation
methods are difficult to condense into a short
table entry. In Table 1 they are first categorized
as “thin” (microtomed tissue section) or “bulk”
(large tissue volumes processed to remove the
organic matrix and concentrate inorganic parti-
cles). Thin-section analyses are invariably too
insensitive to allow the observation of trace con-
centrations of fibers widely disseminated in tis-
sues. For bulk preparations, a few key words have
been added to provide some definition of each
bulk preparation technique used. This provides
some information concerning the quality of sam-
ple preparations, chances for contamination, and
uniformity of sample distribution on TEM grids.
These key words are provided in the order of the
basic steps used for sample preparation. A gen-
eral sequence involves a digestion and/or ashing
(high or low temperature), a concentration of the
residue suspended in water by centrifugation or
filtration, and the preparation of TEM grids by
direct transfer of sample from a filter or applica-
tion of a drop of suspension to the surface of a
carbon-coated grid.

The absence of a clear definition of detection
limit, as indicated in Table 1 for many studies,
makes the reports of negative tissue analyses
difficult to evaluate. Since there can be no demon-
stration of zero fiber concentrations in tissues, the
detection limit, often reported as a “less than”
value for each sample, is essential for determin-
ing if any particular exposure has resulted in
significant accumulations of fibers in the animal.
Similarly, the absence of blank tissue control
samples makes reports of positive tissue fiber
concentrations difficult to accept because of the
possibility of fiber contamination. Since it is pos-
sible during some sample preparation procedures
to systematically lose large numbers of fibers or
to fail to detect the fibers during microscope ex-
amination of the sample, positive tissue control
samples (samples with a known trace concentra-
tion) are important for demonstrating that fibers,
if present in tissues, can be detected quantita-
tively. Consequently, negative fiber presence
studies in which this capability is not demon-
strated have limited authority.

Conclusions

It is difficult to conclude on the basis of the
studies summarized in Table 1 that asbestos fi-

bers do not cross the intestinal barrier. The possi-
bility of such passage does not depend on the
viability of Volkheimer’s “persorption” mecha-
nism (3). Most asbestos fibers typically are much
smaller than starch granules and closer in length
to the 2-um (6) and 5.7-pm (7) diameter latex
spheres observed by LeFevre et al. to penetrate
intestinal Peyer’s patches. The widths of many
asbestos fibers are actually similar to the 0.02- to
0.05-pm diameters of carbon particles observed to
penetrate the epithelium covering Peyer’s
patches (8).

Since it is not possible to design an experiment
that demonstrates that no asbestos fibers are re-
tained in tissues following ingestion, we must
determine the presence or absence of fibers at a
level of detection determined by the analytical
considerations discussed earlier. Studies summa-
rized in Table 1 that report the presence of fibers
in tissue or fluids generally also report the lowest
detection limits, and most offer evidence of negli-
gible fiber contamination as a source of false-
positive results. The studies that report negative
results are fewer in number and either do not
define the analytical detection limit, provide in-
complete information, or report a less sensitive
analysis than studies reporting positive results
for similar experiments.

In addition to consideration of detection limits,
which are a pure reflection of the amount of tissue
examined, the efficiency of the microscopic tech-
nique for detecting individual fibers present in
the sample preparation may indicate a further
decrease in sensitivity. TEM examination of dis-
persed particulates is most efficient and allows
electron diffraction and energy dispersive X-ray
spectral identification of each fiber. One study
(42) used SEM to detect fibers in bulk tissue
preparations but observed: “However the working
resolution of this instrument was such that it was
difficult to be confident of identifying fine fibers
(i.e., less than 0.1 pm in diameter) among resi-
dues.”

Many of the studies summarized in Table 1
involve exposures to chrysotile asbestos. This is
appropriate, since chrysotile is the most common
fiber contaminant of water, food, and beverages.
Chrysotile fibers, however, serve as poorer indica-
tors of fiber penetration and transport to tissues
because of their susceptibility to leaching and
comminution and their common occurrence as a
contaminant added during sample preparation.
Amphibole fibers, including amosite and crocido-
lite asbestos, and attapulgite fibers were also
studied and provide strong indications of fiber
penetration. Crocidolite fibers were detected in
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lymph fluid of rats fed crocidolite in contrast to
the finding of chrysotile fibers in the lymph fluid
of other rats fed chrysotile (35). Attapulgite fibers
were found in high concentration in the urine of a
human subject known to have ingested a large
amount of that mineral (39). Attapulgite is un-
likely to be present as a result of a contamination
introduced during or after sample collection. Fi-
nally, urine (31) and tissue (34) concentrations of
amphibole fibers were shown to be well associated
with exposure or absence of exposure to the same
amphibole fibers in drinking water. These amphi-
bole fibers existed as a mixture of cummingtonite-
grunerite and actinolite with a unique range of
elemental compositions that strengthened the as-
sociation between the identity of fibers in the
water ingested and the identity of fibers in the
urine and tissue samples.

Perhaps more important than the weight of
evidence in favor of the probability of some fiber
penetration is the question of what fraction of
ingested fibers may be involved. Very little infor-
mation exists for providing an estimate of this
fraction. Any estimate is subject to a number of
assumptions and qualifications related to the na-
ture of the data used. The study of fiber appear-
ance in lymph fluid following ingestion or gavage
of chrysotile or crocidolite in rats resulted in an
estimate of a maximum daily passage of fibers to
the lymph fluid of 10-4 to 10-7 times the number
of fibers introduced to the stomach. (35). Amphi-
bole fiber concentrations in human urine were
observed to represent approximately 10-3 of the
concentration of the same fibers in the drinking
water consumed for up to 20 years prior to the
sample collections (31). Both the lymph fluid and
urine measurements provide a limited basis for
an estimate because they do not account for all
fibers that may move across the gastrointestinal
mucosa. The kinetics of fiber transport and elimi-
nation are unknown and further complicate at-
tempts to use the limited data for such estimates
of fiber penetration. These estimates do, however,
indicate the involvement of a very small fraction
of ingested fibers in penetration and consequently
low probability for significant tissue accumula-
tions and increased risk of cancer.

The research described in this paper has been peer and
administratively reviewed by the U.S. Environmental Protec-
tion Agency and approved for presentation and publication.
Mention of trade names or commercial products does not
constitute endorsement or recommendation for use.
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